Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins

Jianan Lin, Zhengqing Ouyang

PDF(1689 KB)
PDF(1689 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (2) : 119-129. DOI: 10.1007/s40484-020-0206-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins

Author information +
History +

Abstract

Background: RNA binding proteins (RBPs) play essential roles in the regulation of RNA metabolism. Recent studies have disclosed that RBPs achieve their functions via binding to their targets in a position-dependent pattern on RNAs. However, few studies have systematically addressed the associations between the RBP’s functions and their positional binding preferences.

Methods: Here, we present large-scale analyses on the functional targets of human RBPs by integrating the enhanced cross-linking and immunoprecipitation followed by sequencing (eCLIP-seq) datasets and the shRNA knockdown followed by RNA-seq datasets that are deposited in the integrated ENCyclopedia of DNA Elements in the human genome (ENCODE) data portal.

Results: We found that (1) binding to the translation termination site and the 3′ untranslated region is important to most human RBPs in the RNA decay regulation; (2) RBPs’ binding and regulation follow a cell-type specific pattern.

Conclusions: These analysis results show the strong relationship between the binding position and the functions of RBPs, which provides novel insights into the RBPs’ regulation mechanisms.

Graphical abstract

Keywords

RNA binding protein / CLIP-seq / RNA-seq / knockdown / RNA regulation

Cite this article

Download citation ▾
Jianan Lin, Zhengqing Ouyang. Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins. Quant. Biol., 2020, 8(2): 119‒129 https://doi.org/10.1007/s40484-020-0206-5

References

[1]
Keene, J. D. (2007) RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet., 8, 533–543
CrossRef Pubmed Google scholar
[2]
Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W., Clark, T. A., Schweitzer, A. C., Blume, J. E., Wang, X., (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 456, 464–469
CrossRef Pubmed Google scholar
[3]
Kao, D. I., Aldridge, G. M., Weiler, I. J. and Greenough, W. T. (2010) Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc. Natl. Acad. Sci. USA, 107, 15601–15606
CrossRef Pubmed Google scholar
[4]
King, O. D., Gitler, A. D. and Shorter, J. (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res., 1462, 61–80
CrossRef Pubmed Google scholar
[5]
Lagier-Tourenne, C., Polymenidou, M. and Cleveland, D. W. (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet., 19, R46–R64
CrossRef Pubmed Google scholar
[6]
Lukong, K. E., Chang, K. W., Khandjian, E. W. and Richard, S. (2008) RNA-binding proteins in human genetic disease. Trends Genet., 24, 416–425
CrossRef Pubmed Google scholar
[7]
König, J., Zarnack, K., Luscombe, N. M. and Ule, J. (2012) Protein-RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet., 13, 77–83
CrossRef Pubmed Google scholar
[8]
Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M. Jr, Jungkamp, A. C., Munschauer, M., (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141, 129–141
CrossRef Pubmed Google scholar
[9]
König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909–915
CrossRef Pubmed Google scholar
[10]
Cook, K. B., Hughes, T. R. and Morris, Q. D. (2015) High-throughput characterization of protein-RNA interactions. Brief. Funct. Genomics, 14, 74–89
CrossRef Pubmed Google scholar
[11]
Chen, B., Yun, J., Kim, M. S., Mendell, J. T. and Xie, Y. (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol., 15, R18
CrossRef Pubmed Google scholar
[12]
Wang, T., Xie, Y. and Xiao, G. (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. Genome Biol., 15, R11
CrossRef Pubmed Google scholar
[13]
Wang, T., Chen, B., Kim, M., Xie, Y. and Xiao, G. (2014) A model-based approach to identify binding sites in CLIP-Seq data. PLoS One, 9, e93248
CrossRef Pubmed Google scholar
[14]
Lovci, M. T., Ghanem, D., Marr, H., Arnold, J., Gee, S., Parra, M., Liang, T. Y., Stark, T. J., Gehman, L. T., Hoon, S., (2013) Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol., 20, 1434–1442
CrossRef Pubmed Google scholar
[15]
Althammer, S., González-Vallinas, J., Ballaré, C., Beato, M. and Eyras, E. (2011) Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics, 27, 3333–3340
CrossRef Pubmed Google scholar
[16]
Uren, P. J., Bahrami-Samani, E., Burns, S. C., Qiao, M., Karginov, F. V., Hodges, E., Hannon, G. J., Sanford, J. R., Penalva, L. O. and Smith, A. D. (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics, 28, 3013–3020
CrossRef Pubmed Google scholar
[17]
Comoglio, F., Sievers, C. and Paro, R. (2015) Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data. BMC Bioinformatics, 16, 32
CrossRef Pubmed Google scholar
[18]
Corcoran, D. L., Georgiev, S., Mukherjee, N., Gottwein, E., Skalsky, R. L., Keene, J. D. and Ohler, U. (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol., 12, R79
CrossRef Pubmed Google scholar
[19]
Moore, M. J., Zhang, C., Gantman, E. C., Mele, A., Darnell, J. C. and Darnell, R. B. (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc., 9, 263–293
CrossRef Pubmed Google scholar
[20]
Shah, A., Qian, Y., Weyn-Vanhentenryck, S. M. and Zhang, C. (2017) CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. Bioinformatics, 33, 566–567
Pubmed
[21]
Erhard, F., Dölken, L., Jaskiewicz, L. and Zimmer, R. (2013) PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol., 14, R79
CrossRef Pubmed Google scholar
[22]
Lin, J., Zhang, Y., Frankel, W. N. and Ouyang, Z. (2019) PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks. PLOS Comput. Biol., 15, e1007227
CrossRef Pubmed Google scholar
[23]
Rot, G., Wang, Z., Huppertz, I., Modic, M., Lenče, T., Hallegger, M., Haberman, N., Curk, T., von Mering, C. and Ule, J. (2017) High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Reports, 19, 1056–1067
CrossRef Pubmed Google scholar
[24]
Wang, E. T., Ward, A. J., Cherone, J. M., Giudice, J., Wang, T. T., Treacy, D. J., Lambert, N. J., Freese, P., Saxena, T., Cooper, T. A., (2015) Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res., 25, 858–871
CrossRef Pubmed Google scholar
[25]
Van Nostrand, E. L., Pratt, G. A., Shishkin, A. A., Gelboin-Burkhart, C., Fang, M. Y., Sundararaman, B., Blue, S. M., Nguyen, T. B., Surka, C., Elkins, K., (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods, 13, 508–514
CrossRef Pubmed Google scholar
[26]
Van Nostrand, E. L., Freese, P., Pratt, G. A., Wang, X., Wei, X., Xiao, R., Blue, S. M., Chen, J.-Y., Cody, N. A. L., Dominguez, D., (2018) A large-scale binding and functional map of human RNA binding proteins. bioRxiv, 179648
[27]
Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
CrossRef Pubmed Google scholar
[28]
Wagnon, J. L., Briese, M., Sun, W., Mahaffey, C. L., Curk, T., Rot, G., Ule, J. and Frankel, W. N. (2012) CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet., 8, e1003067
CrossRef Pubmed Google scholar
[29]
Chénard, C. A. and Richard, S. (2008) New implications for the QUAKING RNA binding protein in human disease. J. Neurosci. Res., 86, 233–242
CrossRef Pubmed Google scholar
[30]
Gherzi, R., Lee, K.-Y., Briata, P., Wegmüller, D., Moroni, C., Karin, M. and Chen, C.-Y. (2004) A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell, 14, 571–583
CrossRef Pubmed Google scholar
[31]
Lebedeva, S., Jens, M., Theil, K., Schwanhäusser, B., Selbach, M., Landthaler, M. and Rajewsky, N. (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell, 43, 340–352PMID:21723171
CrossRef Google scholar
[32]
Hogg, J. R. and Goff, S. P. (2010) Upf1 senses 3′ UTR length to potentiate mRNA decay. Cell, 143, 379–389
[33]
The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489,57–74
[34]
Davis, C. A., Hitz, B. C., Sloan, C. A., Chan, E. T., Davidson, J. M., Gabdank, I., Hilton, J. A., Jain, K., Baymuradov, U. K., Narayanan, A. K., (2018) The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res., 46, D794–D801
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https:// 10.1007/s40484-020-0206-5.

ACKNOWLEDGEMENTS

We thank members of the Ouyang Lab for discussions. We thank the ENCODE Consortium and Gene Yeo’s Lab from UCSD for generating the eCLIP data and Brenton Graveley’s Lab from UConn for generating the shRNA knockdown followed by RNA-seq data. Z.O. acknowledges the National Institute of General Medical Sciences (https://www.nigms.nih.gov/) grant R35GM124998. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Jianan Lin, and Zhengqing Ouyang declare that they have no conflict of interests.ƒ
All procedures performed in studies were in accordance with the ethical standards of the institution or practice at which the studies were conducted, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1689 KB)

Accesses

Citations

Detail

Sections
Recommended

/