Prediction and differential analysis of RNA secondary structure

Bo Yu, Yao Lu, Qiangfeng Cliff Zhang, Lin Hou

PDF(224 KB)
PDF(224 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (2) : 109-118. DOI: 10.1007/s40484-020-0205-6
REVIEW
REVIEW

Prediction and differential analysis of RNA secondary structure

Author information +
History +

Abstract

Background: RNA structure is the crucial basis for RNA function in various cellular processes. Over the last decade, high throughput structure profiling (SP) experiments have brought enormous insight into RNA secondary structure.

Results: In this review, we first provide an overview of approaches for RNA secondary structure prediction, including free energy-based algorithms and comparative sequence analysis. Then we introduce SP technologies, databases to document SP data, and pipelines/algorithms to normalize and interpret SP data. Computational frameworks that incorporate SP data in RNA secondary structure prediction are also presented.

Conclusions: We finally discuss potential directions for improvement in the prediction and differential analysis of RNA secondary structure.

Author summary

High throughput structure profiling (SP) experiments help the analysis of RNA secondary structure. In this review, we discuss existing frameworks for the prediction and differential analysis of RNA secondary structure, including computational methods and especially approaches incorporating SP data.

Keywords

RNA secondary structure / prediction / differential analysis / structure profiling

Cite this article

Download citation ▾
Bo Yu, Yao Lu, Qiangfeng Cliff Zhang, Lin Hou. Prediction and differential analysis of RNA secondary structure. Quant. Biol., 2020, 8(2): 109‒118 https://doi.org/10.1007/s40484-020-0205-6

References

[1]
Luco, R. F. and Misteli, T. (2011) More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr. Opin. Genet. Dev., 21, 366–372
CrossRef Pubmed Google scholar
[2]
Licatalosi, D. D. and Darnell, R. B. (2010) RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet., 11, 75–87
CrossRef Pubmed Google scholar
[3]
Cech, T. R. and Steitz, J. A. (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 157, 77–94
CrossRef Pubmed Google scholar
[4]
Cech, T. R. (2012) The RNA worlds in context. Cold Spring Harb. Perspect. Biol., 4, a006742
CrossRef Pubmed Google scholar
[5]
Strobel, E. J., Watters, K. E., Loughrey, D. and Lucks, J. B. (2016) RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr. Opin. Biotechnol., 39, 182–191
CrossRef Pubmed Google scholar
[6]
Halvorsen, M., Martin, J. S., Broadaway, S. and Laederach, A. (2010) Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet., 6, e1001074
CrossRef Pubmed Google scholar
[7]
Piao, M., Sun, L. and Zhang, Q. C. (2017) RNA regulations and functions decoded by transcriptome-wide RNA structure probing. Genom. Proteom. Bioinf., 15, 267–278
CrossRef Pubmed Google scholar
[8]
Schroeder, R., Barta, A. and Semrad, K. (2004) Strategies for RNA folding and assembly. Nat. Rev. Mol. Cell Biol., 5, 908–919
CrossRef Pubmed Google scholar
[9]
Keel, A. Y., Rambo, R. P., Batey, R. T. and Kieft, J. S. (2007) A general strategy to solve the phase problem in RNA crystallography. Structure, 15, 761–772
CrossRef Pubmed Google scholar
[10]
Sun, L., Fazal, F. M., Li, P., Broughton, J. P., Lee, B., Tang, L., Huang, W., Kool, E. T., Chang, H. Y. and Zhang, Q. C. (2019) RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol., 26, 322–330
CrossRef Pubmed Google scholar
[11]
Smola, M. J., Calabrese, J. M. and Weeks, K. M. (2015) Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry, 54, 6867–6875
CrossRef Pubmed Google scholar
[12]
Wan, Y., Qu, K., Zhang, Q. C., Flynn, R. A., Manor, O., Ouyang, Z., Zhang, J., Spitale, R. C., Snyder, M. P., Segal, E., (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature, 505, 706–709
CrossRef Pubmed Google scholar
[13]
Choudhary, K., Lai, Y. H., Tran, E. J. and Aviran, S. (2019) dStruct: identifying differentially reactive regions from RNA structurome profiling data. Genome Biol., 20, 40
CrossRef Pubmed Google scholar
[14]
Spitale, R. C., Flynn, R. A., Zhang, Q. C., Crisalli, P., Lee, B., Jung, J. W., Kuchelmeister, H. Y., Batista, P. J., Torre, E. A., Kool, E. T., (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 519, 486–490
CrossRef Pubmed Google scholar
[15]
Choudhary, K., Deng, F. and Aviran, S. (2017) Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. Quant. Biol., 5, 3–24
CrossRef Pubmed Google scholar
[16]
Yan, K., Arfat, Y., Li, D., Zhao, F., Chen, Z., Yin, C., Sun, Y., Hu, L., Yang, T. and Qian, A. (2016) Structure prediction: new insights into decrypting long noncoding RNAs. Int. J. Mol. Sci., 17, 132
CrossRef Pubmed Google scholar
[17]
Lorenz, R., Wolfinger, M. T., Tanzer, A. and Hofacker, I. L. (2016) Predicting RNA secondary structures from sequence and probing data. Methods, 103, 86–98
CrossRef Pubmed Google scholar
[18]
McCaskill, J. S. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29, 1105–1119
CrossRef Pubmed Google scholar
[19]
Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 31, 3406–3415
CrossRef Pubmed Google scholar
[20]
Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res., 9, 133–148
CrossRef Pubmed Google scholar
[21]
Carvalho, L. E. and Lawrence, C. E. (2008) Centroid estimation in discrete high-dimensional spaces with applications in biology. Proc. Natl. Acad. Sci. USA, 105, 3209–3214
CrossRef Pubmed Google scholar
[22]
Zuker, M. (1989) On finding all suboptimal foldings of an RNA molecule. Science, 244, 48–52
CrossRef Pubmed Google scholar
[23]
Wuchty, S., Fontana, W., Hofacker, I. L. and Schuster, P. (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers, 49, 145–165
CrossRef Pubmed Google scholar
[24]
Ding, Y., Chan, C. Y. and Lawrence, C. E. (2005) RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA, 11, 1157–1166
CrossRef Pubmed Google scholar
[25]
Ding, Y. and Lawrence, C. E. (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res., 31, 7280–7301
CrossRef Pubmed Google scholar
[26]
Ding, Y., Chan, C. Y. and Lawrence, C. E. (2006) Clustering of RNA secondary structures with application to messenger RNAs. J. Mol. Biol., 359, 554–571
CrossRef Pubmed Google scholar
[27]
Do, C. B., Woods, D. A. and Batzoglou, S. (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics, 22, e90–e98
CrossRef Pubmed Google scholar
[28]
