Integrating brain imaging endophenotypes with GWAS for Alzheimer’s disease
Katherine A. Knutson, Wei Pan
Integrating brain imaging endophenotypes with GWAS for Alzheimer’s disease
Background: Genome wide association studies (GWAS) have identified many genetic variants associated with increased risk of Alzheimer’s disease (AD). These susceptibility loci may effect AD indirectly through a combination of physiological brain changes. Many of these neuropathologic features are detectable via magnetic resonance imaging (MRI).
Methods: In this study, we examine the effects of such brain imaging derived phenotypes (IDPs) with genetic etiology on AD, using and comparing the following methods: two-sample Mendelian randomization (2SMR), generalized summary statistics based Mendelian randomization (GSMR), transcriptome wide association studies (TWAS) and the adaptive sum of powered score (aSPU) test. These methods do not require individual-level genotypic and phenotypic data but instead can rely only on an external reference panel and GWAS summary statistics.
Results: Using publicly available GWAS datasets from the International Genomics of Alzheimer’s Project (IGAP) and UK Biobank’s (UKBB) brain imaging initiatives, we identify 35 IDPs possibly associated with AD, many of which have well established or biologically plausible links to the characteristic cognitive impairments of this neurodegenerative disease.
Conclusions: Our results highlight the increased power for detecting genetic associations achieved by multiple correlated SNP-based methods, i.e., aSPU, GSMR and TWAS, over MR methods based on independent SNPs (as instrumental variables).
Availability: Example code is available at https://github.com/kathalexknuts/ADIDP.
Structural and functional brain changes play a key role in Alzheimer’s disease progression, but recent studies suggest that many of these risk phenotypes remain unidentified. We implement and compare multiple tests of genetically-regulated brain imaging phenotypes (IDPs) associated with AD that leverage publicly available GWAS summary statistics on AD and 1,578 IDPs from IGAP and UK Biobank, respectively. We identify 35 AD-associated IDPs, including both novel and well established risk phenotypes. Our results emphasize the improved power of the aSPU, GSMR, and TWAS tests over MR approaches, the former of which utilizes multiple correlated SNPs.
aSPU test / Mendelian randomization / MRI / SPU tests / Sum test / TWAS
[1] |
Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 12, 459–509
CrossRef
Google scholar
|
[2] |
Frisoni, G. B., Fox, N. C., Jack, Jr, C. R., Scheltens, P. and Thompson, P. M. (2010) The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol., 6, 67–77
CrossRef
Pubmed
Google scholar
|
[3] |
Greicius, M. D., Srivastava, G., Reiss, A. L. and Menon, V. (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA, 101, 4637–4642
CrossRef
Pubmed
Google scholar
|
[4] |
Zhang, Y., Schuff, N., Du, A. T., Rosen, H. J., Kramer, J. H., Gorno-Tempini, M. L., Miller, B. L. and Weiner, M. W. (2009) White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain, 132, 2579–2592
CrossRef
Pubmed
Google scholar
|
[5] |
Lambert, J.-C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., Jun, G., DeStefano, A. L., Bis, J. C., Beecham, G. W.,
CrossRef
Pubmed
Google scholar
|
[6] |
Pierce, B. L. and Burgess, S. (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol., 178, 1177–1184
CrossRef
Pubmed
Google scholar
|
[7] |
Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R., Robinson, M. R., McGrath, J. J., Visscher, P. M., Wray, N. R.,
CrossRef
Pubmed
Google scholar
|
[8] |
Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J., Eyler, A. E., Denny, J. C., Nicolae, D. L., Cox, N. J.,
CrossRef
Pubmed
Google scholar
|
[9] |
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., Jansen, R., de Geus, E. J., Boomsma, D. I., Wright, F. A.,
CrossRef
Pubmed
Google scholar
|
[10] |
Xu, Z., Wu, C., Wei, P. and Pan, W. (2017) A powerful framework for integrating eQTL and GWAS summary data. Genetics, 207, 893–902
CrossRef
Pubmed
Google scholar
|
[11] |
Yang, C., Wan, X., Lin, X., Chen, M., Zhou, X. and Liu, J. (2019) CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. Bioinformatics, 35, 1644–1652
CrossRef
Pubmed
Google scholar
|
[12] |
Barbeira, A. N., Pividori, M., Zheng, J., Wheeler, H. E., Nicolae, D. L. and Im, H. K. (2019) Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet., 15, e1007889
CrossRef
Pubmed
Google scholar
|
[13] |
Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S. M., Yu, Z., Li, B., Gu, J., Muchnik, S.,
CrossRef
Pubmed
Google scholar
|
[14] |
Yang, Y., Shi, X., Jiao, Y., Huang, J., Chen, M., Zhou, X., Sun, L., Lin, X., Yang, C. and Liu, J. (2019) CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. Bioinformatics, 36, 2009–2016
|
[15] |
Xu, Z., Wu, C. and Pan, W., and the Alzheimer’s Disease Neuroimaging Initiative. (2017) Imaging-wide association study: integrating imaging endophenotypes in GWAS. Neuroimage, 159, 159–169
CrossRef
Pubmed
Google scholar
|
[16] |
Zhao, B., Luo, T., Li, T., Li, Y., Zhang, J., Shan, Y., Wang, X., Yang, L., Zhou, F., Zhu, Z.,
CrossRef
Pubmed
Google scholar
|
[17] |
Zhao, B., Shan, Y., Yang, Y., Li, T., Luo, T., Zhu, Z., Li, Y. and Zhu, H. (2019b) Transcriptome-wide association analysis of 211 neuroimaging traits identifies new genes for brain structures and yields insights into the gene-level pleiotropy with other complex traits. bioRxiv, 842872
|
[18] |
Nicholas, M., Freund, M. K., Johnson, R., Shi, H., Kichaev, G., Gusev, A. and Pasaniuc, B. (2019) Probabilistic fine-mapping of transcriptomewide association studies. Nat. Genet., 51, 675–682
|
[19] |
Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A. N., Knowles, D. A., Golan, D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K.,
CrossRef
Pubmed
Google scholar
|
[20] |
Pan, W. (2009) Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet. Epidemiol., 33, 497–507
CrossRef
Pubmed
Google scholar
|
[21] |
Pan, W., Kim, J., Zhang, Y., Shen, X. and Wei, P. (2014) A powerful and adaptive association test for rare variants. Genetics, 197, 1081–1095
CrossRef
Pubmed
Google scholar
|
[22] |
Kwak, I. Y. and Pan, W. (2016) Adaptive gene- and pathway-trait association testing with GWAS summary statistics. Bioinformatics, 32, 1178–1184
CrossRef
Pubmed
Google scholar
|
[23] |
Yan D., Hu B., Darst B., Mukherjee S., Kunkle B., Deming Y., Dumitrescu L., Wang Y., Naj A., Kuzma A.,
|
[24] |
Elliott, L. T., Sharp, K., Alfaro-Almagro, F., Shi, S., Miller, K. L., Douaud, G., Marchini, J. and Smith, S. M. (2018) Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature, 562, 210–216
CrossRef
Pubmed
Google scholar
|
[25] |
1000 Genomes Project Consortium, 2010. A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073
|
[26] |
Li, X., Xia, J., Ma, C., Chen, K., Xu, K., Zhang, J., Chen, Y., Li, H., Wei, D., and Zhang, Z. (2020) Accelerating structural degeneration in temporal regions and their effects on cognition in aging of MCI patients. Cereb., Cortex, 30, 326–338
|
[27] |
Silbert, L. C., Nelson, C., Howieson, D. B., Moore, M. M. and Kaye, J. A. (2008) Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline. Neurology, 71, 108–113
CrossRef
Pubmed
Google scholar
|
[28] |
Bozzali, M., Giulietti, G., Basile, B., Serra, L., Spanò, B., Perri, R., Giubilei, F., Marra, C., Caltagirone, C. and Cercignani, M. (2012) Damage to the cingulum contributes to Alzheimer’s disease pathophysiology by deafferentation mechanism. Hum. Brain Mapp., 33, 1295–1308
CrossRef
Pubmed
Google scholar
|
[29] |
Brickman, A. M., Meier, I. B., Korgaonkar, M. S., Provenzano, F. A., Grieve, S. M., Siedlecki, K. L., Wasserman, B. T., Williams, L. M. and Zimmerman, M. E. (2012) Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiol. Aging, 33, 1699–1715
CrossRef
Pubmed
Google scholar
|
[30] |
de Jong, L. W., van der Hiele, K., Veer, I. M., Houwing, J. J., Westendorp, R. G., Bollen, E. L., de Bruin, P. W., Middelkoop, H. A., van Buchem, M. A. and van der Grond, J. (2008) Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain, 131, 3277–3285
CrossRef
Pubmed
Google scholar
|
[31] |
Li, X., Wang, H., Tian, Y., Zhou, S., Li, X., Wang, K. and Yu, Y. (2016) Impaired white matter connections of the limbic system networks associated with impaired emotional memory in Alzheimer’s disease. Front. Aging Neurosci., 8, 250
CrossRef
Google scholar
|
[32] |
Mayo, C. D., Garcia-Barrera, M. A., Mazerolle, E. L., Ritchie, L. J., Fisk, J. D. and Gawryluk, J. R., and the Alzheimer’s Disease Neuroimaging Initiative. (2019) Relationship between DTI metrics and cognitive function in Alzheimer’s disease. Front. Aging Neurosci., 10, 436
CrossRef
Pubmed
Google scholar
|
[33] |
Hemani, G., Zheng, J., Elsworth, B., Wade, K. H., Haberland, V., Baird, D., Laurin, C., Burgess, S., Bowden, J., Langdon, R.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |