DNA sequencing using nanopores and kinetic proofreading

Xinsheng Sean Ling

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 187 -194.

PDF (588KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 187 -194. DOI: 10.1007/s40484-020-0201-x
MINI REVIEW
MINI REVIEW

DNA sequencing using nanopores and kinetic proofreading

Author information +
History +
PDF (588KB)

Abstract

We discuss the feasibility of using a nanopore sandwich device to implement the principle of kinetic proofreading to discriminate incorrect hybridizing oligonucleotides on a target DNA or RNA. We propose a method of sequencing DNA or RNA using this approach. The design parameters for such a DNA sequencer are estimated from the Hopfield-Ninio theory of kinetic proofreading and Schrödinger’s first-passage-time distribution function.

Graphical abstract

Keywords

DNA sequencing / nanopore sequencing / biosensing using kinetics

Cite this article

Download citation ▾
Xinsheng Sean Ling. DNA sequencing using nanopores and kinetic proofreading. Quant. Biol., 2020, 8(3): 187-194 DOI:10.1007/s40484-020-0201-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2004), Molecular Biology of the Cell (2nd Ed.), pp.176. Garland Science Publishing

[2]

Shusterman, R., Alon, S., Gavrinyov, T. and Krichevsky, O. (2004) Monomer dynamics in double- and single-stranded DNA polymers. Phys. Rev. Lett., 92, 048303

[3]

Chi, Q., Wang, G. and Jiang, J. (2013) The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory. Physica A, 392, 1072–1079

[4]

Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467

[5]

Sanger, F, Coulson, A.R. (1978) The use of thin acrylamide gels for DNA sequencing. FEBS Lett., 87, 107–110

[6]

Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–59

[7]

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y.-J., Chen, Z., (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380

[8]

Bowers, J., Mitchell, J., Beer, E., Buzby, P. R., Causey, M., Efcavitch, J. W., Jarosz, M., Krzymanska-Olejnik, E., Kung, L., Lipson, D., (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat. Methods, 6, 593–595

[9]

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., (2009) Real-time DNA sequencing from single polymerase molecules. Science, 323, 133–138

[10]

Goldfeder, R. L., Priest, J. R., Zook, J. M., Grove, M. E., Waggott, D., Wheeler, M. T., Salit, M. and Ashley, E. A. (2016) Medical implications of technical accuracy in genome sequencing. Genome Med., 8, 24

[11]

Kasianowicz, J. J., Brandin, E., Branton, D. and Deamer, D. W. (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA, 93, 13770–13773

[12]

Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., (2008) The potential and challenges of nanopore sequencing. Nat. Biotechnol., 26, 1146–1153

[13]

Lubensky, D. K. and Nelson, D. R. (1999) Driven polymer translocation through a narrow pore. Biophys. J., 77, 1824–1838

[14]

Meller, A., Nivon, L., Brandin, E., Golovchenko, J. and Branton, D. (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA, 97, 1079–1084

[15]

Li, J. and Talaga, D. S. (2010) The distribution of DNA translocation times in solid-state nanopores. J. Phys. Condens. Matter, 22, 454129

[16]

Ling, X.S., Bready, B.; Pertsinidis, A. (2006) Hybridization assisted nanopore sequencing. WO2007041621A3, International Application No.: PCT/US2006/038748

[17]

Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol., 98, 503–517

[18]

Drmanac, R., Drmanac, S., Chui, G., Diaz, R., Hou, A., Jin, H., Jin, P., Kwon, S., Lacy, S., Moeur, B., (2002) Sequencing by hybridization (SBH): advantages, achievements, and opportunities. Adv. Biochem. Eng. Biotechnol., 77, 75–101

[19]

Balagurusamy, V. S., Weinger, P. and Ling, X. S. (2010) Detection of DNA hybridizations using solid-state nanopores. Nanotechnology, 21, 335102

[20]

Ling, X. S. (2013). Methods of sequencing nucleic acids using nanopores and active kinetic proofreading. WO/2013/119784, International Application No.: PCT/US2013/025106

[21]

Hopfield, J. J. (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA, 71, 4135–4139

[22]

Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587–595

[23]

Ling, X. S. and Yuan, Z. (2017) A method for fabricating bi-layer nanopore structures for sequencing DNA. China National Bureau on Intellectual Property. Patent number ZL 2016 1 0256247.9

[24]

Kim, D.-K., Kwon, Y.-S., Takamura, Y. and Tamiya, E. (2006) Detection of DNA hybridization properties using thermodynamic method. Jpn. J. Appl. Phys., 45, 509–512

[25]

Pertsinidis, A. (2018) Private Communications

[26]

Gunnarsson, A., Jönsson, P., Zhdanov, V. P. and Höök, F. (2009) Kinetic and thermodynamic characterization of single-mismatch discrimination using single-molecule imaging. Nucleic Acids Res., 37, e99

[27]

Hynes, J. T. (1985) The theory of chemical reactions in solutions. In: Theory of Chemical Reaction Dynamics, Baer, M., (ed.), Vol. IV, pp.171235. Boca Raton: CRC

[28]

Sorgenfrei, S., Chiu, C. Y., Gonzalez, R. L. Jr, Yu, Y.-J., Kim, P., Nuckolls, C. and Shepard, K. L. (2011) Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol., 6, 126–132

[29]

Schrödinger, E. (1915) Zur Theorie der Fall-und Steigversuche an Teilchen mit Brownscher Bewegung. Phys. Z., 16, 289–295

[30]

Ling, D. Y. and Ling, X. S. (2013) On the distribution of DNA translocation times in solid-state nanopores: an analysis using Schrödinger’s first-passage-time theory. J. Phys. Condens. Matter, 25, 375102

[31]

Robertson, R. M., Laib, S. and Smith, D. E. (2006) Diffusion of isolated DNA molecules: dependence on length and topology. Proc. Natl. Acad. Sci. USA, 103, 7310–7314

[32]

Smith, S. B., Cui, Y. and Bustamante, C. (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271, 795–799

[33]

Peng, H. and Ling, X. S. (2009) Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology, 20, 185101

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (588KB)

2059

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/