WIPER: Weighted in-Path Edge Ranking for biomolecular association networks

Zongliang Yue, Thanh Nguyen, Eric Zhang, Jianyi Zhang, Jake Y. Chen

PDF(2126 KB)
PDF(2126 KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (4) : 313-326. DOI: 10.1007/s40484-019-0180-y
RESEARCH ARTICLE
RESEARCH ARTICLE

WIPER: Weighted in-Path Edge Ranking for biomolecular association networks

Author information +
History +

Abstract

Background: In network biology researchers generate biomolecular networks with candidate genes or proteins experimentally-derived from high-throughput data and known biomolecular associations. Current bioinformatics research focuses on characterizing candidate genes/proteins, or nodes, with network characteristics, e.g., betweenness centrality. However, there have been few research reports to characterize and prioritize biomolecular associations (“edges”), which can represent gene regulatory events essential to biological processes.

Method: We developed Weighted In-Path Edge Ranking (WIPER), a new computational algorithm which can help evaluate all biomolecular interactions/associations (“edges”) in a network model and generate a rank order of every edge based on their in-path traversal scores and statistical significance test result. To validate whether WIPER worked as we designed, we tested the algorithm on synthetic network models.

Results: Our results showed WIPER can reliably discover both critical “well traversed in-path edges”, which are statistically more traversed than normal edges, and “peripheral in-path edges”, which are less traversed than normal edges. Compared with other simple measures such as betweenness centrality, WIPER provides better biological interpretations. In the case study of analyzing postanal pig hearts gene expression, WIPER highlighted new signaling pathways suggestive of cardiomyocyte regeneration and proliferation. In the case study of Alzheimer’s disease genetic disorder association, WIPER reports SRC:APP, AR:APP, APP:FYN, and APP:NES edges (gene-gene associations) both statistically and biologically important from PubMed co-citation.

Conclusion: We believe that WIPER will become an essential software tool to help biologists discover and validate essential signaling/regulatory events from high-throughput biology data in the context of biological networks.

Availability: The free WIPER API is described at discovery.informatics.uab.edu/wiper/

Graphical abstract

Cite this article

Download citation ▾
Zongliang Yue, Thanh Nguyen, Eric Zhang, Jianyi Zhang, Jake Y. Chen. WIPER: Weighted in-Path Edge Ranking for biomolecular association networks. Quant. Biol., 2019, 7(4): 313‒326 https://doi.org/10.1007/s40484-019-0180-y

References

[1]
De Las Rivas, J. and Fontanillo, C. (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLOS Comput. Biol., 6, e1000807
CrossRef Pubmed Google scholar
[2]
Qian, Y., Li, Y., Zhang, M., Ma, G. and Lu, F. (2017) Quanfifying edge significance on maintaining global connectivity. Sci. Rep., 7, 45380
[3]
Werner, T., Dombrowski, S. M., Zgheib, C., Zouein, F. A., Keen, H. L., Kurdi, M. and Booz, G. W. (2013) Elucidating functional context within microarray data by integrated transcription factor-focused gene-interaction and regulatory network analysis. Eur. Cytokine Netw., 24, 75–90
CrossRef Pubmed Google scholar
[4]
Jiang, P., Wang, H., Li, W., Zang, C., Li, B., Wong, Y. J., Meyer, C., Liu, J. S., Aster, J. C. and Liu, X. S. (2015) Network analysis of gene essentiality in functional genomics experiments. Genome Biol., 16, 239
CrossRef Pubmed Google scholar
[5]
Dezsö, Z., Nikolsky, Y., Nikolskaya, T., Miller, J., Cherba, D., Webb, C. and Bugrim, A. (2009) Identifying disease-specific genes based on their topological significance in protein networks. BMC Syst. Biol., 3, 36
CrossRef Pubmed Google scholar
[6]
Ni, J., Koyuturk, M., Tong, H., Haines, J., Xu, R. and Zhang, X. (2016) Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model. BMC Bioinformatics, 17, 453
CrossRef Pubmed Google scholar
[7]
Bar-Joseph, Z., Gitter, A. and Simon, I. (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet., 13, 552–564
CrossRef Pubmed Google scholar
[8]
Klein, C., Marino, A., Sagot, M. F., Vieira Milreu, P. and Brilli, M. (2012) Structural and dynamical analysis of biological networks. Brief. Funct. Genomics, 11, 420–433
CrossRef Pubmed Google scholar
[9]
Popik, O. V., Saik, O. V., Petrovskiy, E. D., Sommer, B., Hofestädt, R., Lavrik, I. N. and Ivanisenko, V. A. (2014) Analysis of signaling networks distributed over intracellular compartments based on protein-protein interactions. BMC Genomics, 15, S7
CrossRef Pubmed Google scholar
[10]
Chaudhuri, A. and Chant, J. (2005) Protein-interaction mapping in search of effective drug targets. BioEssays, 27, 958–969
CrossRef Pubmed Google scholar
[11]
Ivanov, A. A., Khuri, F. R. and Fu, H. (2013) Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol. Sci., 34, 393–400
CrossRef Pubmed Google scholar
[12]
Herrero, A., Pinto, A., Colón-Bolea, P., Casar, B., Jones, M., Agudo-Ibáñez, L., Vidal, R., Tenbaum, S. P., Nuciforo, P., Valdizán, E. M., (2015) Small molecule inhibition of erk dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell, 28, 170–182
CrossRef Pubmed Google scholar
[13]
Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y. and Mills, G. B. (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 4, 988–1004
CrossRef Pubmed Google scholar
[14]
Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674
CrossRef Pubmed Google scholar
[15]
Theodosiou, T., Efstathiou, G., Papanikolaou, N., Kyrpides, N. C., Bagos, P. G., Iliopoulos, I. and Pavlopoulos, G. A. (2017) NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks. BMC Res. Notes, 10, 278
CrossRef Pubmed Google scholar
[16]
Wang, Z., Dueñas-Osorio, L. and Padgett, J. E. (2015) A new mutually reinforcing network node and link ranking algorithm. Sci. Rep., 5, 15141
CrossRef Pubmed Google scholar
[17]
Wang, J., Li, M., Wang, H., and Pan, Y. (2012) Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 1070–1080
[18]
Wang, Y., Sun, H., Du, W., Blanzieri, E., Viero, G., Xu, Y. and Liang, Y. (2014) Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks. PLoS One, 9, e108716
CrossRef Pubmed Google scholar
[19]
Krüger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., Schmidt, S., Zanivan, S., Fässler, R. and Mann, M. (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell, 134, 353–364
CrossRef Pubmed Google scholar
[20]
Chen, J., Pandey, R., and Nguyen, T. M. (2017) Happi-2: A comprehensive and high-quality map of human annotated and predicted protein interactions. BMC genomics
[21]
Hulovatyy, Y., Solava, R. W. and Milenković, T. (2014) Revealing missing parts of the interactome via link prediction. PLoS One, 9, e90073
CrossRef Pubmed Google scholar
[22]
Chowdhury, G. G. (2010) Introduction to Modern Information Retrieval. Facet publishing
[23]
Lei, C. and Ruan, J. (2013) A novel link prediction algorithm for reconstructing protein-protein interaction networks by topological similarity. Bioinformatics, 29, 355–364
CrossRef Pubmed Google scholar
[24]
Solava, R. W., Michaels, R. P. and Milenkovic, T. (2012) Graphlet-based edge clustering reveals pathogen-interacting proteins. Bioinformatics, 28, i480–i486
CrossRef Pubmed Google scholar
[25]
Kuchaiev, O., Rasajski, M., Higham, D. J. and Przulj, N. (2009) Geometric de-noising of protein-protein interaction networks. PLOS Comput. Biol., 5, e1000454
CrossRef Pubmed Google scholar
[26]
Zhu, W., Zhang, E., Zhao, M., Chong, Z., Fan, C., Tang, Y., Hunter, J. D., Borovjagin, A. V., Walcott, G. P., Chen, J. Y., (2018) Regenerative potential of neonatal porcine hearts. Circulation, 138, 2809–2816
CrossRef Pubmed Google scholar
[27]
Tromp, J., van der Pol, A., Klip, I. T., de Boer, R. A., Jaarsma, T., van Gilst, W. H., Voors, A. A., van Veldhuisen, D. J. and van der Meer, P. (2014) Fibrosis marker syndecan-1 and outcome in patients with heart failure with reduced and preserved ejection fraction. Circ Heart Fail, 7, 457–462
CrossRef Pubmed Google scholar
[28]
Hescheler, J. and Fleischmann, B. K. (2000) Integrins and cell structure: powerful determinants of heart development and heart function. Cardiovasc. Res., 47, 645–647
CrossRef Pubmed Google scholar
[29]
Chaufty, J., Sullivan, S. E. and Ho, A. (2012) Intracellular amyloid precursor protein sorting and amyloid-β secretion are regulated by Src-mediated phosphorylation of Mint2. J. Neurosci., 32, 9613–9625
CrossRef Pubmed Google scholar
[30]
Minami, S. S., Clifford, T. G., Hoe, H. S., Matsuoka, Y., and Rebeck, G. W. (2012) Fyn knock-down increases Aβ, decreases phospho-tau, and worsens spatial learning in 3×Tg-AD mice. Neurobiol. Aging,33, e815–824
[31]
Wan, X., Wang, W., Liu, J. and Tong, T. (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol., 14, 135
CrossRef Pubmed Google scholar
[32]
Dorigo, M. and Birattari, M. (2011) Ant Colony Optimization. In: Encyclopedia of Machine Learning, pp. 36–39. Springer
[33]
Dijkstra, E. W. (1959) A note on two problems in connexion with graphs. Numer. Math., 1, 269–271
CrossRef Google scholar
[34]
Hale, P. J., López-Yunez, A. M. and Chen, J. Y. (2012) Genome-wide meta-analysis of genetic susceptible genes for Type 2 Diabetes. BMC Syst. Biol., 6, S16
CrossRef Pubmed Google scholar
[35]
Yue, Z., Zheng, Q., Neylon, M. T., Yoo, M., Shin, J., Zhao, Z., Tan, A. C. and Chen, J. Y. (2018) PAGER 2.0: an update to the pathway, annotated-list and gene-signature electronic repository for Human Network Biology. Nucleic Acids Res., 46, D668–D676
CrossRef Pubmed Google scholar
[36]
Rice, J. (2006) Mathematical Statistics and Data Analysis. Duxbury Press
[37]
Tosadori, G., Bestvina, I., Spoto, F., Laudanna, C. and Scardoni, G. (2016) Creating, generating and comparing random network models with NetworkRandomizer. F1000 Res., 5, 2524
CrossRef Pubmed Google scholar
[38]
Yu, E. Y., Chen, D. B. and Zhao, J. Y. (2018) Identifying critical edges in complex networks. Sci. Rep., 8, 14469
CrossRef Pubmed Google scholar
[39]
Bass, J. I. F., Diallo, A., Nelson, J., Soto, J. M., Myers, C. L. and Walhout, A. J. M. (2013) Using networks to measure similarity between genes: association index selection. Nat. Methods, 10, 1169–1176
CrossRef Pubmed Google scholar
[40]
Cheng, X.-Q., Ren, F.-X., Shen, H.-W., Zhang, Z.-K. and Zhou, T. (2010) Bridgeness: A local index on edge significance in maintaining global connectivity. J. Stat. Mech., 2010, P10011
CrossRef Google scholar
[41]
Saito, K., Kimura, M., Ohara, K. and Motoda, H. (2016) Detecting critical links in complex network to maintain information flow/reachability. In: PRICAI 2016: Trends in Artificial Intelligence, pp. 419–432. Springer
[42]
Wang, S. L., Li, X. L. and Fang, J. (2012) Finding minimum gene subsets with heuristic breadth-first search algorithm for robust tumor classification. BMC Bioinformatics, 13, 178
CrossRef Pubmed Google scholar
[43]
Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 45, D362–D368
CrossRef Pubmed Google scholar
[44]
Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. and Tanzi, R. E. (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet., 39, 17–23
CrossRef Pubmed Google scholar
[45]
Yue, Z., Kshirsagar, M. M., Nguyen, T., Suphavilai, C., Neylon, M. T., Zhu, L., Ratliff, T. and Chen, J. Y. (2015) PAGER: constructing PAGs and new PAG-PAG relationships for network biology. Bioinformatics, 31, i250–i257
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/10.1007/s40484-019-0180-y.

ACKNOWLEDGEMENTS

We thank Jelai Wang and BioITX services at the University of Alabama at Birmingham (UAB) Informatics Institute for computing infrastructure support. The work is partly supported by the National Institute of Health funded Center for Clinical and Translational Science grant award (U54TR002731) to the University of Alabama at Birmingham (UAB), research start-up fund provided by the UAB Informatics Institute to Dr. Chen, the American Heart Association institutional data science fellowship award to the Informatics Institute of UAB, and the National Cancer Institute grant award (U01CA223976).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Zongliang Yue, Thanh Nguyen, Eric Zhang, Jianyi Zhang and Jake Y. Chen declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2126 KB)

Accesses

Citations

Detail

Sections
Recommended

/