ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor

Jingxue Xin, Junjun Hao, Lang Chen, Tao Zhang, Lei Li, Luonan Chen, Wenmin Zhao, Xuemei Lu, Peng Shi, Yong Wang

PDF(888 KB)
PDF(888 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (1) : 43-50. DOI: 10.1007/s40484-020-0195-4
RESEARCH ARTICLE
RESEARCH ARTICLE

ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor

Author information +
History +

Abstract

Background: Plateau zokor inhabits in sealed burrows from 2,000 to 4,200 meters at Qinghai-Tibet Plateau. This extreme living environment makes it a great model to study animal adaptation to hypoxia, low temperature, and high carbon dioxide concentration.

Methods: We provide an integrated resource, ZokorDB, for tissue specific regulatory network annotation for zokor. ZokorDB is based on a high-quality draft genome of a plateau zokor at 3,300 m and its transcriptional profiles in brain, heart, liver, kidney, and lung. The conserved non-coding elements of zokor are annotated by their nearest genes and upstream transcriptional factor motif binding sites.

Results: ZokorDB provides a general draft gene regulatory network (GRN), i.e., potential transcription factor (TF) binds to non-coding regulatory elements and regulates the expression of target genes (TG). Furthermore, we refined the GRN by incorporating matched RNA-seq and DNase-seq data from mouse ENCODE project and reconstructed five tissue-specific regulatory networks.

Conclusions: A web-based, open-access database is developed for easily searching, visualizing, and downloading the annotation and data. The pipeline of non-coding region annotation for zokor will be useful for other non-model species. ZokorDB is free available at the website (bigd.big.ac.cn/zokordb/).

Graphical abstract

Keywords

tissue specific regulatory network / non-coding element / plateau zokor / non-model species

Cite this article

Download citation ▾
Jingxue Xin, Junjun Hao, Lang Chen, Tao Zhang, Lei Li, Luonan Chen, Wenmin Zhao, Xuemei Lu, Peng Shi, Yong Wang. ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor. Quant. Biol., 2020, 8(1): 43‒50 https://doi.org/10.1007/s40484-020-0195-4

References

[1]
Fan, N. and Shi, Y. (1982) A revision of the zokors of subgenus Eospalax. Acta Theriol. Sin., 2, 183–199, in Chinese
[2]
Fan, N. and Gu, S. (1981) The structure of the tunnel system of the Chinese zokor. Acta Theriol. Sin., 1, 67–71, In Chinese
[3]
Zeng, J., Wang, Z. and Shi, Z. (1984) Metabolic characteristics and some physiological parameters of the mole rat (Myospalax baileyi) in an alpine area. Acta Biol. Plat. Sin., 3, 163–171
[4]
Mcnab, B. K. (1984) The metabolism of fossorial rodents: a study of convergence. Ecology, 47, 712–733
[5]
Reichman, O., Smith, S.C. (1990) Burrows and burrowing behavior by mammals.Curr. Mammal., 2,197–244
[6]
Zhang, Y. M. and Liu, J. (2003) Effects of plateau zokors (Myospalax fontanierii) on plant community and soil in an alpine meadow. J. Mammal., 84, 644–651
CrossRef Google scholar
[7]
Shao, Y., Li, J. X., Ge, R. L., Zhong, L., Irwin, D. M., Murphy, R. W. and Zhang, Y. P. (2015) Genetic adaptations of the plateau zokor in high-elevation burrows. Sci. Rep., 5, 17262
CrossRef Pubmed Google scholar
[8]
Hardison, R. C. (2000) Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet., 16, 369–372
CrossRef Pubmed Google scholar
[9]
The ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef Pubmed Google scholar
[10]
Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B. D., (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature, 515, 355–364
CrossRef Pubmed Google scholar
[11]
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
CrossRef Pubmed Google scholar
[12]
Duren, Z., Chen, X., Jiang, R., Wang, Y. and Wong, W. H. (2017) Modeling gene regulation from paired expression and chromatin accessibility data. Proc. Natl. Acad. Sci. USA, 114, E4914–E4923
CrossRef Pubmed Google scholar
[13]
Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., Nusbaum, C. and Jaffe, D. B. (2008) ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res., 18, 810–820
CrossRef Pubmed Google scholar
[14]
He, Y. X., Qi, X. B., Ouzhuluobu, , Liu, S., Li, J., Zhang, H., Baimakangzhuo, Bai, C., Zheng, W., Guo, Y., (2018) Blunted nitric oxide regulation in Tibetans under high-altitude hypoxia. Natl. Sci. Rev., 5, 516–529
CrossRef Google scholar
[15]
Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol., 268, 78–94
CrossRef Pubmed Google scholar
[16]
Stanke, M., Steinkamp, R., Waack, S. and Morgenstern, B. (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res., 32, W309–W312
CrossRef Pubmed Google scholar
[17]
Wu, T. D. and Watanabe, C. K. (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21, 1859–1875
CrossRef Pubmed Google scholar
[18]
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H. and Glass, C. K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell, 38, 576–589
CrossRef Pubmed Google scholar
[19]
Liu, Z. P., Wu, C., Miao, H., Wu, H. (2015) RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford) 2015, bav095
[20]
Lopes, C. T., Franz, M., Kazi, F., Donaldson, S. L., Morris, Q. and Bader, G. D. (2010) Cytoscape Web: an interactive web-based network browser. Bioinformatics, 26, 2347–2348
CrossRef Pubmed Google scholar
[21]
The modENCODE Consortium. (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science, 33, 1787–1797

ACKNOWLEDGEMENTS

ZokorDB is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB13000000). The authors are also supported by the National Natural Science Foundation of China (NSFC) (Nos. 11871463, 11871462, 61671444 and 61621003). We thank all the lab members for discussions on data collection, genome alignment, annotation, GRN reconstruction. We thank Dr. Yilei Wu and his group for help on database design and management.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Jingxue Xin, Junjun Hao, Lang Chen, Tao Zhang, Lei Li, Luonan Chen, Wenmin Zhao, Xuemei Lu, Peng Shi and Yong Wang declare that they have no conflicts of interest.ƒThis article does not contain any studies with human or animal subjects performed by any of the authors

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(888 KB)

Accesses

Citations

Detail

Sections
Recommended

/