Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins

Jianan Lin , Zhengqing Ouyang

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (2) : 119 -129.

PDF (1689KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (2) : 119 -129. DOI: 10.1007/s40484-020-0206-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins

Author information +
History +
PDF (1689KB)

Abstract

Background: RNA binding proteins (RBPs) play essential roles in the regulation of RNA metabolism. Recent studies have disclosed that RBPs achieve their functions via binding to their targets in a position-dependent pattern on RNAs. However, few studies have systematically addressed the associations between the RBP’s functions and their positional binding preferences.

Methods: Here, we present large-scale analyses on the functional targets of human RBPs by integrating the enhanced cross-linking and immunoprecipitation followed by sequencing (eCLIP-seq) datasets and the shRNA knockdown followed by RNA-seq datasets that are deposited in the integrated ENCyclopedia of DNA Elements in the human genome (ENCODE) data portal.

Results: We found that (1) binding to the translation termination site and the 3′ untranslated region is important to most human RBPs in the RNA decay regulation; (2) RBPs’ binding and regulation follow a cell-type specific pattern.

Conclusions: These analysis results show the strong relationship between the binding position and the functions of RBPs, which provides novel insights into the RBPs’ regulation mechanisms.

Graphical abstract

Keywords

RNA binding protein / CLIP-seq / RNA-seq / knockdown / RNA regulation

Cite this article

Download citation ▾
Jianan Lin, Zhengqing Ouyang. Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins. Quant. Biol., 2020, 8(2): 119-129 DOI:10.1007/s40484-020-0206-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Keene, J. D. (2007) RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet., 8, 533–543

[2]

Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W., Clark, T. A., Schweitzer, A. C., Blume, J. E., Wang, X., (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 456, 464–469

[3]

Kao, D. I., Aldridge, G. M., Weiler, I. J. and Greenough, W. T. (2010) Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc. Natl. Acad. Sci. USA, 107, 15601–15606

[4]

King, O. D., Gitler, A. D. and Shorter, J. (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res., 1462, 61–80

[5]

Lagier-Tourenne, C., Polymenidou, M. and Cleveland, D. W. (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet., 19, R46–R64

[6]

Lukong, K. E., Chang, K. W., Khandjian, E. W. and Richard, S. (2008) RNA-binding proteins in human genetic disease. Trends Genet., 24, 416–425

[7]

König, J., Zarnack, K., Luscombe, N. M. and Ule, J. (2012) Protein-RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet., 13, 77–83

[8]

Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M. Jr, Jungkamp, A. C., Munschauer, M., (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141, 129–141

[9]

König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909–915

[10]

Cook, K. B., Hughes, T. R. and Morris, Q. D. (2015) High-throughput characterization of protein-RNA interactions. Brief. Funct. Genomics, 14, 74–89

[11]

Chen, B., Yun, J., Kim, M. S., Mendell, J. T. and Xie, Y. (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol., 15, R18

[12]

Wang, T., Xie, Y. and Xiao, G. (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. Genome Biol., 15, R11

[13]

Wang, T., Chen, B., Kim, M., Xie, Y. and Xiao, G. (2014) A model-based approach to identify binding sites in CLIP-Seq data. PLoS One, 9, e93248

[14]

Lovci, M. T., Ghanem, D., Marr, H., Arnold, J., Gee, S., Parra, M., Liang, T. Y., Stark, T. J., Gehman, L. T., Hoon, S., (2013) Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol., 20, 1434–1442

[15]

Althammer, S., González-Vallinas, J., Ballaré C., Beato, M. and Eyras, E. (2011) Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics, 27, 3333–3340

[16]

Uren, P. J., Bahrami-Samani, E., Burns, S. C., Qiao, M., Karginov, F. V., Hodges, E., Hannon, G. J., Sanford, J. R., Penalva, L. O. and Smith, A. D. (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics, 28, 3013–3020

[17]

Comoglio, F., Sievers, C. and Paro, R. (2015) Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data. BMC Bioinformatics, 16, 32

[18]

Corcoran, D. L., Georgiev, S., Mukherjee, N., Gottwein, E., Skalsky, R. L., Keene, J. D. and Ohler, U. (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol., 12, R79

[19]

Moore, M. J., Zhang, C., Gantman, E. C., Mele, A., Darnell, J. C. and Darnell, R. B. (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc., 9, 263–293

[20]

Shah, A., Qian, Y., Weyn-Vanhentenryck, S. M. and Zhang, C. (2017) CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. Bioinformatics, 33, 566–567

[21]

Erhard, F., Dölken, L., Jaskiewicz, L. and Zimmer, R. (2013) PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol., 14, R79

[22]

Lin, J., Zhang, Y., Frankel, W. N. and Ouyang, Z. (2019) PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks. PLOS Comput. Biol., 15, e1007227

[23]

Rot, G., Wang, Z., Huppertz, I., Modic, M., Lenče, T., Hallegger, M., Haberman, N., Curk, T., von Mering, C. and Ule, J. (2017) High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Reports, 19, 1056–1067

[24]

Wang, E. T., Ward, A. J., Cherone, J. M., Giudice, J., Wang, T. T., Treacy, D. J., Lambert, N. J., Freese, P., Saxena, T., Cooper, T. A., (2015) Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res., 25, 858–871

[25]

Van Nostrand, E. L., Pratt, G. A., Shishkin, A. A., Gelboin-Burkhart, C., Fang, M. Y., Sundararaman, B., Blue, S. M., Nguyen, T. B., Surka, C., Elkins, K., (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods, 13, 508–514

[26]

Van Nostrand, E. L., Freese, P., Pratt, G. A., Wang, X., Wei, X., Xiao, R., Blue, S. M., Chen, J.-Y., Cody, N. A. L., Dominguez, D., (2018) A large-scale binding and functional map of human RNA binding proteins. bioRxiv, 179648

[27]

Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550

[28]

Wagnon, J. L., Briese, M., Sun, W., Mahaffey, C. L., Curk, T., Rot, G., Ule, J. and Frankel, W. N. (2012) CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet., 8, e1003067

[29]

Chénard, C. A. and Richard, S. (2008) New implications for the QUAKING RNA binding protein in human disease. J. Neurosci. Res., 86, 233–242

[30]

Gherzi, R., Lee, K.-Y., Briata, P., Wegmüller, D., Moroni, C., Karin, M. and Chen, C.-Y. (2004) A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell, 14, 571–583

[31]

Lebedeva, S., Jens, M., Theil, K., Schwanhäusser, B., Selbach, M., Landthaler, M. and Rajewsky, N. (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell, 43, 340–352PMID:21723171

[32]

Hogg, J. R. and Goff, S. P. (2010) Upf1 senses 3′ UTR length to potentiate mRNA decay. Cell, 143, 379–389

[33]

The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489,57–74

[34]

Davis, C. A., Hitz, B. C., Sloan, C. A., Chan, E. T., Davidson, J. M., Gabdank, I., Hilton, J. A., Jain, K., Baymuradov, U. K., Narayanan, A. K., (2018) The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res., 46, D794–D801

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1689KB)

Supplementary files

QB-20206-OF-OYZQ_suppl_1

Supplementary_Materials 1

Supplementary_Materials 2

2456

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/