Hamada, M., Sato, K. and Asai, K. (2010) Prediction of RNA secondary structure by maximizing pseudo-expected accuracy. BMC Bioinformatics, 11, 586
CrossRef Pubmed Google scholar
[29]
Puton, T., Kozlowski, L. P., Rother, K. M. and Bujnicki, J. M. (2013) CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Res., 41, 4307–4323
CrossRef Pubmed Google scholar
[30]
Hamada, M. (2015) RNA Secondary Structure Prediction from Multi-Aligned Sequences. In: RNA Bioinformatics, Picardi, E., (ed.), pp. 17–38. Totowa: Humana Press Inc.
[31]
Mathews, D. H. and Turner, D. H. (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. Tinoco. J. Mol. Biol., 317, 191–203
[32]
Knudsen, B. and Hein, J. (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res., 31, 3423–3428
CrossRef Pubmed Google scholar
[33]
Hofacker, I. L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res., 31, 3429–3431
CrossRef Pubmed Google scholar
[34]
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242
CrossRef Pubmed Google scholar
[35]
Andronescu, M., Bereg, V., Hoos, H. H. and Condon, A. (2008) RNA STRAND: the RNA secondary structure and statistical analysis database. BMC Bioinformatics, 9, 340
CrossRef Pubmed Google scholar
[36]
Hajiaghayi, M., Condon, A. and Hoos, H. H. (2012) Analysis of energy-based algorithms for RNA secondary structure prediction. BMC Bioinformatics, 13, 22
CrossRef Pubmed Google scholar
[37]
Xu, Z., Almudevar, A. and Mathews, D. H. (2012) Statistical evaluation of improvement in RNA secondary structure prediction. Nucleic Acids Res., 40, e26
CrossRef Pubmed Google scholar
[38]
Mathews, D. H. (2019) How to benchmark RNA secondary structure prediction accuracy. Methods, 162–163, 60–67
CrossRef Pubmed Google scholar
[39]
Peattie, D. A. and Gilbert, W. (1980) Chemical probes for higher-order structure in RNA. Proc. Natl. Acad. Sci. USA, 77, 4679–4682
CrossRef Pubmed Google scholar
[40]
Noller, H. F. and Chaires, J. B. (1972) Functional modification of 16S ribosomal RNA by kethoxal. Proc. Natl. Acad. Sci. USA, 69, 3115–3118
CrossRef Pubmed Google scholar
[41]
Strobel, E. J., Yu, A. M. and Lucks, J. B. (2018) High-throughput determination of RNA structures. Nat. Rev. Genet., 19, 615–634
CrossRef Pubmed Google scholar
[42]
Wan, Y., Qu, K., Ouyang, Z., Kertesz, M., Li, J., Tibshirani, R., Makino, D. L., Nutter, R. C., Segal, E. and Chang, H. Y. (2012) Genome-wide measurement of RNA folding energies. Mol. Cell, 48, 169–181
CrossRef Pubmed Google scholar
[43]
Zheng, Q., Ryvkin, P., Li, F., Dragomir, I., Valladares, O., Yang, J., Cao, K., Wang, L. S. and Gregory, B. D. (2010) Genome-wide double-stranded RNA sequencing reveals the functional significance of base-paired RNAs in Arabidopsis. PLoS Genet., 6, e1001141
CrossRef Pubmed Google scholar
[44]
Underwood, J. G., Uzilov, A. V., Katzman, S., Onodera, C. S., Mainzer, J. E., Mathews, D. H., Lowe, T. M., Salama, S. R. and Haussler, D. (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods, 7, 995–1001.
CrossRef Pubmed Google scholar
[45]
Kertesz, M., Wan, Y., Mazor, E., Rinn, J. L., Nutter, R. C., Chang, H. Y. and Segal, E. (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature, 467, 103–107
CrossRef Pubmed Google scholar
[46]
Smola, M. J. and Weeks, K. M. (2018) In-cell RNA structure probing with SHAPE-MaP. Nat. Protoc., 13, 1181–1195
CrossRef Pubmed Google scholar
[47]
Saus, E., Willis, J. R., Pryszcz, L. P., Hafez, A., Llorens, C., Himmelbauer, H. and Gabald�n, T. (2018) nextPARS: parallel probing of RNA structures in Illumina. RNA, 24, 609–619
CrossRef Pubmed Google scholar
[48]
Busan, S. and Weeks, K. M. (2018) Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA, 24, 143–148
CrossRef Pubmed Google scholar
[49]
Zubradt, M., Gupta, P., Persad, S., Lambowitz, A. M., Weissman, J. S. and Rouskin, S. (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods, 14, 75–82
CrossRef Pubmed Google scholar
[50]
Ritchey, L. E., Su, Z., Tang, Y., Tack, D. C., Assmann, S. M. and Bevilacqua, P. C. (2017) Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo. Nucleic Acids Res., 45, e135
CrossRef Pubmed Google scholar
[51]
Incarnato, D., Anselmi, F., Morandi, E., Neri, F., Maldotti, M., Rapelli, S., Parlato, C., Basile, G. and Oliviero, S. (2017) High-throughput single-base resolution mapping of RNA 2�-O-methylated residues. Nucleic Acids Res., 45, 1433–1441
CrossRef Pubmed Google scholar
[52]
Chan, D., Feng, C. and Spitale, R. C. (2017) Measuring RNA structure transcriptome-wide with icSHAPE. Methods, 120, 85–90
CrossRef Pubmed Google scholar
[53]
Flynn, R. A., Zhang, Q. C., Spitale, R. C., Lee, B., Mumbach, M. R. and Chang, H. Y. (2016) Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat. Protoc., 11, 273–290
CrossRef Pubmed Google scholar
[54]
Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. and Weeks, K. M. (2015) Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc., 10, 1643–1669
CrossRef Pubmed Google scholar
[55]
Poulsen, L. D., Kielpinski, L. J., Salama, S. R., Krogh, A. and Vinther, J. (2015) SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data. RNA, 21, 1042–1052
CrossRef Pubmed Google scholar
[56]
Ding, Y., Kwok, C. K., Tang, Y., Bevilacqua, P. C. and Assmann, S. M. (2015) Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat. Protoc., 10, 1050–1066
CrossRef Pubmed Google scholar
[57]
Talkish, J., May, G., Lin, Y., Woolford, J. L. Jr and McManus, C. J. (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA, 20, 713–720
CrossRef Pubmed Google scholar
[58]
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. and Weeks, K. M. (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods, 11, 959–965
CrossRef Pubmed Google scholar
[59]
Seetin, M.G., Kladwang, W., Bida, J.P. and Das, R. (2014) Massively Parallel RNA Chemical Mapping with a Reduced Bias MAP-Seq Protocol. In: RNA Folding. Methods in Molecular Biology (Methods and Protocols), Waldsich, C. (ed.), vol 1086, pp. 95–117. Totowa: Humana Press
[60]
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. and Weissman, J. S. (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature, 505, 701–705
CrossRef Pubmed Google scholar
[61]
Loughrey, D., Watters, K. E., Settle, A. H. and Lucks, J. B. (2014) SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res., 42, e165
CrossRef Pubmed Google scholar
[62]
Incarnato, D., Neri, F., Anselmi, F. and Oliviero, S. (2014) Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol., 15, 491
CrossRef Pubmed Google scholar
[63]
Homan, P. J., Favorov, O. V., Lavender, C. A., Kursun, O., Ge, X., Busan, S., Dokholyan, N. V. and Weeks, K. M. (2014) Single-molecule correlated chemical probing of RNA. Proc. Natl. Acad. Sci. USA, 111, 13858–13863
CrossRef Pubmed Google scholar
[64]
Hector, R. D., Burlacu, E., Aitken, S., Le Bihan, T., Tuijtel, M., Zaplatina, A., Cook, A. G. and Granneman, S. (2014) Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res., 42, 12138–12154
CrossRef Pubmed Google scholar
[65]
Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C. and Assmann, S. M. (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 505, 696–700
CrossRef Pubmed Google scholar
[66]
Mortimer, S. A., Trapnell, C., Aviran, S., Pachter, L. and Lucks, J. B. (2012) SHAPE-Seq: high-throughput RNA structure analysis. Curr. Protoc. Chem. Biol., 4, 275–297
CrossRef Pubmed Google scholar
[67]
Lucks, J. B., Mortimer, S. A., Trapnell, C., Luo, S., Aviran, S., Schroth, G. P., Pachter, L., Doudna, J. A. and Arkin, A. P. (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl. Acad. Sci. USA, 108, 11063–11068
CrossRef Pubmed Google scholar
[68]
Silverman, I.M., Berkowitz, N. D., Gosai, S. J. and Gregory, B. D. (2016) Genome-Wide Approaches for RNA Structure Probing. In: RNA Processing. Advances in Experimental Medicine and Biology, Yeo, G. (eds.), vol 907, pp. 29–59. Cham: Springer
[69]
Bevilacqua, P. C., Ritchey, L. E., Su, Z., and Assmann, S. M. (2016) Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet., 50, 235–266
[70]
Kubota, M., Tran, C. and Spitale, R. C. (2015) Progress and challenges for chemical probing of RNA structure inside living cells. Nat. Chem. Biol., 11, 933–941
CrossRef Pubmed Google scholar
[71]
Kwok, C. K., Tang, Y., Assmann, S. M. and Bevilacqua, P. C. (2015) The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci., 40, 221–232
CrossRef Pubmed Google scholar
[72]
Yesselman, J. D., Tian, S., Liu, X., Shi, L., Li, J. B. and Das, R. (2018) Updates to the RNA mapping database (RMDB), version 2. Nucleic Acids Res., 46, D375–D379
CrossRef Pubmed Google scholar
[73]
Cordero, P., Lucks, J. B. and Das, R. (2012) An RNA Mapping DataBase for curating RNA structure mapping experiments. Bioinformatics, 28, 3006–3008
CrossRef Pubmed Google scholar
[74]
Rocca-Serra, P., Bellaousov, S., Birmingham, A., Chen, C., Cordero, P., Das, R., Davis-Neulander, L., Duncan, C. D., Halvorsen, M., Knight, R., (2011) Sharing and archiving nucleic acid structure mapping data. RNA, 17, 1204–1212
CrossRef Pubmed Google scholar
[75]
Berkowitz, N. D., Silverman, I. M., Childress, D. M., Kazan, H., Wang, L. S. and Gregory, B. D. (2016) A comprehensive database of high-throughput sequencing-based RNA secondary structure probing data (Structure Surfer). BMC Bioinformatics, 17, 215
CrossRef Pubmed Google scholar
[76]
Norris, M., Kwok, C. K., Cheema, J., Hartley, M., Morris, R. J., Aviran, S. and Ding, Y. (2017) FoldAtlas: a repository for genome-wide RNA structure probing data. Bioinformatics, 33, 306–308
CrossRef Pubmed Google scholar
[77]
Wu, Y., Qu, R., Huang, Y., Shi, B., Liu, M., Li, Y. and Lu, Z. J. (2016) RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data. Nucleic Acids Res., 44, W294–W301
CrossRef Pubmed Google scholar
[78]
Kladwang, W., Mann, T. H., Becka, A., Tian, S., Kim, H., Yoon, S. and Das, R. (2014) Standardization of RNA chemical mapping experiments. Biochemistry, 53, 3063–3065
CrossRef Pubmed Google scholar
[79]
Selega, A., Sirocchi, C., Iosub, I., Granneman, S. and Sanguinetti, G. (2017) Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments. Nat. Methods, 14, 83–89
CrossRef Pubmed Google scholar
[80]
Low, J. T. and Weeks, K. M. (2010) SHAPE-directed RNA secondary structure prediction. Methods, 52, 150–158
CrossRef Pubmed Google scholar
[81]
Tang, Y., Bouvier, E., Kwok, C. K., Ding, Y., Nekrutenko, A., Bevilacqua, P. C. and Assmann, S. M. (2015) StructureFold: genome-wide RNA secondary structure mapping and reconstruction in vivo. Bioinformatics, 31, 2668–2675
CrossRef Pubmed Google scholar
[82]
Aviran, S., Trapnell, C., Lucks, J. B., Mortimer, S. A., Luo, S., Schroth, G. P., Doudna, J. A., Arkin, A. P. and Pachter, L. (2011) Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl. Acad. Sci. USA, 108, 11069–11074
CrossRef Pubmed Google scholar
[83]
Li, B., Tambe, A., Aviran, S., and Pachter, L. (2017) PROBer provides a general toolkit for analyzing sequencing-based toeprinting assays. Cell Syst., 4, 568–574 e7
[84]
Zou, C. and Ouyang, Z. (2015) Joint modeling of RNase footprint sequencing profiles for genome-wide inference of RNA structure. Nucleic Acids Res., 43, 9187–9197
CrossRef Pubmed Google scholar
[85]
Deigan, K. E., Li, T. W., Mathews, D. H. and Weeks, K. M. (2009) Accurate SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. USA, 106, 97–102
CrossRef Pubmed Google scholar
[86]
Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M. and Turner, D. H. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA, 101, 7287–7292
CrossRef Pubmed Google scholar
[87]
Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K. and Arkin, A. P. (2012) Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res., 40, 5775–5786
CrossRef Pubmed Google scholar
[88]
Deng, F., Ledda, M., Vaziri, S. and Aviran, S. (2016) Data-directed RNA secondary structure prediction using probabilistic modeling. RNA, 22, 1109–1119
CrossRef Pubmed Google scholar
[89]
Spasic, A., Assmann, S. M., Bevilacqua, P. C. and Mathews, D. H. (2018) Modeling RNA secondary structure folding ensembles using SHAPE mapping data. Nucleic Acids Res., 46, 314–323
CrossRef Pubmed Google scholar
[90]
Wu, Y., Shi, B., Ding, X., Liu, T., Hu, X., Yip, K. Y., Yang, Z. R., Mathews, D. H. and Lu, Z. J. (2015) Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data. Nucleic Acids Res., 43, 7247–7259
CrossRef Pubmed Google scholar
[91]
Ouyang, Z., Snyder, M. P. and Chang, H. Y. (2013) SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res., 23, 377–387
CrossRef Pubmed Google scholar
[92]
Li, H. and Aviran, S. (2018) Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes. Nat. Commun., 9, 606
CrossRef Pubmed Google scholar
[93]
Sexton, A. N., Wang, P. Y., Rutenberg-Schoenberg, M. and Simon, M. D. (2017) Interpreting reverse transcriptase termination and mutation events for greater insight into the chemical probing of RNA. Biochemistry, 56, 4713–4721
CrossRef Pubmed Google scholar
[94]
Lu, Z., Zhang, Q. C., Lee, B., Flynn, R. A., Smith, M. A., Robinson, J. T., Davidovich, C., Gooding, A. R., Goodrich, K. J., Mattick, J. S., (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell, 165, 1267–1279
CrossRef Pubmed Google scholar
[95]
Aw, J. G. A., Shen, Y., Wilm, A., Sun, M., Lim, X. N., Boon, K. L., Tapsin, S., Chan, Y. S., Tan, C. P., Sim, A. Y., (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell, 62, 603–617
CrossRef Pubmed Google scholar
[96]
Sharma, E., Sterne-Weiler, T., O’Hanlon, D. and Blencowe, B. J. (2016) Global mapping of human RNA-RNA interactions. Mol. Cell, 62, 618–626
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

H. L. acknowledge the following fundings: the National Natural Science Foundation of China (No. 11601259) and Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX01).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Bo Yu, Yao Lu, Qiangfeng Cliff Zhang and Lin Hou declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(224 KB)

Accesses

Citations

Detail

Sections
Recommended

/