Differential methylation analysis for bisulfite sequencing using DSS
Hao Feng, Hao Wu
Differential methylation analysis for bisulfite sequencing using DSS
Bisulfite sequencing (BS-seq) technology measures DNA methylation at single nucleotide resolution. A key task in BS-seq data analysis is to identify differentially methylation (DM) under different conditions. Here we provide a tutorial for BS-seq DM analysis using Bioconductor package DSS. DSS uses a beta-binomial model to characterize the sequence counts from BS-seq, and implements rigorous statistical method for hypothesis testing. It provides flexible functionalities for a variety of DM analyses.
epigenetics / DNA methylation / bisulfite sequencing / differential methylation
[1] |
Bestor, T. H. (2000) The DNA methyltransferases of mammals. Hum. Mol. Genet., 9, 2395–2402
CrossRef
Pubmed
Google scholar
|
[2] |
Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6–21
CrossRef
Pubmed
Google scholar
|
[3] |
Reik, W. (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447, 425–432
CrossRef
Pubmed
Google scholar
|
[4] |
Li, E., Beard, C. and Jaenisch, R. (1993) Role for DNA methylation in genomic imprinting. Nature, 366, 362–365
CrossRef
Pubmed
Google scholar
|
[5] |
Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 13, 484–492
CrossRef
Pubmed
Google scholar
|
[6] |
Jones, P. A. and Takai, D. (2001) The role of DNA methylation in mammalian epigenetics. Science, 293, 1068–1070
CrossRef
Pubmed
Google scholar
|
[7] |
Baylin, S. B. (2005) DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol., 2, S4–S11
CrossRef
Pubmed
Google scholar
|
[8] |
Laird, P. W. and Jaenisch, R. (1996) The role of DNA methylation in cancer genetic and epigenetics. Annu. Rev. Genet., 30, 441–464
CrossRef
Pubmed
Google scholar
|
[9] |
Jones, P. A. (1996) DNA methylation errors and cancer. Cancer Res., 56, 2463–2467
Pubmed
|
[10] |
Feng, H., Jin, P. and Wu, H. (2018) Disease prediction by cell-free DNA methylation. Brief. Bioinform., 20, 585–597
CrossRef
Pubmed
Google scholar
|
[11] |
Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H. and Ecker, J. R. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133, 523–536
CrossRef
Pubmed
Google scholar
|
[12] |
Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. and Henikoff, S. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet., 39, 61–69
CrossRef
Pubmed
Google scholar
|
[13] |
Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., Pradhan, S., Nelson, S. F., Pellegrini, M. and Jacobsen, S. E. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452, 215–219
CrossRef
Pubmed
Google scholar
|
[14] |
Zemach, A., McDaniel, I. E., Silva, P. and Zilberman, D. (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 328, 916–919
CrossRef
Pubmed
Google scholar
|
[15] |
Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F. E., Figueroa, M. E., Melnick, A. and Mason, C. E. (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol., 13, R87
CrossRef
Pubmed
Google scholar
|
[16] |
Hansen, K. D., Langmead, B. and Irizarry, R. A. (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol., 13, R83
CrossRef
Pubmed
Google scholar
|
[17] |
Hebestreit, K., Dugas, M. and Klein, H. U. (2013) Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics, 29, 1647–1653
CrossRef
Pubmed
Google scholar
|
[18] |
Feng, H., Conneely, K. N. and Wu, H. (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res., 42, e69
CrossRef
Pubmed
Google scholar
|
[19] |
Wu, H., Xu, T.L., Feng, H., Chen, L., Li, B., Yao, B., Qin, Z.H., Jin, P., and Conneely, K.N. (2015) Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic acids Res. 43, e141
|
[20] |
Park, Y. and Wu, H. (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics, 32, 1446–1453
CrossRef
Pubmed
Google scholar
|
[21] |
Yu, X. and Sun, S. (2016) HMM-DM: identifying differentially methylated regions using a hidden Markov model. Stat. Appl. Genet. Mol. Biol., 15, 69–81
CrossRef
Pubmed
Google scholar
|
[22] |
Sun, S. and Yu, X. (2016) HMM-Fisher: identifying differential methylation using a hidden Markov model and Fisher’s exact test. Stat. Appl. Genet. Mol. Biol., 15, 55–67
CrossRef
Pubmed
Google scholar
|
[23] |
Assenov, Y., Müller, F., Lutsik, P., Walter, J., Lengauer, T. and Bock, C. (2014) Comprehensive analysis of DNA methylation data with RnBeads. Nat. Methods, 11, 1138–1140
CrossRef
Pubmed
Google scholar
|
[24] |
Smyth, G.K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3,1–25 .
CrossRef
Google scholar
|
[25] |
Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
CrossRef
Pubmed
Google scholar
|
[26] |
Wu, H., Wang, C. and Wu, Z. (2012) A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics,
CrossRef
Pubmed
Google scholar
|
[27] |
Krueger, F. and Andrews, S. R. (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27, 1571–1572
CrossRef
Pubmed
Google scholar
|
[28] |
Hascher, A., Haase, A.K., Hebestreit, K., Rohde, C., Klein, H.U., Rius, M., Jungen, D., Witten, A., Stoll, M., Schulze, I.,
CrossRef
Google scholar
|
[29] |
Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R. and Ma’ayan, A. (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14, 128
CrossRef
Pubmed
Google scholar
|
[30] |
Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |