Construction of a CRISPR-based paired-sgRNA library for chromosomal deletion of long non-coding RNAs
Minzhen Tao, Qiaochu Mu, Yurui Zhang, Zhen Xie
Construction of a CRISPR-based paired-sgRNA library for chromosomal deletion of long non-coding RNAs
Background: Derived from an adaptive bacterial immune system, the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has shown great potential in high-throughput functional genomic screening, especially for protein-coding genes. However, it is still challenging to apply the similar strategy to study non-coding genomic elements such as long non-coding RNAs (lncRNAs) or clusters of microRNAs, because short insertions or deletions may not be sufficient to generate loss-of-function phenotypes.
Methods: Here, we presented a systematic strategy for designing a CRISPR-based paired-sgRNA library for high-throughput screening in non-coding regions. Due to the abundance of lncRNAs and their diverse regulatory roles in vivo, we repurposed microarray datasets to select 600 highly expressed lncRNAs in non-small-cell lung cancer and designed two schemes for lncRNA deletion with ~20 paired-sgRNAs for each lncRNA. Through Golden-Gate assembly, we generated a pooled CRISPR-based library with a total of 12,878 sgRNA pairs.
Results: Over 80% of paired-sgRNAs were recovered from final pooled library with a relatively even distribution. Cleavage efficiency of sgRNA pairs was validated through experiments of transient transfection and viral infection. Moreover, randomly selected paired-sgRNAs showed that efficient deletion of genomic DNA could be achieved with a deletion size within the range of 500 to 3000 bp.
Conclusions: In summary, we have demonstrated a strategy to design and construct a pooled paired-sgRNA library to generate genomic deletion in the lncRNA regions, validated their deletion efficiency and explored the relationship of deletion efficiency with respect to deletion size. This method would be also suitable for investigation of other uncharacterized non-coding genomic regions in mammalian cells in an efficient and cost-effective manner.
CRISPR/Cas9 / paired-sgRNA / chromosomal deletion / non-coding genomic elements / lncRNA
[1] |
Cho, S. W., Kim, S., Kim, J. M. and Kim, J. S. (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol., 31, 230–232
CrossRef
Pubmed
Google scholar
|
[2] |
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A.,
CrossRef
Pubmed
Google scholar
|
[3] |
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826
CrossRef
Pubmed
Google scholar
|
[4] |
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A.,
CrossRef
Pubmed
Google scholar
|
[5] |
Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H. and Joung, J. K. (2013) CRISPR RNA-guided activation of endogenous human genes. Nat. Methods, 10, 977–979
CrossRef
Pubmed
Google scholar
|
[6] |
Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. and Church, G. M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 31, 833–838
CrossRef
Pubmed
Google scholar
|
[7] |
Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W.,
CrossRef
Pubmed
Google scholar
|
[8] |
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183
CrossRef
Pubmed
Google scholar
|
[9] |
Chen, S., Sanjana, N. E., Zheng, K., Shalem, O., Lee, K., Shi, X., Scott, D. A., Song, J., Pan, J. Q., Weissleder, R.,
CrossRef
Pubmed
Google scholar
|
[10] |
Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera, M. C. and Yusa, K. (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol., 32, 267–273
CrossRef
Pubmed
Google scholar
|
[11] |
Parnas, O., Jovanovic, M., Eisenhaure, T. M., Herbst, R. H., Dixit, A., Ye, C. J., Przybylski, D., Platt, R. J., Tirosh, I., Sanjana, N. E.,
CrossRef
Pubmed
Google scholar
|
[12] |
Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelsen, T., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G.,
CrossRef
Pubmed
Google scholar
|
[13] |
Wang, T., Wei, J. J., Sabatini, D. M. and Lander, E. S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343, 80–84
CrossRef
Pubmed
Google scholar
|
[14] |
Zhou, Y., Zhu, S., Cai, C., Yuan, P., Li, C., Huang, Y. and Wei, W. (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 509, 487–491
CrossRef
Pubmed
Google scholar
|
[15] |
Wong, A. S. L. and Cho, G. G., Cui, C.H., Pregernig, G., Milani, P., Adam, M., Perli, S.D., Kazer, S.W., Gaillard, A., Hermann, M.,
|
[16] |
Shen, J. P., Zhao, D., Sasik, R., Luebeck, J., Birmingham, A., Bojorquez-Gomez, A., Licon, K., Klepper, K., Pekin, D., Beckett, A. N.,
CrossRef
Pubmed
Google scholar
|
[17] |
Han, K., Jeng, E. E., Hess, G. T., Morgens, D. W., Li, A. and Bassik, M. C. (2017) Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol., 35, 463–474
CrossRef
Pubmed
Google scholar
|
[18] |
Du, D., Roguev, A., Gordon, D. E., Chen, M., Chen, S.-H., Shales, M., Shen, J. P., Ideker, T., Mali, P., Qi, L. S.,
CrossRef
Pubmed
Google scholar
|
[19] |
Li, Y., Nowak, C. M., Withers, D., Pertsemlidis, A. and Bleris, L. (2018) CRISPR-based editing reveals edge-specific effects in biological networks. CRISPR J, 1, 286–293
CrossRef
Pubmed
Google scholar
|
[20] |
Han, J., Zhang, J., Chen, L., Shen, B., Zhou, J., Hu, B., Du, Y., Tate, P. H., Huang, X. and Zhang, W. (2014) Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol., 11, 829–835
CrossRef
Pubmed
Google scholar
|
[21] |
Ho, T. T., Zhou, N., Huang, J., Koirala, P., Xu, M., Fung, R., Wu, F. and Mo, Y. Y. (2015) Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res., 43, e17
CrossRef
Pubmed
Google scholar
|
[22] |
Yin, Y., Yan, P., Lu, J., Song, G., Zhu, Y., Li, Z., Zhao, Y., Shen, B., Huang, X., Zhu, H.,
CrossRef
Pubmed
Google scholar
|
[23] |
Paralkar, V. R., Taborda, C. C., Huang, P., Yao, Y., Kossenkov, A. V., Prasad, R., Luan, J., Davies, J. O. J., Hughes, J. R., Hardison, R. C.,
CrossRef
Pubmed
Google scholar
|
[24] |
Covarrubias, S., Robinson, E. K., Shapleigh, B., Vollmers, A., Katzman, S., Hanley, N., Fong, N., McManus, M. T. and Carpenter, S. (2017) CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-κB reporter. J. Biol. Chem., 292, 20911–20920
CrossRef
Pubmed
Google scholar
|
[25] |
Li, Y., Rivera, C. M., Ishii, H., Jin, F., Selvaraj, S., Lee, A. Y., Dixon, J. R. and Ren, B. (2014) CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS One, 9, e114485
CrossRef
Pubmed
Google scholar
|
[26] |
Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X.,
CrossRef
Pubmed
Google scholar
|
[27] |
Essletzbichler, P., Konopka, T., Santoro, F., Chen, D., Gapp, B. V., Kralovics, R., Brummelkamp, T. R., Nijman, S. M. B. and Bürckstümmer, T. (2014) Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res., 24, 2059–2065
CrossRef
Pubmed
Google scholar
|
[28] |
Rinn, J. L. and Chang, H. Y. (2012) Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 81, 145–166
CrossRef
Pubmed
Google scholar
|
[29] |
Wutz, A., Rasmussen, T. P. and Jaenisch, R. (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet., 30, 167–174
CrossRef
Pubmed
Google scholar
|
[30] |
Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., Tsai, M. C., Hung, T., Argani, P., Rinn, J. L.,
CrossRef
Pubmed
Google scholar
|
[31] |
Wilusz, J. E., Sunwoo, H. and Spector, D. L. (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev., 23, 1494–1504
CrossRef
Pubmed
Google scholar
|
[32] |
Yan, X., Hu, Z., Feng, Y., Hu, X., Yuan, J., Zhao, S. D., Zhang, Y., Yang, L., Shan, W., He, Q.,
CrossRef
Pubmed
Google scholar
|
[33] |
Liao, Q., Liu, C., Yuan, X., Kang, S., Miao, R., Xiao, H., Zhao, G., Luo, H., Bu, D., Zhao, H.,
CrossRef
Pubmed
Google scholar
|
[34] |
Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F. and Mattick, J. S. (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA, 105, 716–721
CrossRef
Pubmed
Google scholar
|
[35] |
Michelhaugh, S. K., Lipovich, L., Blythe, J., Jia, H., Kapatos, G. and Bannon, M. J. (2011) Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J. Neurochem., 116, 459–466
CrossRef
Pubmed
Google scholar
|
[36] |
Gellert, P., Ponomareva, Y., Braun, T. and Uchida, S. (2013) Noncoder: a web interface for exon array-based detection of long non-coding RNAs. Nucleic Acids Res., 41, e20
CrossRef
Pubmed
Google scholar
|
[37] |
Du, Z., Fei, T., Verhaak, R. G. W., Su, Z., Zhang, Y., Brown, M., Chen, Y. and Liu, X. S. (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat. Struct. Mol. Biol., 20, 908–913
CrossRef
Pubmed
Google scholar
|
[38] |
Liu, X. H., Liu, Z. L., Sun, M., Liu, J., Wang, Z. X. and De, W. (2013) The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer, 13, 464
CrossRef
Pubmed
Google scholar
|
[39] |
Lu, K. H., Li, W., Liu, X. H., Sun, M., Zhang, M. L., Wu, W. Q., Xie, W. P. and Hou, Y. Y. (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer, 13, 461
CrossRef
Pubmed
Google scholar
|
[40] |
Wang, P., Chen, D., Ma, H. and Li, Y. (2017) LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis. OncoTargets Ther., 10, 5137–5149
CrossRef
Pubmed
Google scholar
|
[41] |
Qiu, M., Xu, Y., Yang, X., Wang, J., Hu, J., Xu, L. and Yin, R. (2014) CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer. Tumour Biol., 35, 5375–5380
CrossRef
Pubmed
Google scholar
|
[42] |
Shi, X., Sun, M., Liu, H., Yao, Y., Kong, R., Chen, F. and Song, Y. (2015) A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol. Carcinog., 54, E1–E12
CrossRef
Pubmed
Google scholar
|
[43] |
Tang, Q., Ni, Z., Cheng, Z., Xu, J., Yu, H. and Yin, P. (2015) Three circulating long non-coding RNAs act as biomarkers for predicting NSCLC. Cell. Physiol. Biochem., 37, 1002–1009
CrossRef
Pubmed
Google scholar
|
[44] |
Nie, W., Ge, H. J., Yang, X. Q., Sun, X., Huang, H., Tao, X., Chen, W. S. and Li, B. (2016) LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. Cancer Lett., 371, 99–106
CrossRef
Pubmed
Google scholar
|
[45] |
Li, P., Li, J., Yang, R., Zhang, F., Wang, H., Chu, H., Lu, Y., Dun, S., Wang, Y., Zang, W.,
CrossRef
Pubmed
Google scholar
|
[46] |
Cui, Y., Zhang, F., Zhu, C., Geng, L., Tian, T. and Liu, H. (2017) Upregulated lncRNA SNHG1 contributes to progression of non-small cell lung cancer through inhibition of miR-101-3p and activation of Wnt/β-catenin signaling pathway. Oncotarget, 8, 17785–17794
CrossRef
Pubmed
Google scholar
|
[47] |
Nie, F. Q., Sun, M., Yang, J. S., Xie, M., Xu, T. P., Xia, R., Liu, Y. W., Liu, X. H., Zhang, E. B., Lu, K. H.,
CrossRef
Pubmed
Google scholar
|
[48] |
Sun, C., Li, S., Zhang, F., Xi, Y., Wang, L., Bi, Y. and Li, D. (2016) Long non-coding RNA NEAT1 promotes non-small cell lung cancer progression through regulation of miR-377-3p-E2F3 pathway. Oncotarget, 7, 51784–51814
CrossRef
Pubmed
Google scholar
|
[49] |
Han, L., Zhang, E. B., Yin, D. D., Kong, R., Xu, T. P., Chen, W. M., Xia, R., Shu, Y. Q. and De, W. (2015) Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death Dis., 6, e1665
CrossRef
Pubmed
Google scholar
|
[50] |
Luo, J., Tang, L., Zhang, J., Ni, J., Zhang, H. P., Zhang, L., Xu, J. F. and Zheng, D. (2014) Long non-coding RNA CARLo-5 is a negative prognostic factor and exhibits tumor pro-oncogenic activity in non-small cell lung cancer. Tumour Biol., 35, 11541–11549
CrossRef
Pubmed
Google scholar
|
[51] |
Weber, D. G., Johnen, G., Casjens, S., Bryk, O., Pesch, B., Jöckel, K. H., Kollmeier, J. and Brüning, T. (2013) Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res. Notes, 6, 518
CrossRef
Pubmed
Google scholar
|
[52] |
Zhang, E. B., Yin, D. D., Sun, M., Kong, R., Liu, X. H., You, L. H., Han, L., Xia, R., Wang, K. M., Yang, J. S.,
CrossRef
Pubmed
Google scholar
|
[53] |
Lin, P. C., Huang, H. D., Chang, C. C., Chang, Y. S., Yen, J. C., Lee, C. C., Chang, W. H., Liu, T. C. and Chang, J. G. (2016) Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. BMC Cancer, 16, 583
CrossRef
Pubmed
Google scholar
|
[54] |
Fu, X., Li, H., Liu, C., Hu, B., Li, T. and Wang, Y. (2016) Long noncoding RNA AK126698 inhibits proliferation and migration of non-small cell lung cancer cells by targeting Frizzled-8 and suppressing Wnt/β-catenin signaling pathway. OncoTargets Ther., 9, 3815–3827
CrossRef
Pubmed
Google scholar
|
[55] |
Yang, Y., Li, H., Hou, S., Hu, B., Liu, J. and Wang, J. (2013) The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One, 8, e65309
CrossRef
Pubmed
Google scholar
|
[56] |
Xie, X., Liu, H. T., Mei, J., Ding, F. B., Xiao, H. B., Hu, F. Q., Hu, R. and Wang, M. S. (2014) LncRNA HMlincRNA717 is down-regulated in non-small cell lung cancer and associated with poor prognosis. Int. J. Clin. Exp. Pathol., 7, 8881–8886
Pubmed
|
[57] |
Nie, F. Q., Zhu, Q., Xu, T. P., Zou, Y. F., Xie, M., Sun, M., Xia, R. and Lu, K. H. (2014) Long non-coding RNA MVIH indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion. Tumour Biol., 35, 7587–7594
CrossRef
Pubmed
Google scholar
|
[58] |
Solovyev, V. V., Shahmuradov, I. A. and Salamov, A. (2010) Identification of Promoter Regions and Regulatory Sites. In: Computational Biology of transcritption Factor Binding (Methods in Molecular Biology), Ladunga, I. (ed.). New York: Springer Science+Business Media, Humana Press, Chapter 5, 57–83
|
[59] |
Tabach, Y., Brosh, R., Buganim, Y., Reiner, A., Zuk, O., Yitzhaky, A., Koudritsky, M., Rotter, V. and Domany, E. (2007) Wide-scale analysis of human functional transcription factor binding reveals a strong bias towards the transcription start site. PLoS One, 2, e807
CrossRef
Pubmed
Google scholar
|
[60] |
Koudritsky, M. and Domany, E. (2008) Positional distribution of human transcription factor binding sites. Nucleic Acids Res., 36, 6795–6805
CrossRef
Pubmed
Google scholar
|
[61] |
Nguyen, Q. H., Tellam, R. L., Naval-sanchez, M., Porto-neto, L. R., Barendse, W., Reverter, A., Haves, B., Kijas, J., Dalrymple, B. P. (2018) Mammalian genomic regulatory regions predicted by utilizing human genomics, transcriptomics and epigenetics data. GigaSceience, 7, 1–17.
|
[62] |
Liu, H., Wei, Z., Dominguez, A., Li, Y., Wang, X. and Qi, L. S. (2015) CRISPR-ERA: a comprehensive designer tool for CRISPR genome editing, (gene) repression, and activation. Bioinformatics, 31, 3676–3678
CrossRef
Google scholar
|
[63] |
Canver, M. C., Bauer, D. E., Dass, A., Yien, Y. Y., Chung, J., Masuda, T., Maeda, T., Paw, B. H. and Orkin, S. H. (2014) Characterization of genomic deletion efficiency mediated by CRISPR/Cas9 in mammalian cells. J. Biol. Chem., 289, 21312–21324
CrossRef
Pubmed
Google scholar
|
[64] |
Hangauer, M. J., Vaughn, I. W. and McManus, M. T. (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet., 9, e1003569
CrossRef
Pubmed
Google scholar
|
[65] |
Zhu, S., Li, W., Liu, J., Chen, C. H., Liao, Q., Xu, P., Xu, H., Xiao, T., Cao, Z., Peng, J.,
CrossRef
Pubmed
Google scholar
|
[66] |
Goyal, A., Myacheva, K., Groß, M., Klingenberg, M., Duran Arqué, B. and Diederichs, S. (2017) Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res., 45, e12
Pubmed
|
/
〈 | 〉 |