EpiFIT: functional interpretation of transcription factors based on combination of sequence and epigenetic information

Shaoming Song , Hongfei Cui , Shengquan Chen , Qiao Liu , Rui Jiang

Quant. Biol. ›› 2019, Vol. 7 ›› Issue (3) : 233 -243.

PDF (1456KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (3) : 233 -243. DOI: 10.1007/s40484-019-0175-8
SOFTWARE ARTICLE
SOFTWARE ARTICLE

EpiFIT: functional interpretation of transcription factors based on combination of sequence and epigenetic information

Author information +
History +
PDF (1456KB)

Abstract

Background: Transcription factor is one of the most important regulators in the transcriptional process. Nevertheless, the functional interpretation of transcription factors is still a main challenge due to the poor performance of methods relating to regulatory regions to genes. Epigenetic information, such as chromatin accessibility, contains genome-wide knowledge about transcription regulation and thus may shed light on the functional interpretation of transcription factors.

Methods: We propose EpiFIT (Epigenetic based Functional Interpretation of Transcription factors), a tool to infer functions of transcription factors from ChIP-seq data. Briefly, we adopt a variable distance rule to establish associations between regulatory regions and nearby genes. The associations are then filtered to ensure that the remaining regions and associated genes are co-open. Finally, GO enrichment is applied to all related genes and a ranking list of GO terms is provided as functional interpretation.

Results: We first examined the chromatin openness correlation between regulatory regions and associated genes. The correlation can help EpiFIT purify regulatory region–gene associations. By evaluating EpiFIT on a set of real data, we demonstrated that EpiFIT outperforms other existing methods for precisely interpreting transcription factor functions. We further verify the efficiency of openness in interpretation and the ability of EpiFIT to build distal region-gene associations.

Conclusion: EpiFIT is a powerful tool for interpreting the transcription factor functions. We believe EpiFIT will facilitate the functional interpretation of other regulatory elements, and thus open a new door to understanding the regulatory mechanism.

Availability: The application is freely accessible at website: bioinfo.au.tsinghua.edu.cn/openness/EpiFIT/.

Graphical abstract

Keywords

transcription factor / functional interpretation / epigenetic information

Cite this article

Download citation ▾
Shaoming Song, Hongfei Cui, Shengquan Chen, Qiao Liu, Rui Jiang. EpiFIT: functional interpretation of transcription factors based on combination of sequence and epigenetic information. Quant. Biol., 2019, 7(3): 233-243 DOI:10.1007/s40484-019-0175-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Johnson, D. S., Mortazavi, A., Myers, R. M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497–1502

[2]

Mardis, E. R. (2007) ChIP-seq: welcome to the new frontier. Nat. Methods, 4, 613–614

[3]

Tu, S. and Shao, Z. (2017) An introduction to computational tools for differential binding analysis with ChIP-seq data. Quant. Biol., 5, 226–235

[4]

Hoffman, M. M., Ernst, J., Wilder, S. P., Kundaje, A., Harris, R. S., Libbrecht, M., Giardine, B., Ellenbogen, P. M., Bilmes, J. A., Birney, E., (2013) Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res., 41, 827–841

[5]

Blahnik, K. R., Dou, L., O’Geen, H., McPhillips, T., Xu, X., Cao, A. R., Iyengar, S., Nicolet, C. M., Ludäscher, B., Korf, I., (2010) Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res., 38, e13

[6]

Huang, W., Sherman, B. T. and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57

[7]

Huang, W., Sherman, B. T. and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 37, 1–13

[8]

McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B., Wenger, A. M. and Bejerano, G. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol., 28, 495–501

[9]

Natarajan, A., Yardimci, G. G., Sheffield, N. C., Crawford, G. E. and Ohler, U. (2012) Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res., 22, 1711–1722

[10]

Valouev, A., Johnson, D. S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., Myers, R. M. and Sidow, A. (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods, 5, 829–834

[11]

Cao, S., Zhou, Y., Wu, Y., Song, T., Alsaihati, B. and Xu, Y. (2017) Transcription regulation by DNA methylation under stressful conditions in human cancer. Quant. Biol., 5, 328–337

[12]

Liu, Q., Xia, F., Yin, Q. and Jiang, R. (2018) Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinformatics, 34, 732–738

[13]

Sherwood, R. I., Hashimoto, T., O’Donnell, C. W., Lewis, S., Barkal, A. A., van Hoff, J. P., Karun, V., Jaakkola, T. and Gifford, D. K. (2014) Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat. Biotechnol., 32, 171–178

[14]

Wang, Y., Jiang, R. and Wong, W. H. (2016) Modeling the causal regulatory network by integrating chromatin accessibility and transcriptome data. Natl. Sci. Rev., 3, 240–251

[15]

Chen, S., Wang, Y. and Jiang, R. (2019) OPENANNO: annotating genomic regions with chromatin accessibility. BioRxiv

[16]

Davis, C. A., Hitz, B. C., Sloan, C. A., Chan, E. T., Davidson, J. M., Gabdank, I., Hilton, J. A., Jain, K., Baymuradov, U. K., Narayanan, A. K., (2018) The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res., 46, D794–D801

[17]

ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74

[18]

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., (2000) Gene ontology: tool for the unification of biology. Nat. Genet., 25, 25–29

[19]

The Gene Ontology Consortium. (2019) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res., 47, D330–D338

[20]

Min, X., Zeng, W., Chen, N., Chen, T. and Jiang, R. (2017) Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Bioinformatics, 33, i92–i101

[21]

Duren, Z., Chen, X., Jiang, R., Wang, Y. and Wong, W. H. (2017) Modeling gene regulation from paired expression and chromatin accessibility data. Proc. Natl. Acad. Sci. USA., 114, E4914–E4923

[22]

Huntley, R. P., Sawford, T., Mutowo-Meullenet, P., Shypitsyna, A., Bonilla, C., Martin, M. J. and O’Donovan, C. (2015) The GOA database: gene Ontology annotation updates for 2015. Nucleic Acids Res., 43, D1057–D1063

[23]

Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M. R., (2014) The Reactome pathway knowledgebase. Nucleic Acids Res., 42, D472–D477

[24]

Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. cell, 122, 947–956

[25]

Zhao, M., Amiel, S. A., Christie, M. R., Muiesan, P., Srinivasan, P., Littlejohn, W., Rela, M., Arno, M., Heaton, N. and Huang, G. C. (2007) Evidence for the presence of stem cell-like progenitor cells in human adult pancreas. J. Endocrinol., 195, 407–414

[26]

Lee, J., Kim, H. K., Han, Y. M. and Kim, J. (2008) Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int. J. Biochem. Cell Biol., 40, 1043–1054

[27]

Xu, H., Wang, W., Li, C., Yu, H., Yang, A., Wang, B. and Jin, Y. (2009) WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells. Cell Res., 19, 561–573

[28]

Yoon, S. J., Wills, A. E., Chuong, E., Gupta, R. and Baker, J. C. (2011) HEB and E2A function as SMAD/FOXH1 cofactors. Genes Dev., 25, 1654–1661

[29]

Kristensen, D. M., Nielsen, J. E., Skakkebaek, N. E., Graem, N., Jacobsen, G. K., Rajpert-De Meyts, E. and Leffers, H. (2008) Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms. Hum. Reprod., 23, 775–782

[30]

Trubiani, O., Zalzal, S. F., Paganelli, R., Marchisio, M., Giancola, R., Pizzicannella, J., Bühring, H. J., Piattelli, M., Caputi, S. and Nanci, A. (2010) Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J. Cell. Physiol., 225, 123–131

[31]

Stefanovic, S., Abboud, N., Désilets, S., Nury, D., Cowan, C. and Pucéat, M. (2009) Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. J. Cell Biol., 186, 665–673

[32]

Lei, X. X., Xu, J., Ma, W., Qiao, C., Newman, M. A., Hammond, S. M. and Huang, Y. (2012) Determinants of mRNA recognition and translation regulation by Lin28. Nucleic Acids Res., 40, 3574–3584

[33]

Bard, J. D., Gelebart, P., Amin, H. M., Young, L. C., Ma, Y. and Lai, R. (2009) Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4. FASEB J., 23, 1405–1414

[34]

Kunarso, G., Chia, N. Y., Jeyakani, J., Hwang, C., Lu, X., Chan, Y. S., Ng, H. H. and Bourque, G. (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet., 42, 631–634

[35]

Li, J., & Wang, C. Y. (2008). TBL1–TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat. cell Biol., 10, 160–169.

[36]

Zhou, S., Fujimuro, M., Hsieh, J. J. D., Chen, L., Miyamoto, A., Weinmaster, G. and Hayward, S. D. (2000) SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. Mol. Cell. Biol., 20, 2400–2410

[37]

Guenther, M. G., Barak, O. and Lazar, M. A. (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol., 21, 6091–6101

[38]

Yu, S. and Reddy, J. K. (2007) Transcription coactivators for peroxisome proliferator-activated receptors. BBA-MOL Cell Biol. L., 1771, 936–951.

[39]

Feige, J. N., Gelman, L., Michalik, L., Desvergne, B. and Wahli, W. (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog. Lipid Res., 45, 120–159

[40]

Ishii, S., Kurasawa, Y., Wong, J. and Yu-Lee, L. Y. (2008) Histone deacetylase 3 localizes to the mitotic spindle and is required for kinetochore-microtubule attachment. Proc. Natl. Acad. Sci. USA, 105, 4179–4184

[41]

Ouyang, Z., Zhou, Q. and Wong, W. H. (2009) ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc. Natl. Acad. Sci. USA, 106, 21521–21526

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1456KB)

1612

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/