ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor
Jingxue Xin, Junjun Hao, Lang Chen, Tao Zhang, Lei Li, Luonan Chen, Wenmin Zhao, Xuemei Lu, Peng Shi, Yong Wang
ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor
Background: Plateau zokor inhabits in sealed burrows from 2,000 to 4,200 meters at Qinghai-Tibet Plateau. This extreme living environment makes it a great model to study animal adaptation to hypoxia, low temperature, and high carbon dioxide concentration.
Methods: We provide an integrated resource, ZokorDB, for tissue specific regulatory network annotation for zokor. ZokorDB is based on a high-quality draft genome of a plateau zokor at 3,300 m and its transcriptional profiles in brain, heart, liver, kidney, and lung. The conserved non-coding elements of zokor are annotated by their nearest genes and upstream transcriptional factor motif binding sites.
Results: ZokorDB provides a general draft gene regulatory network (GRN), i.e., potential transcription factor (TF) binds to non-coding regulatory elements and regulates the expression of target genes (TG). Furthermore, we refined the GRN by incorporating matched RNA-seq and DNase-seq data from mouse ENCODE project and reconstructed five tissue-specific regulatory networks.
Conclusions: A web-based, open-access database is developed for easily searching, visualizing, and downloading the annotation and data. The pipeline of non-coding region annotation for zokor will be useful for other non-model species. ZokorDB is free available at the website (bigd.big.ac.cn/zokordb/).
tissue specific regulatory network / non-coding element / plateau zokor / non-model species
[1] |
Fan, N. and Shi, Y. (1982) A revision of the zokors of subgenus Eospalax. Acta Theriol. Sin., 2, 183–199, in Chinese
|
[2] |
Fan, N. and Gu, S. (1981) The structure of the tunnel system of the Chinese zokor. Acta Theriol. Sin., 1, 67–71, In Chinese
|
[3] |
Zeng, J., Wang, Z. and Shi, Z. (1984) Metabolic characteristics and some physiological parameters of the mole rat (Myospalax baileyi) in an alpine area. Acta Biol. Plat. Sin., 3, 163–171
|
[4] |
Mcnab, B. K. (1984) The metabolism of fossorial rodents: a study of convergence. Ecology, 47, 712–733
|
[5] |
Reichman, O., Smith, S.C. (1990) Burrows and burrowing behavior by mammals.Curr. Mammal., 2,197–244
|
[6] |
Zhang, Y. M. and Liu, J. (2003) Effects of plateau zokors (Myospalax fontanierii) on plant community and soil in an alpine meadow. J. Mammal., 84, 644–651
CrossRef
Google scholar
|
[7] |
Shao, Y., Li, J. X., Ge, R. L., Zhong, L., Irwin, D. M., Murphy, R. W. and Zhang, Y. P. (2015) Genetic adaptations of the plateau zokor in high-elevation burrows. Sci. Rep., 5, 17262
CrossRef
Pubmed
Google scholar
|
[8] |
Hardison, R. C. (2000) Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet., 16, 369–372
CrossRef
Pubmed
Google scholar
|
[9] |
The ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef
Pubmed
Google scholar
|
[10] |
Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B. D.,
CrossRef
Pubmed
Google scholar
|
[11] |
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
CrossRef
Pubmed
Google scholar
|
[12] |
Duren, Z., Chen, X., Jiang, R., Wang, Y. and Wong, W. H. (2017) Modeling gene regulation from paired expression and chromatin accessibility data. Proc. Natl. Acad. Sci. USA, 114, E4914–E4923
CrossRef
Pubmed
Google scholar
|
[13] |
Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., Nusbaum, C. and Jaffe, D. B. (2008) ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res., 18, 810–820
CrossRef
Pubmed
Google scholar
|
[14] |
He, Y. X., Qi, X. B., Ouzhuluobu,
CrossRef
Google scholar
|
[15] |
Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol., 268, 78–94
CrossRef
Pubmed
Google scholar
|
[16] |
Stanke, M., Steinkamp, R., Waack, S. and Morgenstern, B. (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res., 32, W309–W312
CrossRef
Pubmed
Google scholar
|
[17] |
Wu, T. D. and Watanabe, C. K. (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21, 1859–1875
CrossRef
Pubmed
Google scholar
|
[18] |
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H. and Glass, C. K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell, 38, 576–589
CrossRef
Pubmed
Google scholar
|
[19] |
Liu, Z. P., Wu, C., Miao, H., Wu, H. (2015) RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford) 2015, bav095
|
[20] |
Lopes, C. T., Franz, M., Kazi, F., Donaldson, S. L., Morris, Q. and Bader, G. D. (2010) Cytoscape Web: an interactive web-based network browser. Bioinformatics, 26, 2347–2348
CrossRef
Pubmed
Google scholar
|
[21] |
The modENCODE Consortium. (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science, 33, 1787–1797
|
/
〈 | 〉 |