Emerging deep learning methods for single-cell RNA-seq data analysis

Jie Zheng , Ke Wang

Quant. Biol. ›› 2019, Vol. 7 ›› Issue (4) : 247 -254.

PDF (149KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (4) : 247 -254. DOI: 10.1007/s40484-019-0189-2
MINI REVIEW
MINI REVIEW

Emerging deep learning methods for single-cell RNA-seq data analysis

Author information +
History +
PDF (149KB)

Abstract

Deep learning is making major breakthrough in several areas of bioinformatics. Anticipating that this will occur soon for the single-cell RNA-seq data analysis, we review newly published deep learning methods that help tackle computational challenges. Autoencoders are found to be the dominant approach. However, methods based on deep generative models such as generative adversarial networks (GANs) are also emerging in this area.

Keywords

single-cell / RNA-seq / deep learning / autoencoder

Cite this article

Download citation ▾
Jie Zheng, Ke Wang. Emerging deep learning methods for single-cell RNA-seq data analysis. Quant. Biol., 2019, 7(4): 247-254 DOI:10.1007/s40484-019-0189-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P. M., Zietz, M., Hoffman, M. M., (2018) Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface, 15, 20170387

[2]

Tang, F., Lao, K. and Surani, M. A. (2011) Development and applications of single-cell transcriptome analysis. Nat. Methods, 8, S6–S11

[3]

Berg, J. (2018) Exploring organisms cell by cell. Science, 362, 1333

[4]

Regev, A., Teichmann, S. A., Lander, E. S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., (2017) The Human Cell Atlas. eLife, 6, e270416

[5]

Franzén, O., Gan, L.-M. and Björkegren, J.L. (2019) PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database, 2019, baz046

[6]

Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol., 20, 1131–1139

[7]

Deng, Q., Ramsköld, D., Reinius, B. and Sandberg, R. (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science, 343, 193–196

[8]

Kolodziejczyk, A. A., Kim, J. K., Tsang, J. C., Ilicic, T., Henriksson, J., Natarajan, K. N., Tuck, A. C., Gao, X., Bühler, M., Liu, P., (2015) Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell, 17, 471–485

[9]

Kiselev, V. Y., Andrews, T. S. and Hemberg, M. (2019) Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet., 20, 273–282

[10]

Stegle, O., Teichmann, S. A. and Marioni, J. C. (2015) Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet., 16, 133–145

[11]

Poirion, O. B., Zhu, X., Ching, T. and Garmire, L. (2016) Single-cell transcriptomics bioinformatics and computational challenges. Front. Genet., 7, 163

[12]

Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 36, 411–420

[13]

Haghverdi, L., Buettner, F. and Theis, F. J. (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics, 31, 2989–2998

[14]

Kharchenko, P. V., Silberstein, L. and Scadden, D. T. (2014) Bayesian approach to single-cell differential expression analysis. Nat. Methods, 11, 740–742

[15]

Zhang, L. and Zhang, S. (2018) Comparison of computational methods for imputing single-cell RNA-sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform.

[16]

Miao, Z., Deng, K., Wang, X. and Zhang, X. (2018) DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics, 34, 3223–3224

[17]

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580v1

[18]

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929–1958

[19]

Brennecke, P., Anders, S., Kim, J. K., Kołodziejczyk, A. A., Zhang, X., Proserpio, V., Baying, B., Benes, V., Teichmann, S. A., Marioni, J. C., (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods, 10, 1093–1095

[20]

Jiang, L., Schlesinger, F., Davis, C. A., Zhang, Y., Li, R., Salit, M., Gingeras, T. R. and Oliver, B. (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res., 21, 1543–1551

[21]

Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., Lönnerberg, P. and Linnarsson, S. (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods, 11, 163–166

[22]

Ding, B., Zheng, L., Zhu, Y., Li, N., Jia, H., Ai, R., Wildberg, A. and Wang, W. (2015) Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics, 31, 2225–2227

[23]

Ding, B., Zheng, L. and Wang, W. (2017) Assessment of single cell RNA-Seq normalization methods. G3 (Bethesda), 7, 2039–2045

[24]

Kim, J. K., Kolodziejczyk, A. A., Ilicic, T., Teichmann, S. A. and Marioni, J. C. (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun., 6, 8687

[25]

Bellman, R. and Corporation, R. (1957) Dynamic programming. Princeton: Princeton University Press

[26]

Van Der Maaten, L., Postma, E. and Van den Herik, J. (2009) Dimensionality reduction: a comparative review. J. Mach. Learn. Res., 10, 13

[27]

Shalek, A. K., Satija, R., Shuga, J., Trombetta, J. J., Gennert, D., Lu, D., Chen, P., Gertner, R. S., Gaublomme, J. T., Yosef, N., (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 510, 363–369

[28]

van der Maaten, L. and Hinton, G. (2008) Visualizing data using t-SNE. J. Mach. Learn. Res., 9, 2579–2605

[29]

Amir, A. D., Davis, K. L., Tadmor, M. D., Simonds, E. F., Levine, J. H., Bendall, S. C., Shenfeld, D. K., Krishnaswamy, S., Nolan, G. P. and Pe’er, D. (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol., 31, 545–552

[30]

Lawrence, N. D. (2004) Gaussian process latent variable models for visualisation of high dimensional data. Adv. in Neural Inf. Proc. Sys., 16, 329–336

[31]

Buettner, F. and Theis, F. J. (2012) A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst. Bioinformatics, 28, i626–i632

[32]

Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. and Batzoglou, S. (2017) Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods, 14, 414–416

[33]

Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., Ginhoux, F. and Newell, E. W. (2018) Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol., 37, 38–44

[34]

Pierson, E. and Yau, C. (2015) ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol., 16, 241

[35]

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M., (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161, 1202–1214

[36]

Nobile, M. S., Cazzaniga, P., Tangherloni, A. and Besozzi, D. (2017) Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinformatics, 18, 870–885

[37]

Bourlard, H. and Kamp, Y. (1988) Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern., 59, 291–294

[38]

Hinton, G. E. and Salakhutdinov, R. R. (2006) Reducing the dimensionality of data with neural networks. Science, 313, 504–507

[39]

Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.A. (2008) Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine learning, pp. 1096–1103. ACM: Helsinki, Finland

[40]

Kingma, D.P. and Welling, M. (2013) Auto-encoding variational bayes. arXiv:1312.6114v10

[41]

Shaham, U., Stanton, K. P., Zhao, J., Li, H., Raddassi, K., Montgomery, R. and Kluger, Y. (2017) Removal of batch effects using distribution-matching residual networks. Bioinformatics, 33, 2539–2546

[42]

Li, X., Lyu, Y., Park, J., Zhang, J., Stambolian, D., Susztak, K., Hu, G., Li, M. (2019) Deep learning enables accurate clustering and batch effect removal in single-cell RNA-seq analysis. bioRxiv, 530378

[43]

van Dijk, D., Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K. R., Chaffer, C. L., (2018) Recovering gene interactions from single-cell data using data diffusion. Cell, 174, 716–729 e27

[44]

Li, W. V. and Li, J. J. (2018) An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun., 9, 997

[45]

Gong, W., Kwak, I. Y., Pota, P., Koyano-Nakagawa, N. and Garry, D. J. (2018) DrImpute: imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics, 19, 220

[46]

Talwar, D., Mongia, A., Sengupta, D. and Majumdar, A. (2018) AutoImpute: Autoencoder based imputation of single-cell RNA-seq data. Sci. Rep., 8, 16329

[47]

Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. and Theis, F. J. (2019) Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun., 10, 390

[48]

Lin, C., Jain, S., Kim, H. and Bar-Joseph, Z. (2017) Using neural networks for reducing the dimensions of single-cell RNA-Seq data. Nucleic Acids Res., 45, e156

[49]

Ding, J., Condon, A. and Shah, S. P. (2018) Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun., 9, 2002

[50]

Wang, D. and Gu, J. (2018) VASC: Dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder. Genom. Proteom. Bioinf., 16, 320–331

[51]

Peng, J., Wang, X. and Shang, X. (2019) Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data. BMC Bioinformatics, 20, 284

[52]

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. and Yosef, N. (2018) Deep generative modeling for single-cell transcriptomics. Nat. Methods, 15, 1053–1058

[53]

Wang, J., Agarwal, D., Huang, M., Hu, G., Zhou, Z., Ye, C. and Zhang, N. R. (2019) Data denoising with transfer learning in single-cell transcriptomics. Nat. Methods, 16, 875–878

[54]

Deng, Y., Bao, F., Dai, Q., Wu, L. F. and Altschuler, S. J. (2019) Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat. Methods, 16, 311–314

[55]

Hu, Q. and Greene, C. S. (2019) Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics. Pac. Symp. Biocomput., 24, 362–373

[56]

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., MauckIII, W. M., Hao, Y., Stoeckius, M., Smibert, P., Satija, R. (2019) Comprehensive integration of single-cell data. Cell, 177, 1888–1902 e21

[57]

Bhardwaj, V., Heyne, S., Sikora, K., Rabbani, L., Rauer, M., Kilpert, F., Richter, A. S., Ryan, D. P. and Manke, T. (2019) snakePipes: facilitating flexible, scalable and integrative epigenomic analysis. Bioinformatics, btz436

[58]

Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. K., Swerdlow, H., Satija, R. and Smibert, P. (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods, 14, 865–868

[59]

Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F. and Bonn, S. (2018) Realistic in silico generation and augmentation of single cell RNA-seq data using Generative Adversarial Neural Networks. bioRxiv, 390153

[60]

Eraslan, G., Avsec, Ž., Gagneur, J. and Theis, F. J. (2019) Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet., 20, 389–403

[61]

Ghahramani, A., Watt, F. M. and Luscombe, N. M. (2018) Generative adversarial networks uncover epidermal regulators and predict single cell perturbations. bioRxiv, 262501

[62]

Amodio, M. and Krishnaswamy, S. (2018) MAGAN: Aligning biological manifolds. arXiv,1803.00385

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (149KB)

3588

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/