A pan-cancer integrative pathway analysis of multi-omics data

Henry Linder, Yuping Zhang

PDF(698 KB)
PDF(698 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (2) : 130-142. DOI: 10.1007/s40484-019-0185-6
RESEARCH ARTICLE
RESEARCH ARTICLE

A pan-cancer integrative pathway analysis of multi-omics data

Author information +
History +

Abstract

Background: Multi-view -omics datasets offer rich opportunities for integrative analysis across genomic, transcriptomic, and epigenetic data platforms. Statistical methods are needed to rigorously implement current research on functional biology, matching the complex dynamics of systems genomic datasets.

Methods: We apply imputation for missing data and a structural, graph-theoretic pathway model to a dataset of 22 cancers across 173 signaling pathways. Our pathway model integrates multiple data platforms, and we test for differential activation between cancerous tumor and healthy tissue populations.

Results: Our pathway analysis reveals significant disturbance in signaling pathways that are known to relate to oncogenesis. We identify several pathways that suggest new research directions, including the Trk signaling and focal adhesion kinase activation pathways in sarcoma.

Conclusions: Our integrative analysis confirms contemporary research findings, which supports the validity of our findings. We implement an interactive data visualization for exploration of the pathway analyses, which is available online for public access.

Graphical abstract

Keywords

multi-platform data integration / pathway analysis / imputation / cancer genomics / data visualization

Cite this article

Download citation ▾
Henry Linder, Yuping Zhang. A pan-cancer integrative pathway analysis of multi-omics data. Quant. Biol., 2020, 8(2): 130‒142 https://doi.org/10.1007/s40484-019-0185-6

References

[1]
Chandrashekar, D.S., Bashel, B., Akshaya, S., Balasubramanya, H., Creighton, C.J., Ponce-Rodriguez, I., Chakravarthi, B. and Varambally, S. (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 19, 649–658
[2]
Zhang, Y., Ouyang, Z. and Zhao, H. (2017) A statistical framework for data integration through graphical models with application to cancer genomics. Ann. Appl. Stat., 11, 161–184
CrossRef Pubmed Google scholar
[3]
Cancer Genome Atlas Research Network (2017) Integrated genomic and molecular characterization of cervical cancer. Nature, 543, 378–384
CrossRef Pubmed Google scholar
[4]
Shen, R., Olshen, A. B. and Ladanyi, M. (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 25, 2906–2912
CrossRef Pubmed Google scholar
[5]
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 102,15545–15550
[6]
Yan, J., Risacher, S. L., Shen, L. and Saykin, A. J. (2017) Network approaches to systems biology analysis of complex disease: integrative methods for multi -omics data. Brief. Bioinform., 19, 1370–1381
Pubmed
[7]
Ge, Z., Leighton, J. S., Wang, Y., Peng, X., Chen, Z., Chen, H., Sun, Y., Yao, F., Li, J., Zhang, H., (2018) Integrated genomic analysis of the ubiquitin pathway across cancer types. Cell Reports, 23, 213–226.e3
CrossRef Pubmed Google scholar
[8]
Huang, J. K., Carlin, D.E., Yu, M. K., Zhang, W., Kreisberg, J. F., Tamayo, P. and Ideker, T. (2018) Systematic evaluation of molecular networks for discovery of disease genes. Cell Syst., 6, 484–495
[9]
Baryshnikova, A. (2016) Systematic functional annotation and visualization of biological networks. Cell Syst., 2, 412–421
CrossRef Pubmed Google scholar
[10]
Vaske, C. J., Benz, S. C., Sanborn, J. Z., Earl, D., Szeto, C., Zhu, J., Haussler, D. and Stuart, J. M. (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using paradigm. Bioinformatics, 26, i237–i245
CrossRef Google scholar
[11]
Campbell, J. D., Yau, C., Bowlby, R., Liu, Y., Brennan, K., Fan, H., Taylor, A. M., Wang, C., Walter, V., Akbani, R., , (2018) Genomic, pathway network, and immunologic features distinguishing squamous carcinomas. Cell Reports, 23, 194–212.e6
CrossRef Pubmed Google scholar
[12]
Ma, J., Shojaie, A. and Michailidis, G. (2016) Network-based pathway enrichment analysis with incomplete network information. Bioinformatics, 32, 3165–3174
CrossRef Pubmed Google scholar
[13]
Robinson, D., Van Allen, E. M., Wu, Y. M., Schultz, N., Lonigro, R. J., Mosquera, J. M., Montgomery, B., Taplin, M. E., Pritchard, C. C., Attard, G., (2015) Integrative clinical genomics of advanced prostate cancer. Cell, 161, 1215–1228
CrossRef Pubmed Google scholar
[14]
Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., Dimitriadoy, S., Liu, D. L., Kantheti, H. S., Saghafinia, S., (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell, 173, 321–337.e10
CrossRef Pubmed Google scholar
[15]
Bonnet, E., Calzone, L. and Michoel, T. (2015) Integrative multi -omics module network inference with Lemon-Tree. PLOS Comput. Biol., 11, e1003983
CrossRef Pubmed Google scholar
[16]
Hadfield, J., Croucher, N. J., Goater, R. J., Abudahab, K., Aanensen, D. M. and Harris, S. R. (2017) Phandango: an interactive viewer for bacterial population genomics. Bioinformatics, 34, 292–293
CrossRef Google scholar
[17]
Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag
[18]
Yin, T., Cook, D. and Lawrence, M. (2012) ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol., 13, R77
CrossRef Pubmed Google scholar
[19]
Stempor, P. and Ahringer, J. (2016) SeqPlots–Interactive software for exploratory data analyses, pattern discovery and visualization in genomics. Wellcome Open Res., 1, 14
CrossRef Pubmed Google scholar
[20]
Linder, H. and Zhang, Y. (2019) Iterative integrated imputation for missing data and pathway models with applications to breast cancer subtypes. Comm. Statis. Appl. Meth., 26, 411–430
CrossRef Google scholar
[21]
Zhang, Y., Linder, H. M.Shojaie, Ouyang, A., Shen, Z., Baggerly, R., Baladandayuthapani, K.A. and Zhao, V. H. (2017) Dissecting pathway disturbances using network topology and multi-platform genomics data. Stat. Biosci., 10, 1–21
[22]
Tomczak, K., Czerwińska, P. and Wiznerowicz, M. (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.), 19, A68–A77
CrossRef Pubmed Google scholar
[23]
Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T. and Buetow, K. H. (2008) Pid: the pathway interaction database. Nucleic acids research, 37 (suppl), D674–D679
[24]
Cai, T., Cai, T. T. and Zhang, A. (2016) Structured matrix completion with applications to genomic data integration. J. Am. Stat. Assoc., 111, 621–633
CrossRef Pubmed Google scholar
[25]
Shojaie, A. and Michailidis, G. (2009) Analysis of gene sets based on the underlying regulatory network. J. Comput. Biol., 16, 407–426
CrossRef Pubmed Google scholar
[26]
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289–300
CrossRef Google scholar
[27]
Fowler, N. and Davis, E. (2013) Targeting B-cell receptor signaling: changing the paradigm. Hematology, 553–560
CrossRef Pubmed Google scholar
[28]
Burger, J. A. and Wiestner, A. (2018) Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat. Rev. Cancer, 18, 148–167
CrossRef Pubmed Google scholar
[29]
Roskoski, R. Jr. (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res., 79, 34–74
CrossRef Pubmed Google scholar
[30]
Jakowlew, S. B. (2006) Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev., 25, 435–457
CrossRef Pubmed Google scholar
[31]
Massagué, J. (2008) TGFbeta in Cancer. Cell, 134, 215–230
CrossRef Pubmed Google scholar
[32]
Fabregat, I., Fernando, J., Mainez, J. and Sancho, P. (2014) TGF-beta signaling in cancer treatment. Curr. Pharm. Des., 20, 2934–2947
CrossRef Pubmed Google scholar
[33]
Iengar, P. (2018) Identifying pathways affected by cancer mutations. Genomics, 110, 318–328
[34]
Leiserson, M. D. M., Blokh, D., Sharan, R. and Raphael. B. J., (2013) Simultaneous identification of multiple driver pathways in cancer. PLOS Comput. Biol., 9, e1003054
[35]
Barletta, C., Lazzaro, D., Prosperi Porta, R., Testa, U., Grignani, F., Ragusa, R. M., Leone, R., Patella, A., Carenza, L. and Peschle, C. (1992) C-MYB activation and the pathogenesis of ovarian cancer. Eur. J. Gynaecol. Oncol., 13, 53–59
Pubmed
[36]
Jin, Y., Zhu, H., Cai, W., Fan, X., Wang, Y., Niu, Y., Song, F. and Bu, Y. (2017) B-myb is up-regulated and promotes cell growth and motility in non-small cell lung cancer. Int. J. Mol. Sci., 18, 860
CrossRef Pubmed Google scholar
[37]
Lawn, S., Krishna, N., Pisklakova, A., Qu, X., Fenstermacher, D. A., Fournier, M., Vrionis, F. D., Tran, N., Chan, J. A., Kenchappa, R. S., (2015) Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J. Biol. Chem., 290, 3814–3824
CrossRef Pubmed Google scholar
[38]
Meng, L., Liu, B., Ji, R., Jiang, X., Yan, X. and Xin, Y. (2019) Targeting the BDNF/TrkB pathway for the treatment of tumors. Oncol Lett, 17, 2031–2039
Pubmed
[39]
Drilon, A., Siena, S., Ou, S. I., Patel, M., Ahn, M. J., Lee, J., Bauer, T. M., Farago, A. F., Wheler, J. J., Liu, S. V., (2017) Safety and antitumor activity of the multitargeted pan-trk, ros1, and alk inhibitor entrectinib: combined results from two phase i trials (alka-372-001 and startrk-1). Cancer Discov., 7, 400–409
CrossRef Pubmed Google scholar
[40]
Heinen, T. E., Dos Santos, R. P., da Rocha, A., Dos Santos, M. P., Lopez, P. L., Silva Filho, M. A., Souza, B. K., Rivero, L. F., Becker, R. G., Gregianin, L. J., (2016) Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma. Oncotarget, 7, 34860–34880
CrossRef Pubmed Google scholar
[41]
Perry, B. C., Wang, S. and Basson, M. D. (2010) Extracellular pressure stimulates adhesion of sarcoma cells via activation of focal adhesion kinase and akt. Am. J. Surg., 200, 610–614
CrossRef Pubmed Google scholar
[42]
Crompton, B. D., Carlton, A. L., Thorner, A. R., Christie, A. L., Du, J., Calicchio, M. L., Rivera, M. N., Fleming, M. D., Kohl, N. E., Kung, A. L., (2013) High-throughput tyrosine kinase activity profiling identifies FAK as a candidate therapeutic target in Ewing sarcoma. Cancer Res., 73, 2873–2883
CrossRef Pubmed Google scholar
[43]
Wang, S., Hwang, E. E., Guha, R., O’Neill, A. F., Melong, N., Veinotte, C. J., Conway, A.S., Wuerthele, K., Shen, M., McKnight, C. (2019) High-throughput chemical screening identifies focal adhesion kinase and aurora kinase B inhibition as a synergistic treatment combination in ewing sarcoma. Clin. Cancer Res.,77
[44]
Pihlajamaa, P., Sahu, B., Lyly, L., Aittomäki, V., Hautaniemi, S. and Jänne, O. A. (2014) Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs. EMBO J., 33, 312–326
CrossRef Pubmed Google scholar
[45]
Foersch, S., Schindeldecker, M., Keith, M., Tagscherer, K. E., Fernandez, A., Stenzel, P. J., Pahernik, S., Hohenfellner, M., Schirmacher, P., Roth, W., (2017) Prognostic relevance of androgen receptor expression in renal cell carcinomas. Oncotarget, 8, 78545–78555
CrossRef Pubmed Google scholar
[46]
Zhao, H., Leppert, J. T. and Peehl, D. M. (2016) A protective role for androgen receptor in clear cell renal cell carcinoma based on mining tcga data. PLoS One, 11, e0146505
CrossRef Pubmed Google scholar
[47]
Grossman, R. L., Heath, A. P., Ferretti, V., Varmus, H. E., Lowy, D.R., Kibbe, W. A. and Staudt, L. M. (2016) Toward a shared vision for cancer genomic data. N. Engl. J. Med., 375, 1109–1112
[48]
Zhu, Y., Qiu, P. and Ji, Y. (2014) TCGA-assembler: open-source software for retrieving and processing TCGA data. Nat. Methods, 11, 599–600
CrossRef Pubmed Google scholar
[49]
Wei, L., Jin, Z., Yang, S., Xu, Y., Zhu, Y. and Ji, Y. (2018) TCGA-assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data. Bioinformatics, 34, 1615–1617
CrossRef Pubmed Google scholar
[50]
Sales, G., Calura, E. and Romualdi, C. (2018) graphite: GRAPH Interaction from pathway Topological Environment. R package version 1.26.1
[51]
Krämer, N., Schäfer, J. and Boulesteix, A.-L. (2009) Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinformatics, 10, 384
CrossRef Pubmed Google scholar
[52]
Kim, S. (2015) ppcor: an r package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods, 22, 665–674
CrossRef Pubmed Google scholar
[53]
Shojaie, A. and Michailidis, G. (2010) Network enrichment analysis in complex experiments. Stat. Appl. Genet. Mol. Biol., 9, e22
CrossRef Pubmed Google scholar
[54]
Chang, W., Cheng, J., Allaire, J. J., Xie, Y. H. and McPherson, J. (2018) shiny: Web Application Framework for R. R package version 1.2.0
[55]
Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. InterJournal, Complex Syst., 1695
[56]
Almende B. V., Thieurmel, B. and Robert, T. (2018) visNetwork: Network Visualization using vis.js Library. R package version 2.0.4

ACKNOWLEDGEMENTS

Yuping Zhang acknowledges Faculty Research Excellence Program Award from University of Connecticut.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Henry Linder and Yuping Zhang declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(698 KB)

Accesses

Citations

Detail

Sections
Recommended

/