Emerging deep learning methods for single-cell RNA-seq data analysis
Jie Zheng, Ke Wang
Emerging deep learning methods for single-cell RNA-seq data analysis
Deep learning is making major breakthrough in several areas of bioinformatics. Anticipating that this will occur soon for the single-cell RNA-seq data analysis, we review newly published deep learning methods that help tackle computational challenges. Autoencoders are found to be the dominant approach. However, methods based on deep generative models such as generative adversarial networks (GANs) are also emerging in this area.
single-cell / RNA-seq / deep learning / autoencoder
[1] |
Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P. M., Zietz, M., Hoffman, M. M.,
CrossRef
Pubmed
Google scholar
|
[2] |
Tang, F., Lao, K. and Surani, M. A. (2011) Development and applications of single-cell transcriptome analysis. Nat. Methods, 8, S6–S11
CrossRef
Pubmed
Google scholar
|
[3] |
Berg, J. (2018) Exploring organisms cell by cell. Science, 362, 1333
CrossRef
Pubmed
Google scholar
|
[4] |
Regev, A., Teichmann, S. A., Lander, E. S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M.,
CrossRef
Pubmed
Google scholar
|
[5] |
Franzén, O., Gan, L.-M. and Björkegren, J.L. (2019) PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database, 2019, baz046
|
[6] |
Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J.,
CrossRef
Pubmed
Google scholar
|
[7] |
Deng, Q., Ramsköld, D., Reinius, B. and Sandberg, R. (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science, 343, 193–196
CrossRef
Pubmed
Google scholar
|
[8] |
Kolodziejczyk, A. A., Kim, J. K., Tsang, J. C., Ilicic, T., Henriksson, J., Natarajan, K. N., Tuck, A. C., Gao, X., Bühler, M., Liu, P.,
CrossRef
Pubmed
Google scholar
|
[9] |
Kiselev, V. Y., Andrews, T. S. and Hemberg, M. (2019) Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet., 20, 273–282
CrossRef
Pubmed
Google scholar
|
[10] |
Stegle, O., Teichmann, S. A. and Marioni, J. C. (2015) Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet., 16, 133–145
CrossRef
Pubmed
Google scholar
|
[11] |
Poirion, O. B., Zhu, X., Ching, T. and Garmire, L. (2016) Single-cell transcriptomics bioinformatics and computational challenges. Front. Genet., 7, 163
CrossRef
Pubmed
Google scholar
|
[12] |
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 36, 411–420
CrossRef
Pubmed
Google scholar
|
[13] |
Haghverdi, L., Buettner, F. and Theis, F. J. (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics, 31, 2989–2998
CrossRef
Pubmed
Google scholar
|
[14] |
Kharchenko, P. V., Silberstein, L. and Scadden, D. T. (2014) Bayesian approach to single-cell differential expression analysis. Nat. Methods, 11, 740–742
CrossRef
Pubmed
Google scholar
|
[15] |
Zhang, L. and Zhang, S. (2018) Comparison of computational methods for imputing single-cell RNA-sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform.
CrossRef
Google scholar
|
[16] |
Miao, Z., Deng, K., Wang, X. and Zhang, X. (2018) DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics, 34, 3223–3224
CrossRef
Pubmed
Google scholar
|
[17] |
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580v1
|
[18] |
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929–1958
|
[19] |
Brennecke, P., Anders, S., Kim, J. K., Kołodziejczyk, A. A., Zhang, X., Proserpio, V., Baying, B., Benes, V., Teichmann, S. A., Marioni, J. C.,
CrossRef
Pubmed
Google scholar
|
[20] |
Jiang, L., Schlesinger, F., Davis, C. A., Zhang, Y., Li, R., Salit, M., Gingeras, T. R. and Oliver, B. (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res., 21, 1543–1551
CrossRef
Pubmed
Google scholar
|
[21] |
Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., Lönnerberg, P. and Linnarsson, S. (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods, 11, 163–166
CrossRef
Pubmed
Google scholar
|
[22] |
Ding, B., Zheng, L., Zhu, Y., Li, N., Jia, H., Ai, R., Wildberg, A. and Wang, W. (2015) Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics, 31, 2225–2227
CrossRef
Pubmed
Google scholar
|
[23] |
Ding, B., Zheng, L. and Wang, W. (2017) Assessment of single cell RNA-Seq normalization methods. G3 (Bethesda), 7, 2039–2045
CrossRef
Pubmed
Google scholar
|
[24] |
Kim, J. K., Kolodziejczyk, A. A., Ilicic, T., Teichmann, S. A. and Marioni, J. C. (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun., 6, 8687
CrossRef
Pubmed
Google scholar
|
[25] |
Bellman, R. and Corporation, R. (1957) Dynamic programming. Princeton: Princeton University Press
|
[26] |
Van Der Maaten, L., Postma, E. and Van den Herik, J. (2009) Dimensionality reduction: a comparative review. J. Mach. Learn. Res., 10, 13
|
[27] |
Shalek, A. K., Satija, R., Shuga, J., Trombetta, J. J., Gennert, D., Lu, D., Chen, P., Gertner, R. S., Gaublomme, J. T., Yosef, N.,
CrossRef
Pubmed
Google scholar
|
[28] |
van der Maaten, L. and Hinton, G. (2008) Visualizing data using t-SNE. J. Mach. Learn. Res., 9, 2579–2605
|
[29] |
Amir, A. D., Davis, K. L., Tadmor, M. D., Simonds, E. F., Levine, J. H., Bendall, S. C., Shenfeld, D. K., Krishnaswamy, S., Nolan, G. P. and Pe’er, D. (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol., 31, 545–552
CrossRef
Pubmed
Google scholar
|
[30] |
Lawrence, N. D. (2004) Gaussian process latent variable models for visualisation of high dimensional data. Adv. in Neural Inf. Proc. Sys., 16, 329–336
|
[31] |
Buettner, F. and Theis, F. J. (2012) A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst. Bioinformatics, 28, i626–i632
CrossRef
Pubmed
Google scholar
|
[32] |
Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. and Batzoglou, S. (2017) Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods, 14, 414–416
CrossRef
Pubmed
Google scholar
|
[33] |
Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., Ginhoux, F. and Newell, E. W. (2018) Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol., 37, 38–44
CrossRef
Pubmed
Google scholar
|
[34] |
Pierson, E. and Yau, C. (2015) ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol., 16, 241
CrossRef
Pubmed
Google scholar
|
[35] |
Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M.,
CrossRef
Pubmed
Google scholar
|
[36] |
Nobile, M. S., Cazzaniga, P., Tangherloni, A. and Besozzi, D. (2017) Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinformatics, 18, 870–885
Pubmed
|
[37] |
Bourlard, H. and Kamp, Y. (1988) Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern., 59, 291–294
CrossRef
Pubmed
Google scholar
|
[38] |
Hinton, G. E. and Salakhutdinov, R. R. (2006) Reducing the dimensionality of data with neural networks. Science, 313, 504–507
CrossRef
Pubmed
Google scholar
|
[39] |
Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.A. (2008) Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine learning, pp. 1096–1103. ACM: Helsinki, Finland
|
[40] |
Kingma, D.P. and Welling, M. (2013) Auto-encoding variational bayes. arXiv:1312.6114v10
|
[41] |
Shaham, U., Stanton, K. P., Zhao, J., Li, H., Raddassi, K., Montgomery, R. and Kluger, Y. (2017) Removal of batch effects using distribution-matching residual networks. Bioinformatics, 33, 2539–2546
CrossRef
Pubmed
Google scholar
|
[42] |
Li, X., Lyu, Y., Park, J., Zhang, J., Stambolian, D., Susztak, K., Hu, G., Li, M. (2019) Deep learning enables accurate clustering and batch effect removal in single-cell RNA-seq analysis. bioRxiv, 530378
|
[43] |
van Dijk, D., Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K. R., Chaffer, C. L.,
|
[44] |
Li, W. V. and Li, J. J. (2018) An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun., 9, 997
CrossRef
Pubmed
Google scholar
|
[45] |
Gong, W., Kwak, I. Y., Pota, P., Koyano-Nakagawa, N. and Garry, D. J. (2018) DrImpute: imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics, 19, 220
CrossRef
Pubmed
Google scholar
|
[46] |
Talwar, D., Mongia, A., Sengupta, D. and Majumdar, A. (2018) AutoImpute: Autoencoder based imputation of single-cell RNA-seq data. Sci. Rep., 8, 16329
CrossRef
Pubmed
Google scholar
|
[47] |
Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. and Theis, F. J. (2019) Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun., 10, 390
CrossRef
Pubmed
Google scholar
|
[48] |
Lin, C., Jain, S., Kim, H. and Bar-Joseph, Z. (2017) Using neural networks for reducing the dimensions of single-cell RNA-Seq data. Nucleic Acids Res., 45, e156
CrossRef
Pubmed
Google scholar
|
[49] |
Ding, J., Condon, A. and Shah, S. P. (2018) Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun., 9, 2002
CrossRef
Pubmed
Google scholar
|
[50] |
Wang, D. and Gu, J. (2018) VASC: Dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder. Genom. Proteom. Bioinf., 16, 320–331
CrossRef
Pubmed
Google scholar
|
[51] |
Peng, J., Wang, X. and Shang, X. (2019) Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data. BMC Bioinformatics, 20, 284
CrossRef
Pubmed
Google scholar
|
[52] |
Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. and Yosef, N. (2018) Deep generative modeling for single-cell transcriptomics. Nat. Methods, 15, 1053–1058
CrossRef
Pubmed
Google scholar
|
[53] |
Wang, J., Agarwal, D., Huang, M., Hu, G., Zhou, Z., Ye, C. and Zhang, N. R. (2019) Data denoising with transfer learning in single-cell transcriptomics. Nat. Methods, 16, 875–878
CrossRef
Pubmed
Google scholar
|
[54] |
Deng, Y., Bao, F., Dai, Q., Wu, L. F. and Altschuler, S. J. (2019) Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat. Methods, 16, 311–314
CrossRef
Pubmed
Google scholar
|
[55] |
Hu, Q. and Greene, C. S. (2019) Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics. Pac. Symp. Biocomput., 24, 362–373
Pubmed
|
[56] |
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., MauckIII, W. M., Hao, Y., Stoeckius, M., Smibert, P., Satija, R. (2019) Comprehensive integration of single-cell data. Cell, 177, 1888–1902 e21
|
[57] |
Bhardwaj, V., Heyne, S., Sikora, K., Rabbani, L., Rauer, M., Kilpert, F., Richter, A. S., Ryan, D. P. and Manke, T. (2019) snakePipes: facilitating flexible, scalable and integrative epigenomic analysis. Bioinformatics, btz436
CrossRef
Pubmed
Google scholar
|
[58] |
Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. K., Swerdlow, H., Satija, R. and Smibert, P. (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods, 14, 865–868
CrossRef
Pubmed
Google scholar
|
[59] |
Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F. and Bonn, S. (2018) Realistic in silico generation and augmentation of single cell RNA-seq data using Generative Adversarial Neural Networks. bioRxiv, 390153
|
[60] |
Eraslan, G., Avsec, Ž., Gagneur, J. and Theis, F. J. (2019) Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet., 20, 389–403
CrossRef
Pubmed
Google scholar
|
[61] |
Ghahramani, A., Watt, F. M. and Luscombe, N. M. (2018) Generative adversarial networks uncover epidermal regulators and predict single cell perturbations. bioRxiv, 262501
|
[62] |
Amodio, M. and Krishnaswamy, S. (2018) MAGAN: Aligning biological manifolds. arXiv,1803.00385
|
/
〈 | 〉 |