Combination of versatile platforms for the development of synthetic biology

Baizhu Chen, Zhuojun Dai

PDF(224 KB)
PDF(224 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (1) : 4-10. DOI: 10.1007/s40484-020-0197-2
REVIEW
REVIEW

Combination of versatile platforms for the development of synthetic biology

Author information +
History +

Abstract

Background: Synthetic biology has attracted enormous attention in recent years. A key focus of synthetic biology is to utilize modular biological building blocks to assemble the cell-based circuits.

Results: Scientists have programmed the living organisms using these circuits to attain multiple, delicate and well-defined functions. With the integration of tools or technologies from other disciplines, these rewired cells can achieve even more complex tasks.

Conclusions: In this review, we will focus on the recent achievements in new materials and devices assembly, next generation therapeutics development and versatile manufacturing by combining the synthetic gene circuits, various tools and technologies from multiple fields, such as printing technology, material engineering and electronic engineering.

Graphical abstract

Keywords

synthetic biology / material engineering / printing technology / electronic engineering

Cite this article

Download citation ▾
Baizhu Chen, Zhuojun Dai. Combination of versatile platforms for the development of synthetic biology. Quant. Biol., 2020, 8(1): 4‒10 https://doi.org/10.1007/s40484-020-0197-2

References

[1]
Cameron, D. E., Bashor, C. J. and Collins, J. J. (2014) A brief history of synthetic biology. Nat. Rev. Microbiol., 12, 381–390
CrossRef Pubmed Google scholar
[2]
Jacob, F. and Monod, J.(1961) On the regulation of gene activity. Cold Spring Harb. Symp. Quant. Biol., 26, 193–211
CrossRef Google scholar
[3]
Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
CrossRef Pubmed Google scholar
[4]
Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338
CrossRef Pubmed Google scholar
[5]
Teo, J. J. Y., Woo, S. S. and Sarpeshkar, R. (2015) Synthetic biology: A unifying view and review using analog circuits. IEEE Trans. Biomed. Circuits Syst., 9, 453–474
CrossRef Pubmed Google scholar
[6]
Ye, H. and Fussenegger, M. (2014) Synthetic therapeutic gene circuits in mammalian cells. FEBS Lett., 588, 2537–2544
CrossRef Pubmed Google scholar
[7]
Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
CrossRef Pubmed Google scholar
[8]
Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S. and Hasty, J. (2008) A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–519
CrossRef Pubmed Google scholar
[9]
Ellis, T., Wang, X. and Collins, J. J. (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol., 27, 465–471
CrossRef Pubmed Google scholar
[10]
Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. (2009) Synthetic gene networks that count. Science, 324, 1199–1202
CrossRef Pubmed Google scholar
[11]
Danino, T., Mondragón-Palomino, O., Tsimring, L. and Hasty, J. (2010) A synchronized quorum of genetic clocks. Nature, 463, 326–330
CrossRef Pubmed Google scholar
[12]
Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A., Levskaya, A., Marcotte, E. M., Voigt, C. A. and Ellington, A. D. (2009) A synthetic genetic edge detection program. Cell, 137, 1272–1281
CrossRef Pubmed Google scholar
[13]
Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. and Weiss, R. (2005) A synthetic multicellular system for programmed pattern formation. Nature, 434, 1130–1134
CrossRef Pubmed Google scholar
[14]
Bulter, T., Lee, S. G., Wong, W. W., Fung, E., Connor, M. R. and Liao, J. C. (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA, 101, 2299–2304
CrossRef Pubmed Google scholar
[15]
Zhao, T. and Zhong, C. (2017) Applications of synthetic biology in materials science. Chinese Journal of Biotechnology, 33, 494–505, in Chinese
Pubmed
[16]
MacDonald, I. C. and Deans, T. L. (2016) Tools and applications in synthetic biology. Adv. Drug Deliv. Rev., 105, 20–34
CrossRef Pubmed Google scholar
[17]
Wagner, H. J., Sprenger, A., Rebmann, B. and Weber, W. (2016) Upgrading biomaterials with synthetic biological modules for advanced medical applications. Adv. Drug Deliv. Rev., 105, 77–95
CrossRef Pubmed Google scholar
[18]
Schwarz, K. A. and Leonard, J. N. (2016) Engineering cell-based therapies to interface robustly with host physiology. Adv. Drug Deliv. Rev., 105, 55–65
CrossRef Pubmed Google scholar
[19]
Khalil, A. S. and Collins, J. J. (2010) Synthetic biology: applications come of age. Nat. Rev. Genet., 11, 367–379
CrossRef Pubmed Google scholar
[20]
Smanski, M. J., Zhou, H., Claesen, J., Shen, B., Fischbach, M. A. and Voigt, C. A. (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat. Rev. Microbiol., 14, 135–149
CrossRef Pubmed Google scholar
[21]
Looger, L. L., Dwyer, M. A., Smith, J. J. and Hellinga, H. W. (2003) Computational design of receptor and sensor proteins with novel functions. Nature, 423, 185–190
CrossRef Pubmed Google scholar
[22]
Ro, D. K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440, 940–943
CrossRef Pubmed Google scholar
[23]
Shepherd, T. R., Du, L., Liljeruhm, J., Samudyata, Wang, J., Sjödin, M. O. D., Wetterhall, M., Yomo, T. and ForsterA. C. (2017) De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res., 45, 10895–10905
CrossRef Pubmed Google scholar
[24]
Koepnick, B., Flatten, J., Husain, T., Ford, A., Silva, D. A., Bick, M. J., Bauer, A., Liu, G., Ishida, Y., Boykov, A., (2019) De novo protein design by citizen scientists. Nature, 570, 390–394
CrossRef Pubmed Google scholar
[25]
Si, T. and Zhao, H. (2016) A brief overview of synthetic biology research programs and roadmap studies in the United States. Synth. Syst. Biotechnol., 1, 258–264
CrossRef Pubmed Google scholar
[26]
Zhao, H. (2013) Synthetic Biology: Tools And Applications. Amsterdam: Academic Press-Elsevier
[27]
Segall-Shapiro, T. H., Sontag, E. D. and Voigt, C. A. (2018) Engineered promoters enable constant gene expression at any copy number in bacteria. Nat. Biotechnol., 36, 352–358
CrossRef Pubmed Google scholar
[28]
Nandagopal, N. and Elowitz M.B., (2011) Synthetic Biology: Integrated Gene Circuits. Science, 333, 1244–1248
[29]
Crocker, J. and Ilsley, G. R. (2017) Using synthetic biology to study gene regulatory evolution. Curr. Opin. Genet. Dev., 47, 91–101
CrossRef Pubmed Google scholar
[30]
Lienert, F., Lohmueller, J. J., Garg, A. and Silver, P. A. (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol., 15, 95–107
CrossRef Pubmed Google scholar
[31]
Bashor, C.J., Helman , N.C., Yan, S., and Lim, W.A. (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science, 319, 1539–1543
[32]
Peisajovich, S.G., Garbarino , J.E., Wei, P., Lim, W.A. (2010) Rapid diversification of cell signaling phenotypes by modular domain recombination. Science, 328, 368–372
[33]
Johnston, R. J. Jr and Desplan, C. (2010) Preview. A penetrating look at stochasticity in development. Cell, 140, 610–612
CrossRef Pubmed Google scholar
[34]
Chen, A. Y., Zhong, C. and Lu, T. K. (2015) Engineering living functional materials. ACS Synth. Biol., 4, 8–11
CrossRef Pubmed Google scholar
[35]
Le Feuvre, R. A. and Scrutton, N. S. (2018) A living foundry for synthetic biological materials: a synthetic biology roadmap to new advanced materials. Synth. Syst. Biotechnol., 3, 105–112
CrossRef Pubmed Google scholar
[36]
Din, M. O., Danino, T., Prindle, A., Skalak, M., Selimkhanov, J., Allen, K., Julio, E., Atolia, E., Tsimring, L. S., Bhatia, S. N., (2016) Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 536, 81–85
CrossRef Pubmed Google scholar
[37]
Raje, P. V. and Murmu, N. C. (2014) A review on electrohydrodynamic-inkjet printing technology. IjetaeCom, 4, 174–183
[38]
Srimongkon, T., Mandai, S. and Enomae, T. (2015) Application of biomaterials and inkjet printing to develop bacterial culture system. Adv. Mater. Sci. Eng., 2015, 1–9
CrossRef Google scholar
[39]
Merrin, J., Leibler, S. and Chuang, J. S. (2007) Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One, 2, e663
CrossRef Pubmed Google scholar
[40]
Cao, Y., Feng, Y., Ryser, M. D., Zhu, K., Herschlag, G., Cao, C., Marusak, K., Zauscher, S. and You, L. (2017) Programmable assembly of pressure sensors using pattern-forming bacteria. Nat. Biotechnol., 35, 1087–1093
CrossRef Pubmed Google scholar
[41]
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. and Hui, D. (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos., Part B Eng., 143, 172–196
CrossRef Google scholar
[42]
Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M. and Xie, Y. M. (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127–141
CrossRef Pubmed Google scholar
[43]
Labeaga-Martínez, N., Sanjurjo-Rivo, M., Díaz-Álvarez, J. and Martínez-Frías, J. (2017) Additive manufacturing for a Moon village. Procedia. Manuf., 13, 794–801
CrossRef Google scholar
[44]
Goyanes, A., Wang, J., Buanz, A., MartVnez-Pacheco, R., Telford, R., Gaisford, S. and Basit, A. W. (2015) 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol. Pharm., 12, 4077–4084
CrossRef Pubmed Google scholar
[45]
Chohan, J. S., Singh, R., Boparai, K. S., Penna, R. and Fraternali, F. (2017) Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos., Part B Eng., 117, 138–149
CrossRef Google scholar
[46]
Zhang, C., Huang, J., Zhang, J., Liu, S., Cui, M., An, B., Wang, X., Pu, J., Zhao, T., Fan, C., (2019) Engineered Bacillus subtilis biofilms as living glues. Mater. Today, 28, 40–48
CrossRef Google scholar
[47]
Huang, J., Liu, S., Zhang, C., Wang, X., Pu, J., Ba, F., Xue, S., Ye, H., Zhao, T., Li, K., (2019) Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol., 15, 34–41
CrossRef Pubmed Google scholar
[48]
Kyle, S. (2018) 3D printing of bacteria: the next frontier in biofabrication. Trends Biotechnol., 36, 340–341
CrossRef Pubmed Google scholar
[49]
Schaffner, M, Rühs , P.A., Coulter, F., Kilcher, S., and Studart, A.R. (2017) 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804
[50]
Lehner, B. A. E., Schmieden, D. T. and Meyer, A. S. (2017) A straightforward approach for 3D bacterial printing. ACS Synth. Biol., 6, 1124–1130
CrossRef Pubmed Google scholar
[51]
González, L. M., Mukhitov, N. and Voigt, C. A. (2019) Resilient living materials built by printing bacterial spores. Nat. Chem. Biol.
CrossRef Pubmed Google scholar
[52]
Nguyen, M. K. and Lee, D. S. (2010) Injectable biodegradable hydrogels. Macromol. Biosci., 10, 563–579
CrossRef Pubmed Google scholar
[53]
Naderi, H., Matin, M. M. and Bahrami, A. R. (2011) Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J. Biomater. Appl., 26, 383–417
CrossRef Pubmed Google scholar
[54]
Smeets, N. M. B. and Hoare, T. (2013) Designing responsive microgels for drug delivery applications. J. Polymer Sci. Chem, 51, 3027–3043
[55]
Suo, H., Zhang, D., Yin, J., Qian, J., Wu, Z. L. and Fu, J. (2018) Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Mater. Sci. Eng. C, 92, 612–620
CrossRef Pubmed Google scholar
[56]
Dai, Z. and Huang, S. (2018) Functional dynamics inside nano- or microscale bio-hybrid systems. Front Chem., 6, 621
CrossRef Pubmed Google scholar
[57]
Gorelikov, I., Field, L. M. and Kumacheva, E. (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J. Am. Chem. Soc., 126, 15938–15939
CrossRef Pubmed Google scholar
[58]
Gu, Z., Dang, T. T., Ma, M., Tang, B. C., Cheng, H., Jiang, S., Dong, Y., Zhang, Y. and Anderson, D. G. (2013) Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano, 7, 6758–6766
CrossRef Pubmed Google scholar
[59]
Trongsatitkul, T. and Budhlall, B. (2013) Microgels or microcapsules? Role of morphology on the release kinetics of thermoresponsive PNIPAm-co-PEGMa hydrogels. Polym. Chem., 4, 1502–1516
CrossRef Google scholar
[60]
English, M.A., Soenksen , L.R., Gayet, R. V., de Puig, H., Angenent-Mari, N.M., Mao, A.S., Nguyen, P. Q. and Collins, J. J. (2019) Programmable CRISPR-responsive smart materials. Science, 365,780–785
[61]
Bulter, T., Lee, S. G., Wong, W. W., Fung, E., Connor, M. R. and Liao, J. C. (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA, 101, 2299–2304
CrossRef Pubmed Google scholar
[62]
Higashikuni, Y., Chen, W. C. and Lu, T. K. (2017) Advancing therapeutic applications of synthetic gene circuits. Curr. Opin. Biotechnol., 47, 133–141
CrossRef Pubmed Google scholar
[63]
Xue, S., Yin, J., Shao, J., Yu, Y., Yang, L., Wang, Y., Xie, M., Fussenegger, M. and Ye, H. (2017) A synthetic-biology-inspired therapeutic strategy for targeting and treating hepatogenous diabetes. Mol. Ther., 25, 443–455
CrossRef Pubmed Google scholar
[64]
Mount, N. M., Ward, S. J., Kefalas, P. and Hyllner, J. (2015) Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20150017
CrossRef Pubmed Google scholar
[65]
Ye, H., Xie, M., Xue, S., Charpin-El Hamri, G., Yin, J., Zulewski, H. and Fussenegger, M. (2017) Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng., 1, 0005
CrossRef Pubmed Google scholar
[66]
Abraham, T., Mao, M. and Tan, C. (2018) Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys. Biol., 15, 061001
CrossRef Pubmed Google scholar
[67]
Ding, Y., Contreras-Llano, L. E., Morris, E., Mao, M. and Tan, C. (2018) Minimizing context dependency of gene networks using artificial cells. ACS Appl. Mater. Interfaces, 10, 30137–30146
CrossRef Pubmed Google scholar
[68]
Dai, Z., Lee, A. J., Roberts, S., Sysoeva, T. A., Huang, S., Dzuricky, M., Yang, X., Zhang, X., Liu, Z., Chilkoti, A., (2019) Versatile biomanufacturing through stimulus-responsive cell-material feedback. Nat. Chem. Biol., 15, 1017–1024
CrossRef Pubmed Google scholar
[69]
Barnhart, M. M. and Chapman, M. R. (2006) Curli biogenesis and function. Annu. Rev. Microbiol., 60, 131–147
CrossRef Pubmed Google scholar
[70]
Bian, Z. and Normark, S. (1997) Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J., 16, 5827–5836
CrossRef Pubmed Google scholar
[71]
Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Normark, S. and Hultgren, S. J. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science, 295, 851–855
CrossRef Pubmed Google scholar
[72]
Chen, A. Y., Deng, Z., Billings, A. N., Seker, U. O., Lu, M. Y., Citorik, R. J., Zakeri, B. and Lu, T. K. (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater., 13, 515–523
CrossRef Pubmed Google scholar
[73]
Wang, X., Pu, J., An, B., Li, Y., Shang, Y., Ning, Z., Liu, Y., Ba, F., Zhang, J. and Zhong, C. (2018) Programming cells for dynamic assembly of inorganic nano-objects with spatiotemporal control. Adv. Mater., 30, e1705968
CrossRef Pubmed Google scholar
[74]
Wang, X., Pu, J., Liu, Y., Ba, F., Cui, M., Li, K., Xie, Y., Nie, Y., Mi, Q., Li, T., (2019) Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications. Natl. Sci. Rev., 6, 929–943
CrossRef Google scholar
[75]
Shao, J., Xue, S., Yu, G., Yu, Y., Yang, X., Bai, Y., Zhu, S., Yang, L., Yin, J., Wang, Y., (2017) Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med., 9, 1–14
CrossRef Pubmed Google scholar
[76]
Justus, K.B., Hellebrekers , T., Lewis, D.D., Wood, A., Ingham, C., Majidi, C., LeDuc, P.R., and Tan, C. (2019) A biosensing soft robot: Autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci Robot., 4, eaax0765
[77]
Mimee, M., Nadeau, P., Hayward, A., Carim, S., Flanagan, S., Jerger, L., Collins, J., McDonnell, S., Swartwout, R., Citorik, R.J. (2018) An ingestible bacterial-electronic system to monitor gastrointestinal health. Science, 360, 915–918

ACKNOWLEDGEMENTS

We thank Lingchong You for insightful comments and suggestions. This study was partially supported by the National Key Research and Development Program of China (No. 2018YFA0903000), Guangdong Provincial Key Laboratory of Synthetic Genomics (2019B030301006), Shenzhen Key Laboratory of Synthetic Genomics (ZDSYS201802061806209) and Shenzhen Science and Technology Program (No. KQTD20180413181837372).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Baizhu Chen and Zhuojun Dai declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(224 KB)

Accesses

Citations

Detail

Sections
Recommended

/