Imputation of single-cell gene expression with an autoencoder neural network
Md. Bahadur Badsha, Rui Li, Boxiang Liu, Yang I. Li, Min Xian, Nicholas E. Banovich, Audrey Qiuyan Fu
Imputation of single-cell gene expression with an autoencoder neural network
Background: Single-cell RNA-sequencing (scRNA-seq) is a rapidly evolving technology that enables measurement of gene expression levels at an unprecedented resolution. Despite the explosive growth in the number of cells that can be assayed by a single experiment, scRNA-seq still has several limitations, including high rates of dropouts, which result in a large number of genes having zero read count in the scRNA-seq data, and complicate downstream analyses.
Methods: To overcome this problem, we treat zeros as missing values and develop nonparametric deep learning methods for imputation. Specifically, our LATE (Learning with AuToEncoder) method trains an autoencoder with random initial values of the parameters, whereas our TRANSLATE (TRANSfer learning with LATE) method further allows for the use of a reference gene expression data set to provide LATE with an initial set of parameter estimates.
Results: On both simulated and real data, LATE and TRANSLATE outperform existing scRNA-seq imputation methods, achieving lower mean squared error in most cases, recovering nonlinear gene-gene relationships, and better separating cell types. They are also highly scalable and can efficiently process over 1 million cells in just a few hours on a GPU.
Conclusions: We demonstrate that our nonparametric approach to imputation based on autoencoders is powerful and highly efficient.
single-cell / gene expression / deep learning / autoencoder
[1] |
Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. and Teichmann, S. A. (2015) The technology and biology of single-cell RNA sequencing. Mol. Cell, 58, 610–620
CrossRef
Pubmed
Google scholar
|
[2] |
Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets, M., Leonhardt, H., Heyn, H., Hellmann, I. and Enard, W. (2017) Comparative analysis of single-cell RNA sequencing methods. Mol. Cell, 65, 631–643.e4
CrossRef
Pubmed
Google scholar
|
[3] |
Li, W. V. and Li, J. J. (2018) An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun., 9, 997
CrossRef
Pubmed
Google scholar
|
[4] |
Huang, M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., Murray, J. I., Raj, A., Li, M. and Zhang, N. R. (2018) SAVER: gene expression recovery for single-cell RNA sequencing. Nat. Methods, 15, 539–542
CrossRef
Pubmed
Google scholar
|
[5] |
van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A. J., Burdziak, C., Moon, K. R., Chaffer, C. L., Pattabiraman, D.,
CrossRef
Pubmed
Google scholar
|
[6] |
Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. and Theis, F. J. (2019) Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun., 10, 390
CrossRef
Pubmed
Google scholar
|
[7] |
Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. and Yosef, N. (2018) Deep generative modeling for single-cell transcriptomics. Nat. Methods, 15, 1053–1058
CrossRef
Pubmed
Google scholar
|
[8] |
Bacher, R. and Kendziorski, C. (2016) Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol., 17, 63
CrossRef
Pubmed
Google scholar
|
[9] |
Stegle, O., Teichmann, S. A. and Marioni, J. C. (2015) Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet., 16, 133–145
CrossRef
Pubmed
Google scholar
|
[10] |
Hinton, G. E. and Salakhutdinov, R. R. (2006) Reducing the dimensionality of data with neural networks. Science, 313, 504–507
CrossRef
Pubmed
Google scholar
|
[11] |
Bengio, Y. (2012) Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning. pp. 17–36. Bellevue
|
[12] |
Zhu, Z., Wang, X., Bai, S., Yao C. and Bai, X. (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing, 204, 41–50
CrossRef
Google scholar
|
[13] |
Rumelhart, D. E., Hinton,G. E. and Williams, R. J. (1986) Learning representations by back-propagating errors. Nature, 323, 533–536
CrossRef
Google scholar
|
[14] |
Kingma, D. P. and Ba, J. (2015) Adam: A method for stochastic optimization. In: Proceeding of the 3rd International Conference for Learning Representations. San Diego
|
[15] |
Dahl, G. E., Sainath, T. N. and Hinton, G. E. (2013) Improving deep neural networks for LVCSR using rectified linear units and dropout. In Proceedings of IEEE international conference on acoustics, speech and signal processing, pp. 8609–8613. IEEE Service Center
|
[16] |
Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learing. Cambridge: MIT Press
|
[17] |
Linderman, G. C., Zhao, J. and Kluger, Y. (2018) Zero-preserving imputation of scRNA-seq data using low-rank approximation. bioRxiv: 397588
|
[18] |
Zappia, L., Phipson, B. and Oshlack, A. (2017) Splatter: simulation of single-cell RNA sequencing data. Genome Biol., 18, 174
CrossRef
Pubmed
Google scholar
|
[19] |
Shekhar, K., Lapan, S. W., Whitney, I. E., Tran, N. M., Macosko, E. Z., Kowalczyk, M., Adiconis, X., Levin, J. Z., Nemesh, J., Goldman, M.,
CrossRef
Pubmed
Google scholar
|
[20] |
Johnson, W. E., Li, C. and Rabinovic, A. (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127
CrossRef
Pubmed
Google scholar
|
[21] |
Zhu, Z., Wang, T. and Samworth, R. J. (2019) High-dimensional principal component analysis with heterogeneous missingness. arXiv:1906.12125
|
[22] |
Paul, F., Arkin, Y., Giladi, A., Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Winter, D., Lara-Astiaso, D., Gury, M., Weiner, A.,
CrossRef
Pubmed
Google scholar
|
[23] |
Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., Ziraldo, S. B., Wheeler, T. D., McDermott, G. P., Zhu,J.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |