DNA sequencing using nanopores and kinetic proofreading

Xinsheng Sean Ling

PDF(588 KB)
PDF(588 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 187-194. DOI: 10.1007/s40484-020-0201-x
MINI REVIEW
MINI REVIEW

DNA sequencing using nanopores and kinetic proofreading

Author information +
History +

Abstract

We discuss the feasibility of using a nanopore sandwich device to implement the principle of kinetic proofreading to discriminate incorrect hybridizing oligonucleotides on a target DNA or RNA. We propose a method of sequencing DNA or RNA using this approach. The design parameters for such a DNA sequencer are estimated from the Hopfield-Ninio theory of kinetic proofreading and Schrödinger’s first-passage-time distribution function.

Graphical abstract

Keywords

DNA sequencing / nanopore sequencing / biosensing using kinetics

Cite this article

Download citation ▾
Xinsheng Sean Ling. DNA sequencing using nanopores and kinetic proofreading. Quant. Biol., 2020, 8(3): 187‒194 https://doi.org/10.1007/s40484-020-0201-x

References

[1]
Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2004), Molecular Biology of the Cell (2nd Ed.), pp.176. Garland Science Publishing
[2]
Shusterman, R., Alon, S., Gavrinyov, T. and Krichevsky, O. (2004) Monomer dynamics in double- and single-stranded DNA polymers. Phys. Rev. Lett., 92, 048303
CrossRef Pubmed Google scholar
[3]
Chi, Q., Wang, G. and Jiang, J. (2013) The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory. Physica A, 392, 1072–1079
CrossRef Pubmed Google scholar
[4]
Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467
CrossRef Pubmed Google scholar
[5]
Sanger, F, Coulson, A.R. (1978) The use of thin acrylamide gels for DNA sequencing. FEBS Lett., 87, 107–110
[6]
Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–59
CrossRef Pubmed Google scholar
[7]
Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y.-J., Chen, Z., (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380
CrossRef Pubmed Google scholar
[8]
Bowers, J., Mitchell, J., Beer, E., Buzby, P. R., Causey, M., Efcavitch, J. W., Jarosz, M., Krzymanska-Olejnik, E., Kung, L., Lipson, D., (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat. Methods, 6, 593–595
CrossRef Pubmed Google scholar
[9]
Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., (2009) Real-time DNA sequencing from single polymerase molecules. Science, 323, 133–138
CrossRef Pubmed Google scholar
[10]
Goldfeder, R. L., Priest, J. R., Zook, J. M., Grove, M. E., Waggott, D., Wheeler, M. T., Salit, M. and Ashley, E. A. (2016) Medical implications of technical accuracy in genome sequencing. Genome Med., 8, 24
CrossRef Pubmed Google scholar
[11]
Kasianowicz, J. J., Brandin, E., Branton, D. and Deamer, D. W. (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA, 93, 13770–13773
CrossRef Pubmed Google scholar
[12]
Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., (2008) The potential and challenges of nanopore sequencing. Nat. Biotechnol., 26, 1146–1153
CrossRef Pubmed Google scholar
[13]
Lubensky, D. K. and Nelson, D. R. (1999) Driven polymer translocation through a narrow pore. Biophys. J., 77, 1824–1838
CrossRef Pubmed Google scholar
[14]
Meller, A., Nivon, L., Brandin, E., Golovchenko, J. and Branton, D. (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA, 97, 1079–1084
CrossRef Pubmed Google scholar
[15]
Li, J. and Talaga, D. S. (2010) The distribution of DNA translocation times in solid-state nanopores. J. Phys. Condens. Matter, 22, 454129
CrossRef Pubmed Google scholar
[16]
Ling, X.S., Bready, B.; Pertsinidis, A. (2006) Hybridization assisted nanopore sequencing. WO2007041621A3, International Application No.: PCT/US2006/038748
[17]
Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol., 98, 503–517
CrossRef Pubmed Google scholar
[18]
Drmanac, R., Drmanac, S., Chui, G., Diaz, R., Hou, A., Jin, H., Jin, P., Kwon, S., Lacy, S., Moeur, B., (2002) Sequencing by hybridization (SBH): advantages, achievements, and opportunities. Adv. Biochem. Eng. Biotechnol., 77, 75–101
CrossRef Pubmed Google scholar
[19]
Balagurusamy, V. S., Weinger, P. and Ling, X. S. (2010) Detection of DNA hybridizations using solid-state nanopores. Nanotechnology, 21, 335102
CrossRef Pubmed Google scholar
[20]
Ling, X. S. (2013). Methods of sequencing nucleic acids using nanopores and active kinetic proofreading. WO/2013/119784, International Application No.: PCT/US2013/025106
[21]
Hopfield, J. J. (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA, 71, 4135–4139
CrossRef Pubmed Google scholar
[22]
Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587–595
CrossRef Pubmed Google scholar
[23]
Ling, X. S. and Yuan, Z. (2017) A method for fabricating bi-layer nanopore structures for sequencing DNA. China National Bureau on Intellectual Property. Patent number ZL 2016 1 0256247.9
[24]
Kim, D.-K., Kwon, Y.-S., Takamura, Y. and Tamiya, E. (2006) Detection of DNA hybridization properties using thermodynamic method. Jpn. J. Appl. Phys., 45, 509–512
CrossRef Google scholar
[25]
Pertsinidis, A. (2018) Private Communications
[26]
Gunnarsson, A., Jönsson, P., Zhdanov, V. P. and Höök, F. (2009) Kinetic and thermodynamic characterization of single-mismatch discrimination using single-molecule imaging. Nucleic Acids Res., 37, e99
CrossRef Pubmed Google scholar
[27]
Hynes, J. T. (1985) The theory of chemical reactions in solutions. In: Theory of Chemical Reaction Dynamics, Baer, M., (ed.), Vol. IV, pp.171235. Boca Raton: CRC
[28]
Sorgenfrei, S., Chiu, C. Y., Gonzalez, R. L. Jr, Yu, Y.-J., Kim, P., Nuckolls, C. and Shepard, K. L. (2011) Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol., 6, 126–132
CrossRef Pubmed Google scholar
[29]
Schrödinger, E. (1915) Zur Theorie der Fall-und Steigversuche an Teilchen mit Brownscher Bewegung. Phys. Z., 16, 289–295
[30]
Ling, D. Y. and Ling, X. S. (2013) On the distribution of DNA translocation times in solid-state nanopores: an analysis using Schrödinger’s first-passage-time theory. J. Phys. Condens. Matter, 25, 375102
CrossRef Pubmed Google scholar
[31]
Robertson, R. M., Laib, S. and Smith, D. E. (2006) Diffusion of isolated DNA molecules: dependence on length and topology. Proc. Natl. Acad. Sci. USA, 103, 7310–7314
CrossRef Pubmed Google scholar
[32]
Smith, S. B., Cui, Y. and Bustamante, C. (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271, 795–799
CrossRef Pubmed Google scholar
[33]
Peng, H. and Ling, X. S. (2009) Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology, 20, 185101
CrossRef Pubmed Google scholar

AUTHOR CONTRIBUTIONS

The author is the original contributor of the concepts discussed in the article.

FUNDING

The patented device concept [23] described in this paper was developed while the author was spending a sabbatical year as consulting professor (visitor) at Southeast University, Nanjing, China, during which he received a partial sabbatical salary from Brown University and a stipend (living-expense) from Southeast University.

ACKNOWLEDGMENTS

The author is grateful to Professor Terence Hwa for an early helpful conversation, and to Wang Miao for carrying out the COMSOL calculation in Fig. 2, and to Alexandros Pertsinidis and Zhishan Yuan for useful discussions, and to Professors Yunfei Chen, Zuhong Lu, and Jingjie Sha for assistance, to Southeast University (Nanjing, China) for hospitality and financial support for his sabbatical year (2016-2017) in Nanjing during which the bulk of this work was done.

COMPLIANCE WITH ETHICS GUIDELINES

The author is a co-founder and consultant of the Nanjing Rhode Island Nanotech Ltd. (Nanjing, China) and NJRI Suzhou Ltd. (Suzhou, China) which acquired the patent [23] discussed in this article.ƒThis article is a review article and does not contain any studies with human or animal subjects performed by the author.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(588 KB)

Accesses

Citations

Detail

Sections
Recommended

/