Integrating brain imaging endophenotypes with GWAS for Alzheimer’s disease

Katherine A. Knutson, Wei Pan

PDF(2572 KB)
PDF(2572 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 185-200. DOI: 10.1007/s40484-020-0202-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Integrating brain imaging endophenotypes with GWAS for Alzheimer’s disease

Author information +
History +

Abstract

Background: Genome wide association studies (GWAS) have identified many genetic variants associated with increased risk of Alzheimer’s disease (AD). These susceptibility loci may effect AD indirectly through a combination of physiological brain changes. Many of these neuropathologic features are detectable via magnetic resonance imaging (MRI).

Methods: In this study, we examine the effects of such brain imaging derived phenotypes (IDPs) with genetic etiology on AD, using and comparing the following methods: two-sample Mendelian randomization (2SMR), generalized summary statistics based Mendelian randomization (GSMR), transcriptome wide association studies (TWAS) and the adaptive sum of powered score (aSPU) test. These methods do not require individual-level genotypic and phenotypic data but instead can rely only on an external reference panel and GWAS summary statistics.

Results: Using publicly available GWAS datasets from the International Genomics of Alzheimer’s Project (IGAP) and UK Biobank’s (UKBB) brain imaging initiatives, we identify 35 IDPs possibly associated with AD, many of which have well established or biologically plausible links to the characteristic cognitive impairments of this neurodegenerative disease.

Conclusions: Our results highlight the increased power for detecting genetic associations achieved by multiple correlated SNP-based methods, i.e., aSPU, GSMR and TWAS, over MR methods based on independent SNPs (as instrumental variables).

Availability: Example code is available at https://github.com/kathalexknuts/ADIDP.

Author summary

Structural and functional brain changes play a key role in Alzheimer’s disease progression, but recent studies suggest that many of these risk phenotypes remain unidentified. We implement and compare multiple tests of genetically-regulated brain imaging phenotypes (IDPs) associated with AD that leverage publicly available GWAS summary statistics on AD and 1,578 IDPs from IGAP and UK Biobank, respectively. We identify 35 AD-associated IDPs, including both novel and well established risk phenotypes. Our results emphasize the improved power of the aSPU, GSMR, and TWAS tests over MR approaches, the former of which utilizes multiple correlated SNPs.

Graphical abstract

Keywords

aSPU test / Mendelian randomization / MRI / SPU tests / Sum test / TWAS

Cite this article

Download citation ▾
Katherine A. Knutson, Wei Pan. Integrating brain imaging endophenotypes with GWAS for Alzheimer’s disease. Quant. Biol., 2021, 9(2): 185‒200 https://doi.org/10.1007/s40484-020-0202-9

References

[1]
Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 12, 459–509
CrossRef Google scholar
[2]
Frisoni, G. B., Fox, N. C., Jack, Jr, C. R., Scheltens, P. and Thompson, P. M. (2010) The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol., 6, 67–77
CrossRef Pubmed Google scholar
[3]
Greicius, M. D., Srivastava, G., Reiss, A. L. and Menon, V. (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA, 101, 4637–4642
CrossRef Pubmed Google scholar
[4]
Zhang, Y., Schuff, N., Du, A. T., Rosen, H. J., Kramer, J. H., Gorno-Tempini, M. L., Miller, B. L. and Weiner, M. W. (2009) White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain, 132, 2579–2592
CrossRef Pubmed Google scholar
[5]
Lambert, J.-C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., Jun, G., DeStefano, A. L., Bis, J. C., Beecham, G. W., (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet., 45, 1452–1458
CrossRef Pubmed Google scholar
[6]
Pierce, B. L. and Burgess, S. (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol., 178, 1177–1184
CrossRef Pubmed Google scholar
[7]
Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R., Robinson, M. R., McGrath, J. J., Visscher, P. M., Wray, N. R., (2018) Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun., 9, 224
CrossRef Pubmed Google scholar
[8]
Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J., Eyler, A. E., Denny, J. C., Nicolae, D. L., Cox, N. J., (2015) A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet., 47, 1091–1098
CrossRef Pubmed Google scholar
[9]
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., Jansen, R., de Geus, E. J., Boomsma, D. I., Wright, F. A., (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet., 48, 245–252
CrossRef Pubmed Google scholar
[10]
Xu, Z., Wu, C., Wei, P. and Pan, W. (2017) A powerful framework for integrating eQTL and GWAS summary data. Genetics, 207, 893–902
CrossRef Pubmed Google scholar
[11]
Yang, C., Wan, X., Lin, X., Chen, M., Zhou, X. and Liu, J. (2019) CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. Bioinformatics, 35, 1644–1652
CrossRef Pubmed Google scholar
[12]
Barbeira, A. N., Pividori, M., Zheng, J., Wheeler, H. E., Nicolae, D. L. and Im, H. K. (2019) Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet., 15, e1007889
CrossRef Pubmed Google scholar
[13]
Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S. M., Yu, Z., Li, B., Gu, J., Muchnik, S., (2019) A statistical framework for cross-tissue transcriptome-wide association analysis. Nat. Genet., 51, 568–576
CrossRef Pubmed Google scholar
[14]
Yang, Y., Shi, X., Jiao, Y., Huang, J., Chen, M., Zhou, X., Sun, L., Lin, X., Yang, C. and Liu, J. (2019) CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. Bioinformatics, 36, 2009–2016
[15]
Xu, Z., Wu, C. and Pan, W., and the Alzheimer’s Disease Neuroimaging Initiative. (2017) Imaging-wide association study: integrating imaging endophenotypes in GWAS. Neuroimage, 159, 159–169
CrossRef Pubmed Google scholar
[16]
Zhao, B., Luo, T., Li, T., Li, Y., Zhang, J., Shan, Y., Wang, X., Yang, L., Zhou, F., Zhu, Z., (2019) Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet., 51, 1637–1644
CrossRef Pubmed Google scholar
[17]
Zhao, B., Shan, Y., Yang, Y., Li, T., Luo, T., Zhu, Z., Li, Y. and Zhu, H. (2019b) Transcriptome-wide association analysis of 211 neuroimaging traits identifies new genes for brain structures and yields insights into the gene-level pleiotropy with other complex traits. bioRxiv, 842872
[18]
Nicholas, M., Freund, M. K., Johnson, R., Shi, H., Kichaev, G., Gusev, A. and Pasaniuc, B. (2019) Probabilistic fine-mapping of transcriptomewide association studies. Nat. Genet., 51, 675–682
[19]
Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A. N., Knowles, D. A., Golan, D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K., (2019) Opportunities and challenges for transcriptome-wide association studies. Nat. Genet., 51, 592–599
CrossRef Pubmed Google scholar
[20]
Pan, W. (2009) Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet. Epidemiol., 33, 497–507
CrossRef Pubmed Google scholar
[21]
Pan, W., Kim, J., Zhang, Y., Shen, X. and Wei, P. (2014) A powerful and adaptive association test for rare variants. Genetics, 197, 1081–1095
CrossRef Pubmed Google scholar
[22]
Kwak, I. Y. and Pan, W. (2016) Adaptive gene- and pathway-trait association testing with GWAS summary statistics. Bioinformatics, 32, 1178–1184
CrossRef Pubmed Google scholar
[23]
Yan D., Hu B., Darst B., Mukherjee S., Kunkle B., Deming Y., Dumitrescu L., Wang Y., Naj A., Kuzma A., (2019) Biobank-wide association scan identifies risk factors for late-onset Alzheimer’s disease and endophenotypes. bioRxiv, 468306
[24]
Elliott, L. T., Sharp, K., Alfaro-Almagro, F., Shi, S., Miller, K. L., Douaud, G., Marchini, J. and Smith, S. M. (2018) Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature, 562, 210–216
CrossRef Pubmed Google scholar
[25]
1000 Genomes Project Consortium, 2010. A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073
[26]
Li, X., Xia, J., Ma, C., Chen, K., Xu, K., Zhang, J., Chen, Y., Li, H., Wei, D., and Zhang, Z. (2020) Accelerating structural degeneration in temporal regions and their effects on cognition in aging of MCI patients. Cereb., Cortex, 30, 326–338
[27]
Silbert, L. C., Nelson, C., Howieson, D. B., Moore, M. M. and Kaye, J. A. (2008) Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline. Neurology, 71, 108–113
CrossRef Pubmed Google scholar
[28]
Bozzali, M., Giulietti, G., Basile, B., Serra, L., Spanò, B., Perri, R., Giubilei, F., Marra, C., Caltagirone, C. and Cercignani, M. (2012) Damage to the cingulum contributes to Alzheimer’s disease pathophysiology by deafferentation mechanism. Hum. Brain Mapp., 33, 1295–1308
CrossRef Pubmed Google scholar
[29]
Brickman, A. M., Meier, I. B., Korgaonkar, M. S., Provenzano, F. A., Grieve, S. M., Siedlecki, K. L., Wasserman, B. T., Williams, L. M. and Zimmerman, M. E. (2012) Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiol. Aging, 33, 1699–1715
CrossRef Pubmed Google scholar
[30]
de Jong, L. W., van der Hiele, K., Veer, I. M., Houwing, J. J., Westendorp, R. G., Bollen, E. L., de Bruin, P. W., Middelkoop, H. A., van Buchem, M. A. and van der Grond, J. (2008) Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain, 131, 3277–3285
CrossRef Pubmed Google scholar
[31]
Li, X., Wang, H., Tian, Y., Zhou, S., Li, X., Wang, K. and Yu, Y. (2016) Impaired white matter connections of the limbic system networks associated with impaired emotional memory in Alzheimer’s disease. Front. Aging Neurosci., 8, 250
CrossRef Google scholar
[32]
Mayo, C. D., Garcia-Barrera, M. A., Mazerolle, E. L., Ritchie, L. J., Fisk, J. D. and Gawryluk, J. R., and the Alzheimer’s Disease Neuroimaging Initiative. (2019) Relationship between DTI metrics and cognitive function in Alzheimer’s disease. Front. Aging Neurosci., 10, 436
CrossRef Pubmed Google scholar
[33]
Hemani, G., Zheng, J., Elsworth, B., Wade, K. H., Haberland, V., Baird, D., Laurin, C., Burgess, S., Bowden, J., Langdon, R., (2018) The MR-base platform supports systematic causal inference across the human phenome. eLife, 7, e34408
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

We thank the reviewers for many helpful comments. This work was supported by NIH grants T32GM108557, R01AG065636, R01HL116720, R01GM113250 and R01GM126002, and by the Minnesota Supercomputing Institute at the University of Minnesota.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Katherine A. Knutson and Wei Pan declare that they have no conflict of interests.ƒAll procedures performed in studies were in accordance with the ethical standards of the institution.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2572 KB)

Accesses

Citations

Detail

Sections
Recommended

/