Applications of single-cell technology on bacterial analysis
Zhixin Ma, Pan M. Chu, Yingtong Su, Yue Yu, Hui Wen, Xiongfei Fu, Shuqiang Huang
Applications of single-cell technology on bacterial analysis
Background: Traditionally, scientists studied microbiology through the manner of batch cultures, to conclude the dynamics or outputs by averaging all individuals. However, as the researches go further, the heterogeneities among the individuals have been proven to be crucial for the population dynamics and fates.
Results: Due to the limit of technology, single-cell analysis methods were not widely used to decipher the inherent connections between individual cells and populations. Since the early decades of this century, the rapid development of microfluidics, fluorescent labelling, next-generation sequencing, and high-resolution microscopy have speeded up the development of single-cell technologies and further facilitated the applications of these technologies on bacterial analysis.
Conclusions: In this review, we summarized the recent processes of single-cell technologies applied in bacterial analysis in terms of intracellular characteristics, cell physiology dynamics, and group behaviors, and discussed how single-cell technologies could be more applicable for future bacterial researches.
single-cell technology / bacterial analysis / fluorescent labelling / next-generation sequencing / microfluidics
[1] |
Cryan J. F. and Dinan T. G. (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 13, 701–712
CrossRef
Pubmed
Google scholar
|
[2] |
Crick F. (1970) Central dogma of molecular biology. Nature, 227, 561–563
CrossRef
Pubmed
Google scholar
|
[3] |
Monod J. (1949) The growth of bacterial cultures. Annu. Rev. Microbiol., 3, 371–394
CrossRef
Google scholar
|
[4] |
Elowitz M. B., Levine A. J., Siggia E. D. and Swain P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186
CrossRef
Pubmed
Google scholar
|
[5] |
Ozbudak E. M., Thattai M., Kurtser I., Grossman A. D. and van Oudenaarden A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69–73
CrossRef
Pubmed
Google scholar
|
[6] |
Rosenfeld N., Young J. W., Alon U., Swain P. S. and Elowitz M. B. (2005) Gene regulation at the single-cell level. Science, 307, 1962–1965
CrossRef
Pubmed
Google scholar
|
[7] |
Wang P., Robert L., Pelletier J., Dang W. L., Taddei F., Wright A. and Jun S. (2010) Robust growth of Escherichia coli. Curr. Biol., 20, 1099–1103
CrossRef
Pubmed
Google scholar
|
[8] |
Robert L., Ollion J., Robert J., Song X., Matic I. and Elez M. (2018) Mutation dynamics and fitness effects followed in single cells. Science, 359, 1283–1286
CrossRef
Pubmed
Google scholar
|
[9] |
Jones D. L., Leroy P., Unoson C., Fange D., Ćurić V., Lawson M. J. and Elf J. (2017) Kinetics of dCas9 target search in Escherichia coli. Science, 357, 1420–1424
CrossRef
Pubmed
Google scholar
|
[10] |
Jones D. L., Brewster R. C. and Phillips R. (2014) Promoter architecture dictates cell-to-cell variability in gene expression. Science, 346, 1533–1536
CrossRef
Pubmed
Google scholar
|
[11] |
Golding I., Paulsson J., Zawilski S. M. and Cox E. C. (2005) Real-time kinetics of gene activity in individual bacteria. Cell, 123, 1025–1036
CrossRef
Pubmed
Google scholar
|
[12] |
Huh D. and Paulsson J. (2011) Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet., 43, 95–100
CrossRef
Pubmed
Google scholar
|
[13] |
Chen Y., Kim J. K., Hirning A. J., Josić K. and Bennett M. R. (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science, 349, 986–989
CrossRef
Google scholar
|
[14] |
Ishiura M., Kutsuna S., Aoki S., Iwasaki H., Andersson C. R., Tanabe A., Golden S. S., Johnson C. H. and Kondo T. (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science, 281, 1519–1523
CrossRef
Pubmed
Google scholar
|
[15] |
Elowitz M. B. and Leibler S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338
CrossRef
Pubmed
Google scholar
|
[16] |
Wallden M., Fange D., Lundius E. G., Baltekin Ö. and Elf J. (2016) The synchronization of replication and division cycles in individual E. coli cells. Cell, 166, 729–739
CrossRef
Pubmed
Google scholar
|
[17] |
Amir A. and Balaban N. Q. (2018) Learning from noise: how observing stochasticity may aid microbiology. Trends Microbiol., 26, 376–385
CrossRef
Pubmed
Google scholar
|
[18] |
Prakadan S. M., Shalek A. K. and Weitz D. A. (2017) Scaling by shrinking: empowering single-cell “omics” with microfluidic devices. Nat. Rev. Genet., 18, 345–361
CrossRef
Google scholar
|
[19] |
Amann R. and Fuchs B. M. (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol., 6, 339–348
CrossRef
Pubmed
Google scholar
|
[20] |
Kang Y., McMillan I., Norris M. H. and Hoang T. T. (2015) Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis. Nat. Protoc., 10, 974–984
CrossRef
Pubmed
Google scholar
|
[21] |
DeLong E. F., Wickham G. S. and Pace N. R. (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science, 243, 1360–1363
CrossRef
Pubmed
Google scholar
|
[22] |
Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H. and Stenström T. A. (1993) In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol., 59, 2293–2298
Pubmed
|
[23] |
Wagner M., Schmid M., Juretschko S., Trebesius K. H., Bubert A., Goebel W. and Schleifer K. H. (1998) In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol. Lett., 160, 159–168
CrossRef
Pubmed
Google scholar
|
[24] |
Zwirglmaier K., Ludwig W. and Schleifer K. H. (2004) Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization–RING-FISH. Mol. Microbiol., 51, 89–96
CrossRef
Pubmed
Google scholar
|
[25] |
Chong S., Chen C., Ge H. and Xie X. S. (2014) Mechanism of transcriptional bursting in bacteria. Cell, 158, 314–326
CrossRef
Pubmed
Google scholar
|
[26] |
Wallner G., Amann R. and Beisker W. (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry, 14, 136–143
CrossRef
Pubmed
Google scholar
|
[27] |
Paige J. S., Wu K. Y. and Jaffrey S. R. (2011) RNA mimics of green fluorescent protein. Science, 333, 642–646
CrossRef
Pubmed
Google scholar
|
[28] |
Strack, R. L., Disney, M. D. and Jaffrey, S. R. (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods, 10, 1219–1224
CrossRef
Pubmed
Google scholar
|
[29] |
Dolgosheina, E. V., Jeng, S. C., Panchapakesan, S. S. S., Cojocaru R., Chen P. S., Wilson P. D., Hawkins N., Wiggins P. A. and Unrau P. J. (2014) RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol., 9, 2412–2420
CrossRef
Pubmed
Google scholar
|
[30] |
Filonov, G. S., Moon, J. D., Svensen, N. and Jaffrey, S. R. (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc., 136, 16299–16308
CrossRef
Pubmed
Google scholar
|
[31] |
Arora A., Sunbul M. and Jäschke A. (2015) Dual-colour imaging of RNAs using quencher- and fluorophore-binding aptamers. Nucleic Acids Res., 43, e144
CrossRef
Pubmed
Google scholar
|
[32] |
Shimomura, O., Johnson, F. H. and Saiga, Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol., 59, 223–239
Pubmed
|
[33] |
Stearns T. (1995) Green fluorescent protein. The green revolution. Curr. Biol., 5, 262–264
CrossRef
Pubmed
Google scholar
|
[34] |
Norman T. M., Lord N. D., Paulsson J. and Losick R. (2013) Memory and modularity in cell-fate decision making. Nature, 503, 481–486
CrossRef
Pubmed
Google scholar
|
[35] |
Friedman N., Vardi S., Ronen M., Alon U. and Stavans J. (2005) Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol., 3, e238
CrossRef
Pubmed
Google scholar
|
[36] |
Ozbudak E. M., Thattai M., Lim H. N., Shraiman B. I. and Van Oudenaarden A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740
CrossRef
Pubmed
Google scholar
|
[37] |
Rosenthal A. Z., Qi Y., Hormoz S., Park J., Li S. H.-J. and Elowitz M. B. (2018) Metabolic interactions between dynamic bacterial subpopulations. eLife, 7, 1–18
CrossRef
Pubmed
Google scholar
|
[38] |
Taniguchi Y., Choi P. J., Li G. W., Chen H., Babu M., Hearn J., Emili A. and Xie X. S. (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–538
CrossRef
Pubmed
Google scholar
|
[39] |
Tan C., Marguet P. and You L. (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol., 5, 842–848
CrossRef
Pubmed
Google scholar
|
[40] |
Cluzel P., Surette M. and Leibler S. (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science, 287, 1652–1655
CrossRef
Pubmed
Google scholar
|
[41] |
Uphoff S., Lord N. D., Okumus B., Potvin-Trottier L., Sherratt D. J. and Paulsson J. (2016) Stochastic activation of a DNA damage response causes cell-to-cell mutation rate variation. Science, 351, 1094–1097
CrossRef
Pubmed
Google scholar
|
[42] |
Badrinarayanan A., Reyes-Lamothe R., Uphoff S., Leake M. C. and Sherratt D. J. (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science, 338, 528–531
CrossRef
Pubmed
Google scholar
|
[43] |
Le T. T., Harlepp S., Guet C. C., Dittmar K., Emonet T., Pan T. and Cluzel P. (2005) Real-time RNA profiling within a single bacterium. Proc. Natl. Acad. Sci. USA, 102, 9160–9164
CrossRef
Pubmed
Google scholar
|
[44] |
Gawad C., Koh W. and Quake S. R. (2016) Single-cell genome sequencing: current state of the science. Nat. Rev. Genet., 17, 175–188
CrossRef
Pubmed
Google scholar
|
[45] |
Podar M., Abulencia C. B., Walcher M., Hutchison D., Zengler K., Garcia J. A., Holland T., Cotton D., Hauser L. and Keller M. (2007) Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol., 73, 3205–3214
CrossRef
Pubmed
Google scholar
|
[46] |
Rinke C., Schwientek P., Sczyrba A., Ivanova N. N., Anderson I. J., Cheng J. F., Darling A., Malfatti S., Swan B. K., Gies E. A.,
CrossRef
Pubmed
Google scholar
|
[47] |
Zhang Y., Gao J., Huang Y. and Wang J. (2018) Recent developments in single-Cell RNA-seq of microorganisms. Biophys. J., 115, 173–180
CrossRef
Pubmed
Google scholar
|
[48] |
Kang Y., Norris M. H., Zarzycki-Siek J., Nierman W. C., Donachie S. P. and Hoang T. T. (2011) Transcript amplification from single bacterium for transcriptome analysis. Genome Res., 21, 925–935
CrossRef
Pubmed
Google scholar
|
[49] |
Avital G., Avraham R., Fan A., Hashimshony T., Hung D. T. and Yanai I. (2017) scDual-seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing. Genome Biol., 18, 200
CrossRef
Pubmed
Google scholar
|
[50] |
Saliba A. E., Li L., Westermann A. J., Appenzeller S., Stapels D. A., Schulte L. N., Helaine S. and Vogel J. (2016) Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat. Microbiol., 2, 16206
CrossRef
Pubmed
Google scholar
|
[51] |
Gale E. F. (2009) Bacterial Physiology. Vol. 2, 1st edition. Elsevier
|
[52] |
Kjeldgaard N. O., Maaloe O. and Schaechter M. (1958) The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol., 19, 607–616
CrossRef
Pubmed
Google scholar
|
[53] |
Schaechter M., Maaloe O. and Kjeldgaard N. O. (1958) Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol., 19, 592–606
CrossRef
Pubmed
Google scholar
|
[54] |
Brehm-Stecher B. F. and Johnson E. A. (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev., 68, 538–559
CrossRef
Pubmed
Google scholar
|
[55] |
Young J. W., Locke J. C., Altinok A., Rosenfeld N., Bacarian T., Swain P. S., Mjolsness E. and Elowitz M. B. (2011) Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat. Protoc., 7, 80–88
CrossRef
Pubmed
Google scholar
|
[56] |
Mather W., Mondragón-Palomino O., Danino T., Hasty J. and Tsimring L. S. (2010) Streaming instability in growing cell populations. Phys. Rev. Lett., 104, 208101
CrossRef
Pubmed
Google scholar
|
[57] |
Ullman G., Wallden M., Marklund E. G., Mahmutovic A., Razinkov I. and Elf J. (2013) High-throughput gene expression analysis at the level of single proteins using a microfluidic turbidostat and automated cell tracking. Philos. Trans. R Soc. B Biol. Sci., 368
CrossRef
Google scholar
|
[58] |
Campos M., Surovtsev I. V., Kato S., Paintdakhi A., Beltran B., Ebmeier S. E. and Jacobs-Wagner C. (2014) A constant size extension drives bacterial cell size homeostasis. Cell, 159, 1433–1446
CrossRef
Pubmed
Google scholar
|
[59] |
Wehrens M., Ershov D., Rozendaal R., Walker N., Schultz D., Kishony R., Levin P. A. and Tans S. J. (2018) Size laws and division ring dynamics in filamentous Escherichia coli cells. Curr. Biol., 28, 972–979.e5
CrossRef
Pubmed
Google scholar
|
[60] |
Hashimoto M., Nozoe T., Nakaoka H., Okura R., Akiyoshi S., Kaneko K., Kussell E. and Wakamoto Y. (2016) Noise-driven growth rate gain in clonal cellular populations. Proc. Natl. Acad. Sci. USA, 113, 3251–3256
CrossRef
Pubmed
Google scholar
|
[61] |
Taheri-Araghi S., Bradde S., Sauls J. T., Hill N. S., Levin P. A., Paulsson J., Vergassola M. and Jun S. (2015) Cell-size control and homeostasis in bacteria. Curr. Biol., 25, 385–391
CrossRef
Pubmed
Google scholar
|
[62] |
Sauls J. T., Li D. and Jun S. (2016) Adder and a coarse-grained approach to cell size homeostasis in bacteria. Curr. Opin. Cell Biol., 38, 38–44
CrossRef
Pubmed
Google scholar
|
[63] |
Murata A., Isoda K., Ikeuchi T., Matsui T., Shiraishi F. and Oba M. (2016) Classification method of severe accident condition for the development of severe accident instrumentation and monitoring system in nuclear power plant. J. Nucl. Sci. Technol., 53, 870–877
CrossRef
Google scholar
|
[64] |
Van Houten B. and Kad N. M. (2018) Single-cell mutagenic responses and cell death revealed in real time. Proc. Natl. Acad. Sci. USA, 115, 7168–7170
CrossRef
Pubmed
Google scholar
|
[65] |
Osella M., Nugent E. and Cosentino Lagomarsino M. (2014) Concerted control of Escherichia coli cell division. Proc. Natl. Acad. Sci. USA, 111, 3431–3435
CrossRef
Pubmed
Google scholar
|
[66] |
Yang D., Jennings A. D., Borrego E., Retterer S. T. and Männik J. (2018) Analysis of factors limiting bacterial growth in PDMS mother machine devices. Front. Microbiol., 9, 871
CrossRef
Pubmed
Google scholar
|
[67] |
Taheri-Araghi S. and Jun S. (2015) Single-cell cultivation in microfluidic devices. Can. Vet. J., 11, 5–16
|
[68] |
Martins B. M. C. and Locke J. C. W. (2015) Microbial individuality: how single-cell heterogeneity enables population level strategies. Curr. Opin. Microbiol., 24, 104–112
CrossRef
Pubmed
Google scholar
|
[69] |
Fu X., Kato S., Long J., Mattingly H. H., He C., Vural D. C., Zucker S. W. and Emonet T. (2018) Spatial self-organization resolves conflicts between individuality and collective migration. Nat. Commun., 9, 2177
CrossRef
Pubmed
Google scholar
|
[70] |
Lopatkin A. J., Huang S., Smith R. P., Srimani J. K., Sysoeva T. A., Bewick S., Karig D. K. and You L. (2016) Antibiotics as a selective driver for conjugation dynamics. Nat. Microbiol., 1, 16044
CrossRef
Pubmed
Google scholar
|
[71] |
Yoney A. and Salman H. (2015) Precision and variability in bacterial temperature sensing. Biophys. J., 108, 2427–2436
CrossRef
Pubmed
Google scholar
|
[72] |
Murugesan N., Panda T. and Das S. K. (2016) Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device. Biomed. Microdevices, 18, 53
CrossRef
Pubmed
Google scholar
|
[73] |
Murugesan N., Dhar P., Panda T. and Das S. K. (2017) Interplay of chemical and thermal gradient on bacterial migration in a diffusive microfluidic device. Biomicrofluidics, 11, 024108
CrossRef
Pubmed
Google scholar
|
[74] |
Berne C., Ellison C. K., Ducret A. and Brun Y. V. (2018) Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol., 16, 616–627
CrossRef
Pubmed
Google scholar
|
[75] |
Kim H. J., Boedicker J. Q., Choi J. W. and Ismagilov R. F. (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA, 105, 18188–18193
CrossRef
Pubmed
Google scholar
|
[76] |
Kohanski M. A., Dwyer D. J. and Collins J. J. (2010) How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol., 8, 423–435
CrossRef
Pubmed
Google scholar
|
[77] |
Meredith H. R., Srimani J. K., Lee A. J., Lopatkin A. J. and You L. (2015) Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat. Chem. Biol., 11, 182–188
CrossRef
Pubmed
Google scholar
|
[78] |
Srimani J. K., Huang S., Lopatkin A. J. and You L. (2017) Drug detoxification dynamics explain the postantibiotic effect. Mol. Syst. Biol., 13, 948
CrossRef
Pubmed
Google scholar
|
[79] |
Zwietering M. H., Jongenburger I., Rombouts F. M. and van ’t Riet K. (1990) Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56, 1875–1881
Pubmed
|
[80] |
Kargi F. (2009) Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics. Lett. Appl. Microbiol., 48, 398–401
CrossRef
Pubmed
Google scholar
|
[81] |
Scott M., Gunderson C. W., Mateescu E. M., Zhang Z. and Hwa T. (2010) Interdependence of cell growth and gene expression: origins and consequences. Science, 330, 1099–1102
CrossRef
Pubmed
Google scholar
|
[82] |
Fulwyler M. J. (1965) Electronic separation of biological cells by volume. Science, 150, 910–911
CrossRef
Pubmed
Google scholar
|
[83] |
Moffitt J. R., Lee J. B. and Cluzel P. (2012) The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab Chip, 12, 1487–1494
CrossRef
Pubmed
Google scholar
|
[84] |
Balleza E., Kim J. M. and Cluzel P. (2018) Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods, 15, 47–51
CrossRef
Pubmed
Google scholar
|
[85] |
Knott G. J. and Doudna J. A. (2018) CRISPR-Cas guides the future of genetic engineering. Science, 361, 866–869
CrossRef
Pubmed
Google scholar
|
[86] |
Schermelleh L., Ferrand A., Huser T., Eggeling C., Sauer M., Biehlmaier O. and Drummen G. P. C. (2019) Super-resolution microscopy demystified. Nat. Cell Biol., 21, 72–84
CrossRef
Pubmed
Google scholar
|
[87] |
Gurjav U., Jelfs P., Hill-Cawthorne G. A., Marais B. J. and Sintchenko V. (2016) Genotype heterogeneity of Mycobacterium tuberculosis within geospatial hotspots suggests foci of imported infection in Sydney, Australia. Infect. Genet. Evol., 40, 346–351
CrossRef
Pubmed
Google scholar
|
[88] |
Ackermann M. (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol., 13, 497–508
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |