PDF
(2291KB)
Abstract
Background: Traditionally, scientists studied microbiology through the manner of batch cultures, to conclude the dynamics or outputs by averaging all individuals. However, as the researches go further, the heterogeneities among the individuals have been proven to be crucial for the population dynamics and fates.
Results: Due to the limit of technology, single-cell analysis methods were not widely used to decipher the inherent connections between individual cells and populations. Since the early decades of this century, the rapid development of microfluidics, fluorescent labelling, next-generation sequencing, and high-resolution microscopy have speeded up the development of single-cell technologies and further facilitated the applications of these technologies on bacterial analysis.
Conclusions: In this review, we summarized the recent processes of single-cell technologies applied in bacterial analysis in terms of intracellular characteristics, cell physiology dynamics, and group behaviors, and discussed how single-cell technologies could be more applicable for future bacterial researches.
Graphical abstract
Keywords
single-cell technology
/
bacterial analysis
/
fluorescent labelling
/
next-generation sequencing
/
microfluidics
Cite this article
Download citation ▾
Zhixin Ma, Pan M. Chu, Yingtong Su, Yue Yu, Hui Wen, Xiongfei Fu, Shuqiang Huang.
Applications of single-cell technology on bacterial analysis.
Quant. Biol., 2019, 7(3): 171-181 DOI:10.1007/s40484-019-0177-6
| [1] |
Cryan J. F. and Dinan T. G. (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 13, 701–712
|
| [2] |
Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
|
| [3] |
Monod J. (1949) The growth of bacterial cultures. Annu. Rev. Microbiol., 3, 371–394
|
| [4] |
Elowitz M. B., Levine A. J., Siggia E. D. and Swain P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186
|
| [5] |
Ozbudak E. M., Thattai M., Kurtser I., Grossman A. D. and van Oudenaarden A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69–73
|
| [6] |
Rosenfeld N., Young J. W., Alon U., Swain P. S. and Elowitz M. B. (2005) Gene regulation at the single-cell level. Science, 307, 1962–1965
|
| [7] |
Wang P., Robert L., Pelletier J., Dang W. L., Taddei F., Wright A. and Jun S. (2010) Robust growth of Escherichia coli. Curr. Biol., 20, 1099–1103
|
| [8] |
Robert L., Ollion J., Robert J., Song X., Matic I. and Elez M. (2018) Mutation dynamics and fitness effects followed in single cells. Science, 359, 1283–1286
|
| [9] |
Jones D. L., Leroy P., Unoson C., Fange D., Ćurić V., Lawson M. J. and Elf J. (2017) Kinetics of dCas9 target search in Escherichia coli. Science, 357, 1420–1424
|
| [10] |
Jones D. L., Brewster R. C. and Phillips R. (2014) Promoter architecture dictates cell-to-cell variability in gene expression. Science, 346, 1533–1536
|
| [11] |
Golding I., Paulsson J., Zawilski S. M. and Cox E. C. (2005) Real-time kinetics of gene activity in individual bacteria. Cell, 123, 1025–1036
|
| [12] |
Huh D. and Paulsson J. (2011) Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet., 43, 95–100
|
| [13] |
Chen Y., Kim J. K., Hirning A. J., Josić K. and Bennett M. R. (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science, 349, 986–989
|
| [14] |
Ishiura M., Kutsuna S., Aoki S., Iwasaki H., Andersson C. R., Tanabe A., Golden S. S., Johnson C. H. and Kondo T. (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science, 281, 1519–1523
|
| [15] |
Elowitz M. B. and Leibler S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338
|
| [16] |
Wallden M., Fange D., Lundius E. G., Baltekin Ö. and Elf J. (2016) The synchronization of replication and division cycles in individual E. coli cells. Cell, 166, 729–739
|
| [17] |
Amir A. and Balaban N. Q. (2018) Learning from noise: how observing stochasticity may aid microbiology. Trends Microbiol., 26, 376–385
|
| [18] |
Prakadan S. M., Shalek A. K. and Weitz D. A. (2017) Scaling by shrinking: empowering single-cell “omics” with microfluidic devices. Nat. Rev. Genet., 18, 345–361
|
| [19] |
Amann R. and Fuchs B. M. (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol., 6, 339–348
|
| [20] |
Kang Y., McMillan I., Norris M. H. and Hoang T. T. (2015) Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis. Nat. Protoc., 10, 974–984
|
| [21] |
DeLong E. F., Wickham G. S. and Pace N. R. (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science, 243, 1360–1363
|
| [22] |
Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H. and Stenström T. A. (1993) In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol., 59, 2293–2298
|
| [23] |
Wagner M., Schmid M., Juretschko S., Trebesius K. H., Bubert A., Goebel W. and Schleifer K. H. (1998) In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol. Lett., 160, 159–168
|
| [24] |
Zwirglmaier K., Ludwig W. and Schleifer K. H. (2004) Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization–RING-FISH. Mol. Microbiol., 51, 89–96
|
| [25] |
Chong S., Chen C., Ge H. and Xie X. S. (2014) Mechanism of transcriptional bursting in bacteria. Cell, 158, 314–326
|
| [26] |
Wallner G., Amann R. and Beisker W. (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry, 14, 136–143
|
| [27] |
Paige J. S., Wu K. Y. and Jaffrey S. R. (2011) RNA mimics of green fluorescent protein. Science, 333, 642–646
|
| [28] |
Strack, R. L., Disney, M. D. and Jaffrey, S. R. (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods, 10, 1219–1224
|
| [29] |
Dolgosheina, E. V., Jeng, S. C., Panchapakesan, S. S. S., Cojocaru R., Chen P. S., Wilson P. D., Hawkins N., Wiggins P. A. and Unrau P. J. (2014) RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol., 9, 2412–2420
|
| [30] |
Filonov, G. S., Moon, J. D., Svensen, N. and Jaffrey, S. R. (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc., 136, 16299–16308
|
| [31] |
Arora A., Sunbul M. and Jäschke A. (2015) Dual-colour imaging of RNAs using quencher- and fluorophore-binding aptamers. Nucleic Acids Res., 43, e144
|
| [32] |
Shimomura, O., Johnson, F. H. and Saiga, Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol., 59, 223–239
|
| [33] |
Stearns T. (1995) Green fluorescent protein. The green revolution. Curr. Biol., 5, 262–264
|
| [34] |
Norman T. M., Lord N. D., Paulsson J. and Losick R. (2013) Memory and modularity in cell-fate decision making. Nature, 503, 481–486
|
| [35] |
Friedman N., Vardi S., Ronen M., Alon U. and Stavans J. (2005) Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol., 3, e238
|
| [36] |
Ozbudak E. M., Thattai M., Lim H. N., Shraiman B. I. and Van Oudenaarden A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740
|
| [37] |
Rosenthal A. Z., Qi Y., Hormoz S., Park J., Li S. H.-J. and Elowitz M. B. (2018) Metabolic interactions between dynamic bacterial subpopulations. eLife, 7, 1–18
|
| [38] |
Taniguchi Y., Choi P. J., Li G. W., Chen H., Babu M., Hearn J., Emili A. and Xie X. S. (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–538
|
| [39] |
Tan C., Marguet P. and You L. (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol., 5, 842–848
|
| [40] |
Cluzel P., Surette M. and Leibler S. (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science, 287, 1652–1655
|
| [41] |
Uphoff S., Lord N. D., Okumus B., Potvin-Trottier L., Sherratt D. J. and Paulsson J. (2016) Stochastic activation of a DNA damage response causes cell-to-cell mutation rate variation. Science, 351, 1094–1097
|
| [42] |
Badrinarayanan A., Reyes-Lamothe R., Uphoff S., Leake M. C. and Sherratt D. J. (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science, 338, 528–531
|
| [43] |
Le T. T., Harlepp S., Guet C. C., Dittmar K., Emonet T., Pan T. and Cluzel P. (2005) Real-time RNA profiling within a single bacterium. Proc. Natl. Acad. Sci. USA, 102, 9160–9164
|
| [44] |
Gawad C., Koh W. and Quake S. R. (2016) Single-cell genome sequencing: current state of the science. Nat. Rev. Genet., 17, 175–188
|
| [45] |
Podar M., Abulencia C. B., Walcher M., Hutchison D., Zengler K., Garcia J. A., Holland T., Cotton D., Hauser L. and Keller M. (2007) Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol., 73, 3205–3214
|
| [46] |
Rinke C., Schwientek P., Sczyrba A., Ivanova N. N., Anderson I. J., Cheng J. F., Darling A., Malfatti S., Swan B. K., Gies E. A., (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499, 431–437
|
| [47] |
Zhang Y., Gao J., Huang Y. and Wang J. (2018) Recent developments in single-Cell RNA-seq of microorganisms. Biophys. J., 115, 173–180
|
| [48] |
Kang Y., Norris M. H., Zarzycki-Siek J., Nierman W. C., Donachie S. P. and Hoang T. T. (2011) Transcript amplification from single bacterium for transcriptome analysis. Genome Res., 21, 925–935
|
| [49] |
Avital G., Avraham R., Fan A., Hashimshony T., Hung D. T. and Yanai I. (2017) scDual-seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing. Genome Biol., 18, 200
|
| [50] |
Saliba A. E., Li L., Westermann A. J., Appenzeller S., Stapels D. A., Schulte L. N., Helaine S. and Vogel J. (2016) Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat. Microbiol., 2, 16206
|
| [51] |
Gale E. F. (2009) Bacterial Physiology. Vol. 2, 1st edition. Elsevier
|
| [52] |
Kjeldgaard N. O., Maaloe O. and Schaechter M. (1958) The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol., 19, 607–616
|
| [53] |
Schaechter M., Maaloe O. and Kjeldgaard N. O. (1958) Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol., 19, 592–606
|
| [54] |
Brehm-Stecher B. F. and Johnson E. A. (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev., 68, 538–559
|
| [55] |
Young J. W., Locke J. C., Altinok A., Rosenfeld N., Bacarian T., Swain P. S., Mjolsness E. and Elowitz M. B. (2011) Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat. Protoc., 7, 80–88
|
| [56] |
Mather W., Mondragón-Palomino O., Danino T., Hasty J. and Tsimring L. S. (2010) Streaming instability in growing cell populations. Phys. Rev. Lett., 104, 208101
|
| [57] |
Ullman G., Wallden M., Marklund E. G., Mahmutovic A., Razinkov I. and Elf J. (2013) High-throughput gene expression analysis at the level of single proteins using a microfluidic turbidostat and automated cell tracking. Philos. Trans. R Soc. B Biol. Sci., 368
|
| [58] |
Campos M., Surovtsev I. V., Kato S., Paintdakhi A., Beltran B., Ebmeier S. E. and Jacobs-Wagner C. (2014) A constant size extension drives bacterial cell size homeostasis. Cell, 159, 1433–1446
|
| [59] |
Wehrens M., Ershov D., Rozendaal R., Walker N., Schultz D., Kishony R., Levin P. A. and Tans S. J. (2018) Size laws and division ring dynamics in filamentous Escherichia coli cells. Curr. Biol., 28, 972–979.e5
|
| [60] |
Hashimoto M., Nozoe T., Nakaoka H., Okura R., Akiyoshi S., Kaneko K., Kussell E. and Wakamoto Y. (2016) Noise-driven growth rate gain in clonal cellular populations. Proc. Natl. Acad. Sci. USA, 113, 3251–3256
|
| [61] |
Taheri-Araghi S., Bradde S., Sauls J. T., Hill N. S., Levin P. A., Paulsson J., Vergassola M. and Jun S. (2015) Cell-size control and homeostasis in bacteria. Curr. Biol., 25, 385–391
|
| [62] |
Sauls J. T., Li D. and Jun S. (2016) Adder and a coarse-grained approach to cell size homeostasis in bacteria. Curr. Opin. Cell Biol., 38, 38–44
|
| [63] |
Murata A., Isoda K., Ikeuchi T., Matsui T., Shiraishi F. and Oba M. (2016) Classification method of severe accident condition for the development of severe accident instrumentation and monitoring system in nuclear power plant. J. Nucl. Sci. Technol., 53, 870–877
|
| [64] |
Van Houten B. and Kad N. M. (2018) Single-cell mutagenic responses and cell death revealed in real time. Proc. Natl. Acad. Sci. USA, 115, 7168–7170
|
| [65] |
Osella M., Nugent E. and Cosentino Lagomarsino M. (2014) Concerted control of Escherichia coli cell division. Proc. Natl. Acad. Sci. USA, 111, 3431–3435
|
| [66] |
Yang D., Jennings A. D., Borrego E., Retterer S. T. and Männik J. (2018) Analysis of factors limiting bacterial growth in PDMS mother machine devices. Front. Microbiol., 9, 871
|
| [67] |
Taheri-Araghi S. and Jun S. (2015) Single-cell cultivation in microfluidic devices. Can. Vet. J., 11, 5–16
|
| [68] |
Martins B. M. C. and Locke J. C. W. (2015) Microbial individuality: how single-cell heterogeneity enables population level strategies. Curr. Opin. Microbiol., 24, 104–112
|
| [69] |
Fu X., Kato S., Long J., Mattingly H. H., He C., Vural D. C., Zucker S. W. and Emonet T. (2018) Spatial self-organization resolves conflicts between individuality and collective migration. Nat. Commun., 9, 2177
|
| [70] |
Lopatkin A. J., Huang S., Smith R. P., Srimani J. K., Sysoeva T. A., Bewick S., Karig D. K. and You L. (2016) Antibiotics as a selective driver for conjugation dynamics. Nat. Microbiol., 1, 16044
|
| [71] |
Yoney A. and Salman H. (2015) Precision and variability in bacterial temperature sensing. Biophys. J., 108, 2427–2436
|
| [72] |
Murugesan N., Panda T. and Das S. K. (2016) Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device. Biomed. Microdevices, 18, 53
|
| [73] |
Murugesan N., Dhar P., Panda T. and Das S. K. (2017) Interplay of chemical and thermal gradient on bacterial migration in a diffusive microfluidic device. Biomicrofluidics, 11, 024108
|
| [74] |
Berne C., Ellison C. K., Ducret A. and Brun Y. V. (2018) Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol., 16, 616–627
|
| [75] |
Kim H. J., Boedicker J. Q., Choi J. W. and Ismagilov R. F. (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA, 105, 18188–18193
|
| [76] |
Kohanski M. A., Dwyer D. J. and Collins J. J. (2010) How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol., 8, 423–435
|
| [77] |
Meredith H. R., Srimani J. K., Lee A. J., Lopatkin A. J. and You L. (2015) Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat. Chem. Biol., 11, 182–188
|
| [78] |
Srimani J. K., Huang S., Lopatkin A. J. and You L. (2017) Drug detoxification dynamics explain the postantibiotic effect. Mol. Syst. Biol., 13, 948
|
| [79] |
Zwietering M. H., Jongenburger I., Rombouts F. M. and van ’t Riet K. (1990) Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56, 1875–1881
|
| [80] |
Kargi F. (2009) Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics. Lett. Appl. Microbiol., 48, 398–401
|
| [81] |
Scott M., Gunderson C. W., Mateescu E. M., Zhang Z. and Hwa T. (2010) Interdependence of cell growth and gene expression: origins and consequences. Science, 330, 1099–1102
|
| [82] |
Fulwyler M. J. (1965) Electronic separation of biological cells by volume. Science, 150, 910–911
|
| [83] |
Moffitt J. R., Lee J. B. and Cluzel P. (2012) The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab Chip, 12, 1487–1494
|
| [84] |
Balleza E., Kim J. M. and Cluzel P. (2018) Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods, 15, 47–51
|
| [85] |
Knott G. J. and Doudna J. A. (2018) CRISPR-Cas guides the future of genetic engineering. Science, 361, 866–869
|
| [86] |
Schermelleh L., Ferrand A., Huser T., Eggeling C., Sauer M., Biehlmaier O. and Drummen G. P. C. (2019) Super-resolution microscopy demystified. Nat. Cell Biol., 21, 72–84
|
| [87] |
Gurjav U., Jelfs P., Hill-Cawthorne G. A., Marais B. J. and Sintchenko V. (2016) Genotype heterogeneity of Mycobacterium tuberculosis within geospatial hotspots suggests foci of imported infection in Sydney, Australia. Infect. Genet. Evol., 40, 346–351
|
| [88] |
Ackermann M. (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol., 13, 497–508
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature