Emerging deep learning methods for single-cell RNA-seq data analysis

Jie Zheng, Ke Wang

PDF(149 KB)
PDF(149 KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (4) : 247-254. DOI: 10.1007/s40484-019-0189-2
MINI REVIEW
MINI REVIEW

Emerging deep learning methods for single-cell RNA-seq data analysis

Author information +
History +

Abstract

Deep learning is making major breakthrough in several areas of bioinformatics. Anticipating that this will occur soon for the single-cell RNA-seq data analysis, we review newly published deep learning methods that help tackle computational challenges. Autoencoders are found to be the dominant approach. However, methods based on deep generative models such as generative adversarial networks (GANs) are also emerging in this area.

Keywords

single-cell / RNA-seq / deep learning / autoencoder

Cite this article

Download citation ▾
Jie Zheng, Ke Wang. Emerging deep learning methods for single-cell RNA-seq data analysis. Quant. Biol., 2019, 7(4): 247‒254 https://doi.org/10.1007/s40484-019-0189-2

References

[1]
Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P. M., Zietz, M., Hoffman, M. M., (2018) Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface, 15, 20170387
CrossRef Pubmed Google scholar
[2]
Tang, F., Lao, K. and Surani, M. A. (2011) Development and applications of single-cell transcriptome analysis. Nat. Methods, 8, S6–S11
CrossRef Pubmed Google scholar
[3]
Berg, J. (2018) Exploring organisms cell by cell. Science, 362, 1333
CrossRef Pubmed Google scholar
[4]
Regev, A., Teichmann, S. A., Lander, E. S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., (2017) The Human Cell Atlas. eLife, 6, e270416
CrossRef Pubmed Google scholar
[5]
Franzén, O., Gan, L.-M. and Björkegren, J.L. (2019) PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database, 2019, baz046
[6]
Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol., 20, 1131–1139
CrossRef Pubmed Google scholar
[7]
Deng, Q., Ramsköld, D., Reinius, B. and Sandberg, R. (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science, 343, 193–196
CrossRef Pubmed Google scholar
[8]
Kolodziejczyk, A. A., Kim, J. K., Tsang, J. C., Ilicic, T., Henriksson, J., Natarajan, K. N., Tuck, A. C., Gao, X., Bühler, M., Liu, P., (2015) Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell, 17, 471–485
CrossRef Pubmed Google scholar
[9]
Kiselev, V. Y., Andrews, T. S. and Hemberg, M. (2019) Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet., 20, 273–282
CrossRef Pubmed Google scholar
[10]
Stegle, O., Teichmann, S. A. and Marioni, J. C. (2015) Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet., 16, 133–145
CrossRef Pubmed Google scholar
[11]
Poirion, O. B., Zhu, X., Ching, T. and Garmire, L. (2016) Single-cell transcriptomics bioinformatics and computational challenges. Front. Genet., 7, 163
CrossRef Pubmed Google scholar
[12]
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 36, 411–420
CrossRef Pubmed Google scholar
[13]
Haghverdi, L., Buettner, F. and Theis, F. J. (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics, 31, 2989–2998
CrossRef Pubmed Google scholar
[14]
Kharchenko, P. V., Silberstein, L. and Scadden, D. T. (2014) Bayesian approach to single-cell differential expression analysis. Nat. Methods, 11, 740–742
CrossRef Pubmed Google scholar
[15]
Zhang, L. and Zhang, S. (2018) Comparison of computational methods for imputing single-cell RNA-sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform.
CrossRef Google scholar
[16]
Miao, Z., Deng, K., Wang, X. and Zhang, X. (2018) DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics, 34, 3223–3224
CrossRef Pubmed Google scholar
[17]
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580v1
[18]
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929–1958
[19]
Brennecke, P., Anders, S., Kim, J. K., Kołodziejczyk, A. A., Zhang, X., Proserpio, V., Baying, B., Benes, V., Teichmann, S. A., Marioni, J. C., (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods, 10, 1093–1095
CrossRef Pubmed Google scholar
[20]
Jiang, L., Schlesinger, F., Davis, C. A., Zhang, Y., Li, R., Salit, M., Gingeras, T. R. and Oliver, B. (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res., 21, 1543–1551
CrossRef Pubmed Google scholar
[21]
Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., Lönnerberg, P. and Linnarsson, S. (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods, 11, 163–166
CrossRef Pubmed Google scholar
[22]
Ding, B., Zheng, L., Zhu, Y., Li, N., Jia, H., Ai, R., Wildberg, A. and Wang, W. (2015) Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics, 31, 2225–2227
CrossRef Pubmed Google scholar
[23]
Ding, B., Zheng, L. and Wang, W. (2017) Assessment of single cell RNA-Seq normalization methods. G3 (Bethesda), 7, 2039–2045
CrossRef Pubmed Google scholar
[24]
Kim, J. K., Kolodziejczyk, A. A., Ilicic, T., Teichmann, S. A. and Marioni, J. C. (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun., 6, 8687
CrossRef Pubmed Google scholar
[25]
Bellman, R. and Corporation, R. (1957) Dynamic programming. Princeton: Princeton University Press
[26]
Van Der Maaten, L., Postma, E. and Van den Herik, J. (2009) Dimensionality reduction: a comparative review. J. Mach. Learn. Res., 10, 13
[27]
Shalek, A. K., Satija, R., Shuga, J., Trombetta, J. J., Gennert, D., Lu, D., Chen, P., Gertner, R. S., Gaublomme, J. T., Yosef, N., (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 510, 363–369
CrossRef Pubmed Google scholar
[28]
van der Maaten, L. and Hinton, G. (2008) Visualizing data using t-SNE. J. Mach. Learn. Res., 9, 2579–2605
[29]
Amir, A. D., Davis, K. L., Tadmor, M. D., Simonds, E. F., Levine, J. H., Bendall, S. C., Shenfeld, D. K., Krishnaswamy, S., Nolan, G. P. and Pe’er, D. (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol., 31, 545–552
CrossRef Pubmed Google scholar
[30]
Lawrence, N. D. (2004) Gaussian process latent variable models for visualisation of high dimensional data. Adv. in Neural Inf. Proc. Sys., 16, 329–336
[31]
Buettner, F. and Theis, F. J. (2012) A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst. Bioinformatics, 28, i626–i632
CrossRef Pubmed Google scholar
[32]
Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. and Batzoglou, S. (2017) Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods, 14, 414–416
CrossRef Pubmed Google scholar
[33]
Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., Ginhoux, F. and Newell, E. W. (2018) Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol., 37, 38–44
CrossRef Pubmed Google scholar
[34]
Pierson, E. and Yau, C. (2015) ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol., 16, 241
CrossRef Pubmed Google scholar
[35]
Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M., (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161, 1202–1214
CrossRef Pubmed Google scholar
[36]
Nobile, M. S., Cazzaniga, P., Tangherloni, A. and Besozzi, D. (2017) Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinformatics, 18, 870–885
Pubmed
[37]
Bourlard, H. and Kamp, Y. (1988) Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern., 59, 291–294
CrossRef Pubmed Google scholar
[38]
Hinton, G. E. and Salakhutdinov, R. R. (2006) Reducing the dimensionality of data with neural networks. Science, 313, 504–507
CrossRef Pubmed Google scholar
[39]
Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.A. (2008) Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine learning, pp. 1096–1103. ACM: Helsinki, Finland
[40]
Kingma, D.P. and Welling, M. (2013) Auto-encoding variational bayes. arXiv:1312.6114v10
[41]
Shaham, U., Stanton, K. P., Zhao, J., Li, H., Raddassi, K., Montgomery, R. and Kluger, Y. (2017) Removal of batch effects using distribution-matching residual networks. Bioinformatics, 33, 2539–2546
CrossRef Pubmed Google scholar
[42]
Li, X., Lyu, Y., Park, J., Zhang, J., Stambolian, D., Susztak, K., Hu, G., Li, M. (2019) Deep learning enables accurate clustering and batch effect removal in single-cell RNA-seq analysis. bioRxiv, 530378
[43]
van Dijk, D., Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K. R., Chaffer, C. L., (2018) Recovering gene interactions from single-cell data using data diffusion. Cell, 174, 716–729 e27
[44]
Li, W. V. and Li, J. J. (2018) An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun., 9, 997
CrossRef Pubmed Google scholar
[45]
Gong, W., Kwak, I. Y., Pota, P., Koyano-Nakagawa, N. and Garry, D. J. (2018) DrImpute: imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics, 19, 220
CrossRef Pubmed Google scholar
[46]
Talwar, D., Mongia, A., Sengupta, D. and Majumdar, A. (2018) AutoImpute: Autoencoder based imputation of single-cell RNA-seq data. Sci. Rep., 8, 16329
CrossRef Pubmed Google scholar
[47]
Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. and Theis, F. J. (2019) Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun., 10, 390
CrossRef Pubmed Google scholar
[48]
Lin, C., Jain, S., Kim, H. and Bar-Joseph, Z. (2017) Using neural networks for reducing the dimensions of single-cell RNA-Seq data. Nucleic Acids Res., 45, e156
CrossRef Pubmed Google scholar
[49]
Ding, J., Condon, A. and Shah, S. P. (2018) Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun., 9, 2002
CrossRef Pubmed Google scholar
[50]
Wang, D. and Gu, J. (2018) VASC: Dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder. Genom. Proteom. Bioinf., 16, 320–331
CrossRef Pubmed Google scholar
[51]
Peng, J., Wang, X. and Shang, X. (2019) Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data. BMC Bioinformatics, 20, 284
CrossRef Pubmed Google scholar
[52]
Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. and Yosef, N. (2018) Deep generative modeling for single-cell transcriptomics. Nat. Methods, 15, 1053–1058
CrossRef Pubmed Google scholar
[53]
Wang, J., Agarwal, D., Huang, M., Hu, G., Zhou, Z., Ye, C. and Zhang, N. R. (2019) Data denoising with transfer learning in single-cell transcriptomics. Nat. Methods, 16, 875–878
CrossRef Pubmed Google scholar
[54]
Deng, Y., Bao, F., Dai, Q., Wu, L. F. and Altschuler, S. J. (2019) Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat. Methods, 16, 311–314
CrossRef Pubmed Google scholar
[55]
Hu, Q. and Greene, C. S. (2019) Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics. Pac. Symp. Biocomput., 24, 362–373
Pubmed
[56]
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., MauckIII, W. M., Hao, Y., Stoeckius, M., Smibert, P., Satija, R. (2019) Comprehensive integration of single-cell data. Cell, 177, 1888–1902 e21
[57]
Bhardwaj, V., Heyne, S., Sikora, K., Rabbani, L., Rauer, M., Kilpert, F., Richter, A. S., Ryan, D. P. and Manke, T. (2019) snakePipes: facilitating flexible, scalable and integrative epigenomic analysis. Bioinformatics, btz436
CrossRef Pubmed Google scholar
[58]
Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. K., Swerdlow, H., Satija, R. and Smibert, P. (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods, 14, 865–868
CrossRef Pubmed Google scholar
[59]
Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F. and Bonn, S. (2018) Realistic in silico generation and augmentation of single cell RNA-seq data using Generative Adversarial Neural Networks. bioRxiv, 390153
[60]
Eraslan, G., Avsec, Ž., Gagneur, J. and Theis, F. J. (2019) Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet., 20, 389–403
CrossRef Pubmed Google scholar
[61]
Ghahramani, A., Watt, F. M. and Luscombe, N. M. (2018) Generative adversarial networks uncover epidermal regulators and predict single cell perturbations. bioRxiv, 262501
[62]
Amodio, M. and Krishnaswamy, S. (2018) MAGAN: Aligning biological manifolds. arXiv,1803.00385

COMPLIANCE WITH ETHICS GUIDELINES

The authors Jie Zheng and Ke Wang declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(149 KB)

Accesses

Citations

Detail

Sections
Recommended

/