Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins
Jianan Lin, Zhengqing Ouyang
Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins
Background: RNA binding proteins (RBPs) play essential roles in the regulation of RNA metabolism. Recent studies have disclosed that RBPs achieve their functions via binding to their targets in a position-dependent pattern on RNAs. However, few studies have systematically addressed the associations between the RBP’s functions and their positional binding preferences.
Methods: Here, we present large-scale analyses on the functional targets of human RBPs by integrating the enhanced cross-linking and immunoprecipitation followed by sequencing (eCLIP-seq) datasets and the shRNA knockdown followed by RNA-seq datasets that are deposited in the integrated ENCyclopedia of DNA Elements in the human genome (ENCODE) data portal.
Results: We found that (1) binding to the translation termination site and the 3′ untranslated region is important to most human RBPs in the RNA decay regulation; (2) RBPs’ binding and regulation follow a cell-type specific pattern.
Conclusions: These analysis results show the strong relationship between the binding position and the functions of RBPs, which provides novel insights into the RBPs’ regulation mechanisms.
RNA binding protein / CLIP-seq / RNA-seq / knockdown / RNA regulation
[1] |
Keene, J. D. (2007) RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet., 8, 533–543
CrossRef
Pubmed
Google scholar
|
[2] |
Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W., Clark, T. A., Schweitzer, A. C., Blume, J. E., Wang, X.,
CrossRef
Pubmed
Google scholar
|
[3] |
Kao, D. I., Aldridge, G. M., Weiler, I. J. and Greenough, W. T. (2010) Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc. Natl. Acad. Sci. USA, 107, 15601–15606
CrossRef
Pubmed
Google scholar
|
[4] |
King, O. D., Gitler, A. D. and Shorter, J. (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res., 1462, 61–80
CrossRef
Pubmed
Google scholar
|
[5] |
Lagier-Tourenne, C., Polymenidou, M. and Cleveland, D. W. (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet., 19, R46–R64
CrossRef
Pubmed
Google scholar
|
[6] |
Lukong, K. E., Chang, K. W., Khandjian, E. W. and Richard, S. (2008) RNA-binding proteins in human genetic disease. Trends Genet., 24, 416–425
CrossRef
Pubmed
Google scholar
|
[7] |
König, J., Zarnack, K., Luscombe, N. M. and Ule, J. (2012) Protein-RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet., 13, 77–83
CrossRef
Pubmed
Google scholar
|
[8] |
Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M. Jr, Jungkamp, A. C., Munschauer, M.,
CrossRef
Pubmed
Google scholar
|
[9] |
König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909–915
CrossRef
Pubmed
Google scholar
|
[10] |
Cook, K. B., Hughes, T. R. and Morris, Q. D. (2015) High-throughput characterization of protein-RNA interactions. Brief. Funct. Genomics, 14, 74–89
CrossRef
Pubmed
Google scholar
|
[11] |
Chen, B., Yun, J., Kim, M. S., Mendell, J. T. and Xie, Y. (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol., 15, R18
CrossRef
Pubmed
Google scholar
|
[12] |
Wang, T., Xie, Y. and Xiao, G. (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. Genome Biol., 15, R11
CrossRef
Pubmed
Google scholar
|
[13] |
Wang, T., Chen, B., Kim, M., Xie, Y. and Xiao, G. (2014) A model-based approach to identify binding sites in CLIP-Seq data. PLoS One, 9, e93248
CrossRef
Pubmed
Google scholar
|
[14] |
Lovci, M. T., Ghanem, D., Marr, H., Arnold, J., Gee, S., Parra, M., Liang, T. Y., Stark, T. J., Gehman, L. T., Hoon, S.,
CrossRef
Pubmed
Google scholar
|
[15] |
Althammer, S., González-Vallinas, J., Ballaré, C., Beato, M. and Eyras, E. (2011) Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics, 27, 3333–3340
CrossRef
Pubmed
Google scholar
|
[16] |
Uren, P. J., Bahrami-Samani, E., Burns, S. C., Qiao, M., Karginov, F. V., Hodges, E., Hannon, G. J., Sanford, J. R., Penalva, L. O. and Smith, A. D. (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics, 28, 3013–3020
CrossRef
Pubmed
Google scholar
|
[17] |
Comoglio, F., Sievers, C. and Paro, R. (2015) Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data. BMC Bioinformatics, 16, 32
CrossRef
Pubmed
Google scholar
|
[18] |
Corcoran, D. L., Georgiev, S., Mukherjee, N., Gottwein, E., Skalsky, R. L., Keene, J. D. and Ohler, U. (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol., 12, R79
CrossRef
Pubmed
Google scholar
|
[19] |
Moore, M. J., Zhang, C., Gantman, E. C., Mele, A., Darnell, J. C. and Darnell, R. B. (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc., 9, 263–293
CrossRef
Pubmed
Google scholar
|
[20] |
Shah, A., Qian, Y., Weyn-Vanhentenryck, S. M. and Zhang, C. (2017) CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. Bioinformatics, 33, 566–567
Pubmed
|
[21] |
Erhard, F., Dölken, L., Jaskiewicz, L. and Zimmer, R. (2013) PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol., 14, R79
CrossRef
Pubmed
Google scholar
|
[22] |
Lin, J., Zhang, Y., Frankel, W. N. and Ouyang, Z. (2019) PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks. PLOS Comput. Biol., 15, e1007227
CrossRef
Pubmed
Google scholar
|
[23] |
Rot, G., Wang, Z., Huppertz, I., Modic, M., Lenče, T., Hallegger, M., Haberman, N., Curk, T., von Mering, C. and Ule, J. (2017) High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Reports, 19, 1056–1067
CrossRef
Pubmed
Google scholar
|
[24] |
Wang, E. T., Ward, A. J., Cherone, J. M., Giudice, J., Wang, T. T., Treacy, D. J., Lambert, N. J., Freese, P., Saxena, T., Cooper, T. A.,
CrossRef
Pubmed
Google scholar
|
[25] |
Van Nostrand, E. L., Pratt, G. A., Shishkin, A. A., Gelboin-Burkhart, C., Fang, M. Y., Sundararaman, B., Blue, S. M., Nguyen, T. B., Surka, C., Elkins, K.,
CrossRef
Pubmed
Google scholar
|
[26] |
Van Nostrand, E. L., Freese, P., Pratt, G. A., Wang, X., Wei, X., Xiao, R., Blue, S. M., Chen, J.-Y., Cody, N. A. L., Dominguez, D.,
|
[27] |
Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
CrossRef
Pubmed
Google scholar
|
[28] |
Wagnon, J. L., Briese, M., Sun, W., Mahaffey, C. L., Curk, T., Rot, G., Ule, J. and Frankel, W. N. (2012) CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet., 8, e1003067
CrossRef
Pubmed
Google scholar
|
[29] |
Chénard, C. A. and Richard, S. (2008) New implications for the QUAKING RNA binding protein in human disease. J. Neurosci. Res., 86, 233–242
CrossRef
Pubmed
Google scholar
|
[30] |
Gherzi, R., Lee, K.-Y., Briata, P., Wegmüller, D., Moroni, C., Karin, M. and Chen, C.-Y. (2004) A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell, 14, 571–583
CrossRef
Pubmed
Google scholar
|
[31] |
Lebedeva, S., Jens, M., Theil, K., Schwanhäusser, B., Selbach, M., Landthaler, M. and Rajewsky, N. (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell, 43, 340–352PMID:21723171
CrossRef
Google scholar
|
[32] |
Hogg, J. R. and Goff, S. P. (2010) Upf1 senses 3′ UTR length to potentiate mRNA decay. Cell, 143, 379–389
|
[33] |
The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489,57–74
|
[34] |
Davis, C. A., Hitz, B. C., Sloan, C. A., Chan, E. T., Davidson, J. M., Gabdank, I., Hilton, J. A., Jain, K., Baymuradov, U. K., Narayanan, A. K.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |