Construction of a CRISPR-based paired-sgRNA library for chromosomal deletion of long non-coding RNAs

Minzhen Tao , Qiaochu Mu , Yurui Zhang , Zhen Xie

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (1) : 31 -42.

PDF (2556KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (1) : 31 -42. DOI: 10.1007/s40484-020-0194-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Construction of a CRISPR-based paired-sgRNA library for chromosomal deletion of long non-coding RNAs

Author information +
History +
PDF (2556KB)

Abstract

Background: Derived from an adaptive bacterial immune system, the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has shown great potential in high-throughput functional genomic screening, especially for protein-coding genes. However, it is still challenging to apply the similar strategy to study non-coding genomic elements such as long non-coding RNAs (lncRNAs) or clusters of microRNAs, because short insertions or deletions may not be sufficient to generate loss-of-function phenotypes.

Methods: Here, we presented a systematic strategy for designing a CRISPR-based paired-sgRNA library for high-throughput screening in non-coding regions. Due to the abundance of lncRNAs and their diverse regulatory roles in vivo, we repurposed microarray datasets to select 600 highly expressed lncRNAs in non-small-cell lung cancer and designed two schemes for lncRNA deletion with ~20 paired-sgRNAs for each lncRNA. Through Golden-Gate assembly, we generated a pooled CRISPR-based library with a total of 12,878 sgRNA pairs.

Results: Over 80% of paired-sgRNAs were recovered from final pooled library with a relatively even distribution. Cleavage efficiency of sgRNA pairs was validated through experiments of transient transfection and viral infection. Moreover, randomly selected paired-sgRNAs showed that efficient deletion of genomic DNA could be achieved with a deletion size within the range of 500 to 3000 bp.

Conclusions: In summary, we have demonstrated a strategy to design and construct a pooled paired-sgRNA library to generate genomic deletion in the lncRNA regions, validated their deletion efficiency and explored the relationship of deletion efficiency with respect to deletion size. This method would be also suitable for investigation of other uncharacterized non-coding genomic regions in mammalian cells in an efficient and cost-effective manner.

Graphical abstract

Keywords

CRISPR/Cas9 / paired-sgRNA / chromosomal deletion / non-coding genomic elements / lncRNA

Cite this article

Download citation ▾
Minzhen Tao, Qiaochu Mu, Yurui Zhang, Zhen Xie. Construction of a CRISPR-based paired-sgRNA library for chromosomal deletion of long non-coding RNAs. Quant. Biol., 2020, 8(1): 31-42 DOI:10.1007/s40484-020-0194-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cho, S. W., Kim, S., Kim, J. M. and Kim, J. S. (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol., 31, 230–232

[2]

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823

[3]

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826

[4]

Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451

[5]

Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H. and Joung, J. K. (2013) CRISPR RNA-guided activation of endogenous human genes. Nat. Methods, 10, 977–979

[6]

Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. and Church, G. M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 31, 833–838

[7]

Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods, 10, 973–976

[8]

Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183

[9]

Chen, S., Sanjana, N. E., Zheng, K., Shalem, O., Lee, K., Shi, X., Scott, D. A., Song, J., Pan, J. Q., Weissleder, R., (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 160, 1246–1260

[10]

Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera, M. C. and Yusa, K. (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol., 32, 267–273

[11]

Parnas, O., Jovanovic, M., Eisenhaure, T. M., Herbst, R. H., Dixit, A., Ye, C. J., Przybylski, D., Platt, R. J., Tirosh, I., Sanjana, N. E., (2015) A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell, 162, 675–686

[12]

Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelsen, T., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G., (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343, 84–87

[13]

Wang, T., Wei, J. J., Sabatini, D. M. and Lander, E. S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343, 80–84

[14]

Zhou, Y., Zhu, S., Cai, C., Yuan, P., Li, C., Huang, Y. and Wei, W. (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 509, 487–491

[15]

Wong, A. S. L. and Cho, G. G., Cui, C.H., Pregernig, G., Milani, P., Adam, M., Perli, S.D., Kazer, S.W., Gaillard, A., Hermann, M., (2016). Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc. Natl. Acad. Sci.USA,113, 2544–2549

[16]

Shen, J. P., Zhao, D., Sasik, R., Luebeck, J., Birmingham, A., Bojorquez-Gomez, A., Licon, K., Klepper, K., Pekin, D., Beckett, A. N., (2017) Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods, 14, 573–576

[17]

Han, K., Jeng, E. E., Hess, G. T., Morgens, D. W., Li, A. and Bassik, M. C. (2017) Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol., 35, 463–474

[18]

Du, D., Roguev, A., Gordon, D. E., Chen, M., Chen, S.-H., Shales, M., Shen, J. P., Ideker, T., Mali, P., Qi, L. S., (2017) Genetic interaction mapping in mammalian cells using CRISPR interference. Nat. Methods, 14, 577–580

[19]

Li, Y., Nowak, C. M., Withers, D., Pertsemlidis, A. and Bleris, L. (2018) CRISPR-based editing reveals edge-specific effects in biological networks. CRISPR J, 1, 286–293

[20]

Han, J., Zhang, J., Chen, L., Shen, B., Zhou, J., Hu, B., Du, Y., Tate, P. H., Huang, X. and Zhang, W. (2014) Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol., 11, 829–835

[21]

Ho, T. T., Zhou, N., Huang, J., Koirala, P., Xu, M., Fung, R., Wu, F. and Mo, Y. Y. (2015) Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res., 43, e17

[22]

Yin, Y., Yan, P., Lu, J., Song, G., Zhu, Y., Li, Z., Zhao, Y., Shen, B., Huang, X., Zhu, H., (2015) Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell, 16, 504–516

[23]

Paralkar, V. R., Taborda, C. C., Huang, P., Yao, Y., Kossenkov, A. V., Prasad, R., Luan, J., Davies, J. O. J., Hughes, J. R., Hardison, R. C., (2016) Unlinking an lncRNA from its associated cis element. Mol. Cell, 62, 104–110

[24]

Covarrubias, S., Robinson, E. K., Shapleigh, B., Vollmers, A., Katzman, S., Hanley, N., Fong, N., McManus, M. T. and Carpenter, S. (2017) CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-κB reporter. J. Biol. Chem., 292, 20911–20920

[25]

Li, Y., Rivera, C. M., Ishii, H., Jin, F., Selvaraj, S., Lee, A. Y., Dixon, J. R. and Ren, B. (2014) CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS One, 9, e114485

[26]

Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res., 41, e141

[27]

Essletzbichler, P., Konopka, T., Santoro, F., Chen, D., Gapp, B. V., Kralovics, R., Brummelkamp, T. R., Nijman, S. M. B. and Bürckstümmer, T. (2014) Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res., 24, 2059–2065

[28]

Rinn, J. L. and Chang, H. Y. (2012) Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 81, 145–166

[29]

Wutz, A., Rasmussen, T. P. and Jaenisch, R. (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet., 30, 167–174

[30]

Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., Tsai, M. C., Hung, T., Argani, P., Rinn, J. L., (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071–1076

[31]

Wilusz, J. E., Sunwoo, H. and Spector, D. L. (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev., 23, 1494–1504

[32]

Yan, X., Hu, Z., Feng, Y., Hu, X., Yuan, J., Zhao, S. D., Zhang, Y., Yang, L., Shan, W., He, Q., (2015) Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell, 28, 529–540

[33]

Liao, Q., Liu, C., Yuan, X., Kang, S., Miao, R., Xiao, H., Zhao, G., Luo, H., Bu, D., Zhao, H., (2011) Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res., 39, 3864–3878

[34]

Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F. and Mattick, J. S. (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA, 105, 716–721

[35]

Michelhaugh, S. K., Lipovich, L., Blythe, J., Jia, H., Kapatos, G. and Bannon, M. J. (2011) Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J. Neurochem., 116, 459–466

[36]

Gellert, P., Ponomareva, Y., Braun, T. and Uchida, S. (2013) Noncoder: a web interface for exon array-based detection of long non-coding RNAs. Nucleic Acids Res., 41, e20

[37]

Du, Z., Fei, T., Verhaak, R. G. W., Su, Z., Zhang, Y., Brown, M., Chen, Y. and Liu, X. S. (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat. Struct. Mol. Biol., 20, 908–913

[38]

Liu, X. H., Liu, Z. L., Sun, M., Liu, J., Wang, Z. X. and De, W. (2013) The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer, 13, 464

[39]

Lu, K. H., Li, W., Liu, X. H., Sun, M., Zhang, M. L., Wu, W. Q., Xie, W. P. and Hou, Y. Y. (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer, 13, 461

[40]

Wang, P., Chen, D., Ma, H. and Li, Y. (2017) LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis. OncoTargets Ther., 10, 5137–5149

[41]

Qiu, M., Xu, Y., Yang, X., Wang, J., Hu, J., Xu, L. and Yin, R. (2014) CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer. Tumour Biol., 35, 5375–5380

[42]

Shi, X., Sun, M., Liu, H., Yao, Y., Kong, R., Chen, F. and Song, Y. (2015) A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol. Carcinog., 54, E1–E12

[43]

Tang, Q., Ni, Z., Cheng, Z., Xu, J., Yu, H. and Yin, P. (2015) Three circulating long non-coding RNAs act as biomarkers for predicting NSCLC. Cell. Physiol. Biochem., 37, 1002–1009

[44]

Nie, W., Ge, H. J., Yang, X. Q., Sun, X., Huang, H., Tao, X., Chen, W. S. and Li, B. (2016) LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. Cancer Lett., 371, 99–106

[45]

Li, P., Li, J., Yang, R., Zhang, F., Wang, H., Chu, H., Lu, Y., Dun, S., Wang, Y., Zang, W., (2015) Study on expression of lncRNA RGMB-AS1 and repulsive guidance molecule b in non-small cell lung cancer. Diagn. Pathol., 10, 63

[46]

Cui, Y., Zhang, F., Zhu, C., Geng, L., Tian, T. and Liu, H. (2017) Upregulated lncRNA SNHG1 contributes to progression of non-small cell lung cancer through inhibition of miR-101-3p and activation of Wnt/β-catenin signaling pathway. Oncotarget, 8, 17785–17794

[47]

Nie, F. Q., Sun, M., Yang, J. S., Xie, M., Xu, T. P., Xia, R., Liu, Y. W., Liu, X. H., Zhang, E. B., Lu, K. H., (2015) Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol. Cancer Ther., 14, 268–277

[48]

Sun, C., Li, S., Zhang, F., Xi, Y., Wang, L., Bi, Y. and Li, D. (2016) Long non-coding RNA NEAT1 promotes non-small cell lung cancer progression through regulation of miR-377-3p-E2F3 pathway. Oncotarget, 7, 51784–51814

[49]

Han, L., Zhang, E. B., Yin, D. D., Kong, R., Xu, T. P., Chen, W. M., Xia, R., Shu, Y. Q. and De, W. (2015) Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death Dis., 6, e1665

[50]

Luo, J., Tang, L., Zhang, J., Ni, J., Zhang, H. P., Zhang, L., Xu, J. F. and Zheng, D. (2014) Long non-coding RNA CARLo-5 is a negative prognostic factor and exhibits tumor pro-oncogenic activity in non-small cell lung cancer. Tumour Biol., 35, 11541–11549

[51]

Weber, D. G., Johnen, G., Casjens, S., Bryk, O., Pesch, B., Jöckel, K. H., Kollmeier, J. and Brüning, T. (2013) Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res. Notes, 6, 518

[52]

Zhang, E. B., Yin, D. D., Sun, M., Kong, R., Liu, X. H., You, L. H., Han, L., Xia, R., Wang, K. M., Yang, J. S., (2014) P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis., 5, e1243

[53]

Lin, P. C., Huang, H. D., Chang, C. C., Chang, Y. S., Yen, J. C., Lee, C. C., Chang, W. H., Liu, T. C. and Chang, J. G. (2016) Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. BMC Cancer, 16, 583

[54]

Fu, X., Li, H., Liu, C., Hu, B., Li, T. and Wang, Y. (2016) Long noncoding RNA AK126698 inhibits proliferation and migration of non-small cell lung cancer cells by targeting Frizzled-8 and suppressing Wnt/β-catenin signaling pathway. OncoTargets Ther., 9, 3815–3827

[55]

Yang, Y., Li, H., Hou, S., Hu, B., Liu, J. and Wang, J. (2013) The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One, 8, e65309

[56]

Xie, X., Liu, H. T., Mei, J., Ding, F. B., Xiao, H. B., Hu, F. Q., Hu, R. and Wang, M. S. (2014) LncRNA HMlincRNA717 is down-regulated in non-small cell lung cancer and associated with poor prognosis. Int. J. Clin. Exp. Pathol., 7, 8881–8886

[57]

Nie, F. Q., Zhu, Q., Xu, T. P., Zou, Y. F., Xie, M., Sun, M., Xia, R. and Lu, K. H. (2014) Long non-coding RNA MVIH indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion. Tumour Biol., 35, 7587–7594

[58]

Solovyev, V. V., Shahmuradov, I. A. and Salamov, A. (2010) Identification of Promoter Regions and Regulatory Sites. In: Computational Biology of transcritption Factor Binding (Methods in Molecular Biology), Ladunga, I. (ed.). New York: Springer Science+Business Media, Humana Press, Chapter 5, 57–83

[59]

Tabach, Y., Brosh, R., Buganim, Y., Reiner, A., Zuk, O., Yitzhaky, A., Koudritsky, M., Rotter, V. and Domany, E. (2007) Wide-scale analysis of human functional transcription factor binding reveals a strong bias towards the transcription start site. PLoS One, 2, e807

[60]

Koudritsky, M. and Domany, E. (2008) Positional distribution of human transcription factor binding sites. Nucleic Acids Res., 36, 6795–6805

[61]

Nguyen, Q. H., Tellam, R. L., Naval-sanchez, M., Porto-neto, L. R., Barendse, W., Reverter, A., Haves, B., Kijas, J., Dalrymple, B. P. (2018) Mammalian genomic regulatory regions predicted by utilizing human genomics, transcriptomics and epigenetics data. GigaSceience, 7, 1–17.

[62]

Liu, H., Wei, Z., Dominguez, A., Li, Y., Wang, X. and Qi, L. S. (2015) CRISPR-ERA: a comprehensive designer tool for CRISPR genome editing, (gene) repression, and activation. Bioinformatics, 31, 3676–3678

[63]

Canver, M. C., Bauer, D. E., Dass, A., Yien, Y. Y., Chung, J., Masuda, T., Maeda, T., Paw, B. H. and Orkin, S. H. (2014) Characterization of genomic deletion efficiency mediated by CRISPR/Cas9 in mammalian cells. J. Biol. Chem., 289, 21312–21324

[64]

Hangauer, M. J., Vaughn, I. W. and McManus, M. T. (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet., 9, e1003569

[65]

Zhu, S., Li, W., Liu, J., Chen, C. H., Liao, Q., Xu, P., Xu, H., Xiao, T., Cao, Z., Peng, J., (2016) Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol., 34, 1279–1286

[66]

Goyal, A., Myacheva, K., Groß M., Klingenberg, M., Duran Arqué B. and Diederichs, S. (2017) Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res., 45, e12

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2556KB)

Supplementary files

QB-20194-OF-XZ_suppl_1

2431

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/