Differential methylation analysis for bisulfite sequencing using DSS

Hao Feng, Hao Wu

PDF(955 KB)
PDF(955 KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (4) : 327-334. DOI: 10.1007/s40484-019-0183-8
PROTOCOL AND TUTORIAL
PROTOCOL AND TUTORIAL

Differential methylation analysis for bisulfite sequencing using DSS

Author information +
History +

Abstract

Bisulfite sequencing (BS-seq) technology measures DNA methylation at single nucleotide resolution. A key task in BS-seq data analysis is to identify differentially methylation (DM) under different conditions. Here we provide a tutorial for BS-seq DM analysis using Bioconductor package DSS. DSS uses a beta-binomial model to characterize the sequence counts from BS-seq, and implements rigorous statistical method for hypothesis testing. It provides flexible functionalities for a variety of DM analyses.

Keywords

epigenetics / DNA methylation / bisulfite sequencing / differential methylation

Cite this article

Download citation ▾
Hao Feng, Hao Wu. Differential methylation analysis for bisulfite sequencing using DSS. Quant. Biol., 2019, 7(4): 327‒334 https://doi.org/10.1007/s40484-019-0183-8

References

[1]
Bestor, T. H. (2000) The DNA methyltransferases of mammals. Hum. Mol. Genet., 9, 2395–2402
CrossRef Pubmed Google scholar
[2]
Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6–21
CrossRef Pubmed Google scholar
[3]
Reik, W. (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447, 425–432
CrossRef Pubmed Google scholar
[4]
Li, E., Beard, C. and Jaenisch, R. (1993) Role for DNA methylation in genomic imprinting. Nature, 366, 362–365
CrossRef Pubmed Google scholar
[5]
Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 13, 484–492
CrossRef Pubmed Google scholar
[6]
Jones, P. A. and Takai, D. (2001) The role of DNA methylation in mammalian epigenetics. Science, 293, 1068–1070
CrossRef Pubmed Google scholar
[7]
Baylin, S. B. (2005) DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol., 2, S4–S11
CrossRef Pubmed Google scholar
[8]
Laird, P. W. and Jaenisch, R. (1996) The role of DNA methylation in cancer genetic and epigenetics. Annu. Rev. Genet., 30, 441–464
CrossRef Pubmed Google scholar
[9]
Jones, P. A. (1996) DNA methylation errors and cancer. Cancer Res., 56, 2463–2467
Pubmed
[10]
Feng, H., Jin, P. and Wu, H. (2018) Disease prediction by cell-free DNA methylation. Brief. Bioinform., 20, 585–597
CrossRef Pubmed Google scholar
[11]
Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H. and Ecker, J. R. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133, 523–536
CrossRef Pubmed Google scholar
[12]
Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. and Henikoff, S. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet., 39, 61–69
CrossRef Pubmed Google scholar
[13]
Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., Pradhan, S., Nelson, S. F., Pellegrini, M. and Jacobsen, S. E. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452, 215–219
CrossRef Pubmed Google scholar
[14]
Zemach, A., McDaniel, I. E., Silva, P. and Zilberman, D. (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 328, 916–919
CrossRef Pubmed Google scholar
[15]
Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F. E., Figueroa, M. E., Melnick, A. and Mason, C. E. (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol., 13, R87
CrossRef Pubmed Google scholar
[16]
Hansen, K. D., Langmead, B. and Irizarry, R. A. (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol., 13, R83
CrossRef Pubmed Google scholar
[17]
Hebestreit, K., Dugas, M. and Klein, H. U. (2013) Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics, 29, 1647–1653
CrossRef Pubmed Google scholar
[18]
Feng, H., Conneely, K. N. and Wu, H. (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res., 42, e69
CrossRef Pubmed Google scholar
[19]
Wu, H., Xu, T.L., Feng, H., Chen, L., Li, B., Yao, B., Qin, Z.H., Jin, P., and Conneely, K.N. (2015) Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic acids Res. 43, e141
[20]
Park, Y. and Wu, H. (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics, 32, 1446–1453
CrossRef Pubmed Google scholar
[21]
Yu, X. and Sun, S. (2016) HMM-DM: identifying differentially methylated regions using a hidden Markov model. Stat. Appl. Genet. Mol. Biol., 15, 69–81
CrossRef Pubmed Google scholar
[22]
Sun, S. and Yu, X. (2016) HMM-Fisher: identifying differential methylation using a hidden Markov model and Fisher’s exact test. Stat. Appl. Genet. Mol. Biol., 15, 55–67
CrossRef Pubmed Google scholar
[23]
Assenov, Y., Müller, F., Lutsik, P., Walter, J., Lengauer, T. and Bock, C. (2014) Comprehensive analysis of DNA methylation data with RnBeads. Nat. Methods, 11, 1138–1140
CrossRef Pubmed Google scholar
[24]
Smyth, G.K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3,1–25 .
CrossRef Google scholar
[25]
Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
CrossRef Pubmed Google scholar
[26]
Wu, H., Wang, C. and Wu, Z. (2012) A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics,
CrossRef Pubmed Google scholar
[27]
Krueger, F. and Andrews, S. R. (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27, 1571–1572
CrossRef Pubmed Google scholar
[28]
Hascher, A., Haase, A.K., Hebestreit, K., Rohde, C., Klein, H.U., Rius, M., Jungen, D., Witten, A., Stoll, M., Schulze, I., (2014) DNA methyltransferase inhibition reverses epigenetically embedded phenotypes in lung cancer preferentially affecting polycomb target genes. Clin. Cancer Res., 4,814–826
CrossRef Google scholar
[29]
Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R. and Ma’ayan, A. (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14, 128
CrossRef Pubmed Google scholar
[30]
Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res., 44, W90–W97
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/10.1007/s40484-019-0183-8.

ACKNOWLEDGEMENTS

We thank all co-authors for the three DSS papers, in particular Karen Conneely and Yongseok Park. They made important contribution for the statistical method development in DSS.

COMPIANCE WITH ETHICS GUIDLINES

The authors Hao Feng and Hao Wu declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of authors.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(955 KB)

Accesses

Citations

Detail

Sections
Recommended

/