Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP-seq and chromatin accessibility data

Rongbin Zheng , Xin Dong , Changxin Wan , Xiaoying Shi , Xiaoyan Zhang , Clifford A. Meyer

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 267 -276.

PDF (1487KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 267 -276. DOI: 10.1007/s40484-020-0204-7
PROTOCOL AND TUTORIAL
PROTOCOL AND TUTORIAL

Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP-seq and chromatin accessibility data

Author information +
History +
PDF (1487KB)

Abstract

The Cistrome Data Browser (DB) at the website (cistrome.org/db) provides about 56,000 published human and mouse ChIP-seq, DNase-seq, and ATAC-seq chromatin profiles, which we have processed using uniform analysis and quality control pipelines. The Cistrome DB Toolkit at the website (dbtoolkit.cistrome.org) was developed to allow users to investigate fundamental questions using this data collection. In this tutorial, we describe how to use the Cistrome DB to search for publicly available chromatin profiles, to assess sample quality, to access peak results, to visualize signal intensities, to explore DNA sequence motifs, and to identify putative target genes. We also describe the use of the Toolkit module to seek the factors most likely to regulate a gene of interest, the factors that bind to a given genomic interval (enhancer, SNP, etc.), and samples that have significant peak overlaps with user-defined peak sets. This tutorial guides biomedical researchers in the use of Cistrome DB resources to rapidly obtain valuable insights into gene regulatory questions

Keywords

ChIP-seq / chromatin accessibility / gene regulatory analysis / transcription factor

Cite this article

Download citation ▾
Rongbin Zheng, Xin Dong, Changxin Wan, Xiaoying Shi, Xiaoyan Zhang, Clifford A. Meyer. Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP-seq and chromatin accessibility data. Quant. Biol., 2020, 8(3): 267-276 DOI:10.1007/s40484-020-0204-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Johnson, D. S., Mortazavi, A., Myers, R. M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497–1502

[2]

Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680

[3]

Furey, T. S. (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet., 13, 840–852

[4]

Song, L. and Crawford, G. E. (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc., 2010, pdb.prot5384

[5]

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. and Greenleaf, W. J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 10, 1213–1218

[6]

Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T. R. and Weirauch, M. T. (2018) The Human Transcription Factors. Cell, 172, 650–665

[7]

The ENCODE Project Consortium (2013) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74

[8]

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317–330

[9]

Barrett, T., Wilhite, S. E.,Ledoux, P., Evangelista, C., Kim, I.T., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M. (2012) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res., 41, D991–D995

[10]

Zheng, R., Wan, C., Mei, S., Qin, Q., Wu, Q., Sun, H., Chen, C. H., Brown, M., Zhang, X., Meyer, C. A., (2019) Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res., 47, D729–D735

[11]

Stadhouders, R., Vidal, E., Serra, F., Di Stefano, B., Le Dily, F., Quilez, J., Gomez, A., Collombet, S., Berenguer, C., Cuartero, Y., (2018) Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet., 50, 238–249

[12]

Ballaré C., Castellano, G., Gaveglia, L., Althammer, S., González-Vallinas, J., Eyras, E., Le Dily, F., Zaurin, R., Soronellas, D., Vicent, G. P., (2013) Nucleosome-driven transcription factor binding and gene regulation. Mol. Cell, 49, 67–79

[13]

Ouyang, Z., Zhou, Q. and Wong, W. H. (2009) ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc. Natl. Acad. Sci. USA, 106, 21521–21526

[14]

Jiang, S. and Mortazavi, A. (2018) Integrating ChIP-seq with other functional genomics data. Brief. Funct. Genomics, 17, 104–115

[15]

Guan, D., Shao, J., Deng, Y., Wang, P., Zhao, Z., Liang, Y., Wang, J. and Yan, B. (2014) CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data. Bioinformatics, 30, 1190–1192

[16]

Wasserman, W. W. and Sandelin, A. (2004) Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet., 5, 276–287

[17]

Qin, Q., Mei, S., Wu, Q., Sun, H., Li, L., Taing, L., Chen, S., Li, F., Liu, T., Zang, C., (2016) ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline. BMC Bioinformatics, 17, 404

[18]

Wang, S., Sun, H., Ma, J., Zang, C., Wang, C., Wang, J., Tang, Q., Meyer, C. A., Zhang, Y. and Liu, X. S. (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc., 8, 2502–2515

[19]

Li, S., Wan, C., Zheng, R., Fan, J., Dong, X., Meyer, C. A. and Liu, X. S. (2019) Cistrome-GO: a web server for functional enrichment analysis of transcription factor ChIP-seq peaks. Nucleic Acids Res., 47, W206–W211

[20]

Layer, R. M., Pedersen, B. S., Disera, T., Marth, G. T., Gertz, J. and Quinlan, A. R. (2018) GIGGLE: a search engine for large-scale integrated genome analysis. Nat. Methods, 15, 123–126

[21]

Karolchik, D. and Kent, W. J. (2003) The UCSC Genome Browser. Curr. Protoc. in Bioinforma., 00, 1.4.1–1.4.23

[22]

Li, D., Hsu, S., Purushotham, D., Sears, R. L. and Wang, T. (2019) WashU Epigenome Browser update 2019. Nucleic Acids Res., 47, W158–W165

[23]

Corces, M. R., Granja, J. M., Shams, S., Louie, B. H., Seoane, J. A., Zhou, W., Silva, T. C., Groeneveld, C., Wong, C. K., Cho, S. W., (2018) The chromatin accessibility landscape of primary human cancers. Science, 362, eaav1898

[24]

Bell, O., Tiwari, V. K., Thomä N. H. and Schübeler, D. (2011) Determinants and dynamics of genome accessibility. Nat. Rev. Genet., 12, 554–564

[25]

Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25, 1754–1760

[26]

Marinov, G. K., Kundaje, A., Park, P. J. and Wold, B. J. (2014) Large-scale quality analysis of published ChIP-seq data. G3: Genes, Genomes. Genetics, 4, 209–223

[27]

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nussbaum, C., Myers, R. M., Brown, M., Li, W., (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol., 9, R137

[28]

Siepel, A. and Haussler, D. (2005) Phylogenetic Hidden Markov Models. In: Statistical Methods in Molecular Evolution. Statistics for Biology and Health. New York: Springer

[29]

Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L. D. W., Richards, S., (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res., 15, 1034–1050

[30]

Meyer, C. A., He, H. H., Brown, M. and Liu, X. S. (2011) BINOCh: Binding inference from nucleosome occupancy changes. Bioinformatics, 27, 1867–1868

[31]

Jiang, P. and Singh, M. (2014) CCAT: Combinatorial Code Analysis Tool for transcriptional regulation. Nucleic Acids Res., 42, 2833–2847

[32]

Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., Chang, H. Y. and Greenleaf, W. J. (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523, 486–490

[33]

Jia, G., Preussner, J., Chen, X., Guenther, S., Yuan, X., Yekelchyk, M., Kuenne, C., Looso, M., Zhou, Y., Teichmann, S., (2018) Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat. Commun., 9, 4877

[34]

Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L. and Garraway, L. A. (2013) Highly recurrent TERT promoter mutations in human melanoma. Science, 339, 957–959

[35]

Demichelis, F., Setlur, S. R., Banerjee, S., Chakravarty, D., Chen, J. Y. H., Chen, C. X., Huang, J., Beltran, H., Oldridge, D. A., Kitabayashi, N., (2012) Identification of functionally active, low frequency copy number variants at 15q21.3 and 12q21.31 associated with prostate cancer risk. Proc. Natl. Acad. Sci. USA, 109, 6686–6691

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1487KB)

3706

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/