EpiFIT: functional interpretation of transcription factors based on combination of sequence and epigenetic information

Shaoming Song, Hongfei Cui, Shengquan Chen, Qiao Liu, Rui Jiang

PDF(1456 KB)
PDF(1456 KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (3) : 233-243. DOI: 10.1007/s40484-019-0175-8
SOFTWARE ARTICLE

EpiFIT: functional interpretation of transcription factors based on combination of sequence and epigenetic information

Author information +
History +

Abstract

Background: Transcription factor is one of the most important regulators in the transcriptional process. Nevertheless, the functional interpretation of transcription factors is still a main challenge due to the poor performance of methods relating to regulatory regions to genes. Epigenetic information, such as chromatin accessibility, contains genome-wide knowledge about transcription regulation and thus may shed light on the functional interpretation of transcription factors.

Methods: We propose EpiFIT (Epigenetic based Functional Interpretation of Transcription factors), a tool to infer functions of transcription factors from ChIP-seq data. Briefly, we adopt a variable distance rule to establish associations between regulatory regions and nearby genes. The associations are then filtered to ensure that the remaining regions and associated genes are co-open. Finally, GO enrichment is applied to all related genes and a ranking list of GO terms is provided as functional interpretation.

Results: We first examined the chromatin openness correlation between regulatory regions and associated genes. The correlation can help EpiFIT purify regulatory region–gene associations. By evaluating EpiFIT on a set of real data, we demonstrated that EpiFIT outperforms other existing methods for precisely interpreting transcription factor functions. We further verify the efficiency of openness in interpretation and the ability of EpiFIT to build distal region-gene associations.

Conclusion: EpiFIT is a powerful tool for interpreting the transcription factor functions. We believe EpiFIT will facilitate the functional interpretation of other regulatory elements, and thus open a new door to understanding the regulatory mechanism.

Availability: The application is freely accessible at website: bioinfo.au.tsinghua.edu.cn/openness/EpiFIT/.

Graphical abstract

Keywords

transcription factor / functional interpretation / epigenetic information

Cite this article

Download citation ▾
Shaoming Song, Hongfei Cui, Shengquan Chen, Qiao Liu, Rui Jiang. EpiFIT: functional interpretation of transcription factors based on combination of sequence and epigenetic information. Quant. Biol., 2019, 7(3): 233‒243 https://doi.org/10.1007/s40484-019-0175-8

References

[1]
Johnson, D. S., Mortazavi, A., Myers, R. M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497–1502
CrossRef Pubmed Google scholar
[2]
Mardis, E. R. (2007) ChIP-seq: welcome to the new frontier. Nat. Methods, 4, 613–614
CrossRef Pubmed Google scholar
[3]
Tu, S. and Shao, Z. (2017) An introduction to computational tools for differential binding analysis with ChIP-seq data. Quant. Biol., 5, 226–235
CrossRef Google scholar
[4]
Hoffman, M. M., Ernst, J., Wilder, S. P., Kundaje, A., Harris, R. S., Libbrecht, M., Giardine, B., Ellenbogen, P. M., Bilmes, J. A., Birney, E., (2013) Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res., 41, 827–841
CrossRef Pubmed Google scholar
[5]
Blahnik, K. R., Dou, L., O’Geen, H., McPhillips, T., Xu, X., Cao, A. R., Iyengar, S., Nicolet, C. M., Ludäscher, B., Korf, I., (2010) Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res., 38, e13
CrossRef Pubmed Google scholar
[6]
Huang, W., Sherman, B. T. and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57
CrossRef Pubmed Google scholar
[7]
Huang, W., Sherman, B. T. and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 37, 1–13
CrossRef Pubmed Google scholar
[8]
McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B., Wenger, A. M. and Bejerano, G. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol., 28, 495–501
CrossRef Pubmed Google scholar
[9]
Natarajan, A., Yardimci, G. G., Sheffield, N. C., Crawford, G. E. and Ohler, U. (2012) Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res., 22, 1711–1722
CrossRef Pubmed Google scholar
[10]
Valouev, A., Johnson, D. S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., Myers, R. M. and Sidow, A. (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods, 5, 829–834
CrossRef Pubmed Google scholar
[11]
Cao, S., Zhou, Y., Wu, Y., Song, T., Alsaihati, B. and Xu, Y. (2017) Transcription regulation by DNA methylation under stressful conditions in human cancer. Quant. Biol., 5, 328–337
CrossRef Google scholar
[12]
Liu, Q., Xia, F., Yin, Q. and Jiang, R. (2018) Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinformatics, 34, 732–738
CrossRef Pubmed Google scholar
[13]
Sherwood, R. I., Hashimoto, T., O’Donnell, C. W., Lewis, S., Barkal, A. A., van Hoff, J. P., Karun, V., Jaakkola, T. and Gifford, D. K. (2014) Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat. Biotechnol., 32, 171–178
CrossRef Pubmed Google scholar
[14]
Wang, Y., Jiang, R. and Wong, W. H. (2016) Modeling the causal regulatory network by integrating chromatin accessibility and transcriptome data. Natl. Sci. Rev., 3, 240–251
CrossRef Pubmed Google scholar
[15]
Chen, S., Wang, Y. and Jiang, R. (2019) OPENANNO: annotating genomic regions with chromatin accessibility. BioRxiv
CrossRef Google scholar
[16]
Davis, C. A., Hitz, B. C., Sloan, C. A., Chan, E. T., Davidson, J. M., Gabdank, I., Hilton, J. A., Jain, K., Baymuradov, U. K., Narayanan, A. K., (2018) The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res., 46, D794–D801
CrossRef Pubmed Google scholar
[17]
ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef Pubmed Google scholar
[18]
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., (2000) Gene ontology: tool for the unification of biology. Nat. Genet., 25, 25–29
CrossRef Pubmed Google scholar
[19]
The Gene Ontology Consortium. (2019) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res., 47, D330–D338
CrossRef Pubmed Google scholar
[20]
Min, X., Zeng, W., Chen, N., Chen, T. and Jiang, R. (2017) Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Bioinformatics, 33, i92–i101
CrossRef Pubmed Google scholar
[21]
Duren, Z., Chen, X., Jiang, R., Wang, Y. and Wong, W. H. (2017) Modeling gene regulation from paired expression and chromatin accessibility data. Proc. Natl. Acad. Sci. USA., 114, E4914–E4923
CrossRef Pubmed Google scholar
[22]
Huntley, R. P., Sawford, T., Mutowo-Meullenet, P., Shypitsyna, A., Bonilla, C., Martin, M. J. and O’Donovan, C. (2015) The GOA database: gene Ontology annotation updates for 2015. Nucleic Acids Res., 43, D1057–D1063
CrossRef Pubmed Google scholar
[23]
Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M. R., (2014) The Reactome pathway knowledgebase. Nucleic Acids Res., 42, D472–D477
CrossRef Pubmed Google scholar
[24]
Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. cell, 122, 947–956
[25]
Zhao, M., Amiel, S. A., Christie, M. R., Muiesan, P., Srinivasan, P., Littlejohn, W., Rela, M., Arno, M., Heaton, N. and Huang, G. C. (2007) Evidence for the presence of stem cell-like progenitor cells in human adult pancreas. J. Endocrinol., 195, 407–414
CrossRef Pubmed Google scholar
[26]
Lee, J., Kim, H. K., Han, Y. M. and Kim, J. (2008) Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int. J. Biochem. Cell Biol., 40, 1043–1054
CrossRef Pubmed Google scholar
[27]
Xu, H., Wang, W., Li, C., Yu, H., Yang, A., Wang, B. and Jin, Y. (2009) WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells. Cell Res., 19, 561–573
CrossRef Pubmed Google scholar
[28]
Yoon, S. J., Wills, A. E., Chuong, E., Gupta, R. and Baker, J. C. (2011) HEB and E2A function as SMAD/FOXH1 cofactors. Genes Dev., 25, 1654–1661
CrossRef Pubmed Google scholar
[29]
Kristensen, D. M., Nielsen, J. E., Skakkebaek, N. E., Graem, N., Jacobsen, G. K., Rajpert-De Meyts, E. and Leffers, H. (2008) Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms. Hum. Reprod., 23, 775–782
CrossRef Pubmed Google scholar
[30]
Trubiani, O., Zalzal, S. F., Paganelli, R., Marchisio, M., Giancola, R., Pizzicannella, J., Bühring, H. J., Piattelli, M., Caputi, S. and Nanci, A. (2010) Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J. Cell. Physiol., 225, 123–131
CrossRef Pubmed Google scholar
[31]
Stefanovic, S., Abboud, N., Désilets, S., Nury, D., Cowan, C. and Pucéat, M. (2009) Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. J. Cell Biol., 186, 665–673
CrossRef Pubmed Google scholar
[32]
Lei, X. X., Xu, J., Ma, W., Qiao, C., Newman, M. A., Hammond, S. M. and Huang, Y. (2012) Determinants of mRNA recognition and translation regulation by Lin28. Nucleic Acids Res., 40, 3574–3584
CrossRef Pubmed Google scholar
[33]
Bard, J. D., Gelebart, P., Amin, H. M., Young, L. C., Ma, Y. and Lai, R. (2009) Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4. FASEB J., 23, 1405–1414
CrossRef Pubmed Google scholar
[34]
Kunarso, G., Chia, N. Y., Jeyakani, J., Hwang, C., Lu, X., Chan, Y. S., Ng, H. H. and Bourque, G. (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet., 42, 631–634
CrossRef Pubmed Google scholar
[35]
Li, J., & Wang, C. Y. (2008). TBL1–TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat. cell Biol., 10, 160–169.
[36]
Zhou, S., Fujimuro, M., Hsieh, J. J. D., Chen, L., Miyamoto, A., Weinmaster, G. and Hayward, S. D. (2000) SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. Mol. Cell. Biol., 20, 2400–2410
CrossRef Pubmed Google scholar
[37]
Guenther, M. G., Barak, O. and Lazar, M. A. (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol., 21, 6091–6101
CrossRef Pubmed Google scholar
[38]
Yu, S. and Reddy, J. K. (2007) Transcription coactivators for peroxisome proliferator-activated receptors. BBA-MOL Cell Biol. L., 1771, 936–951.
[39]
Feige, J. N., Gelman, L., Michalik, L., Desvergne, B. and Wahli, W. (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog. Lipid Res., 45, 120–159
CrossRef Pubmed Google scholar
[40]
Ishii, S., Kurasawa, Y., Wong, J. and Yu-Lee, L. Y. (2008) Histone deacetylase 3 localizes to the mitotic spindle and is required for kinetochore-microtubule attachment. Proc. Natl. Acad. Sci. USA, 105, 4179–4184
CrossRef Pubmed Google scholar
[41]
Ouyang, Z., Zhou, Q. and Wong, W. H. (2009) ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc. Natl. Acad. Sci. USA, 106, 21521–21526
CrossRef Pubmed Google scholar

ACKNOWLEDGMENTS

This work has been supported by the National Key Research and Development Program of China (No. 2018YFC0910404), the National Natural Science Foundation of China (Nos. 61873141, 61721003, 61573207, 71871019 and 71471016), and the Tsinghua-Fuzhou Institute for Data Technology.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Shaoming Song, Hongfei Cui, Shengquan Chen, Qiao Liu and Rui Jiang declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1456 KB)

Accesses

Citations

Detail

Sections
Recommended

/