Identification of candidate disease genes in patients with common variable immunodeficiency

Guojun Liu, Mikhail A. Bolkov, Irina A. Tuzankina, Irina G. Danilova

PDF(1812 KB)
PDF(1812 KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (3) : 190-201. DOI: 10.1007/s40484-019-0174-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Identification of candidate disease genes in patients with common variable immunodeficiency

Author information +
History +

Abstract

Background: Common variable immunodeficiency (CVID), the most prevalent form of primary immunodeficiency (PID), is characterized by hypogammaglobulinemia and recurrent infections. Understanding protein-protein interaction (PPI) networks of CVID genes and identifying candidate CVID genes are critical steps in facilitating the early diagnosis of CVID. Here, the aim was to investigate PPI networks of CVID genes and identify candidate CVID genes using computation techniques.

Methods: Network density and biological distance were used to study PPI data for CVID and PID genes obtained from the STRING database. Gene expression data of patients with CVID were obtained from the Gene Expression Omnibus, and then Pearson’s correlation coefficient, a PPI database, and Kyoto Encyclopedia of Genes and Genomes were used to identify candidate CVID genes. We then evaluated our predictions and identified differentially expressed CVID genes.

Results: The majority of CVID genes are characterized by a high network density and small biological distance, whereas most PID genes are characterized by a low network density and large biological distance, indicating that CVID genes are more functionally similar to each other and closely interact with one other compared with PID genes. Subsequently, we identified 172 CVID candidate genes that have similar biological functions to known CVID genes, and eight genes were recently reported as CVID-related genes. MYC, a candidate gene, was down-regulated in CVID duodenal biopsies, but up-regulated in blood samples compared with levels in healthy controls.

Conclusion: Our findings will aid in a better understanding of the complex of CVID genes, possibly further facilitating the early diagnosis of CVID.

Graphical abstract

Keywords

common variable immunodeficiency / primary immunodeficiency / candidate CVID genes / protein-protein interactions / network density / biological distance

Cite this article

Download citation ▾
Guojun Liu, Mikhail A. Bolkov, Irina A. Tuzankina, Irina G. Danilova. Identification of candidate disease genes in patients with common variable immunodeficiency. Quant. Biol., 2019, 7(3): 190‒201 https://doi.org/10.1007/s40484-019-0174-9

References

[1]
Gathmann, B., Mahlaoui, N., Gérard, L., Oksenhendler, E., Warnatz, K., Schulze, I., Kindle, G., Kuijpers, T. W., van Beem, R. T., Guzman, D., (2014) Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J. Allergy Clin. Immunol., 134, 116–126
CrossRef Pubmed Google scholar
[2]
Bonilla, F. A., Barlan, I., Chapel, H., Costa-Carvalho, B. T., Cunningham-Rundles, C., de la Morena, M. T., Espinosa-Rosales, F. J., Hammarström, L., Nonoyama, S., Quinti, I., (2016) International Consensus Document (ICON): common variable immunodeficiency disorders. J. Allergy Clin. Immunol. Pract., 4, 38–59
CrossRef Pubmed Google scholar
[3]
Bogaert, D. J., Dullaers, M., Lambrecht, B. N., Vermaelen, K. Y., De Baere, E. and Haerynck, F. (2016) Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J. Med. Genet., 53, 575–590
CrossRef Pubmed Google scholar
[4]
van Zelm, M. C., Reisli, I., van der Burg, M., Castaño, D., van Noesel, C. J., van Tol, M. J., Woellner, C., Grimbacher, B., Patiño, P. J., van Dongen, J. J., (2006) An antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med., 354, 1901–1912
CrossRef Pubmed Google scholar
[5]
Compeer, E. B., Janssen, W., van Royen-Kerkhof, A., van Gijn, M., van Montfrans, J. M. and Boes, M. (2015) Dysfunctional BLK in common variable immunodeficiency perturbs B-cell proliferation and ability to elicit antigen-specific CD4+ T-cell help. Oncotarget, 6, 10759–10771
CrossRef Pubmed Google scholar
[6]
Lo, B., Zhang, K., Lu, W., Zheng, L., Zhang, Q., Kanellopoulou, C., Zhang, Y., Liu, Z., Fritz, J. M., Marsh, R., (2015) Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science, 349, 436–440
CrossRef Pubmed Google scholar
[7]
Fliegauf, M., Bryant, V. L., Frede, N., Slade, C., Woon, S. T., Lehnert, K., Winzer, S., Bulashevska, A., Scerri, T., Leung, E., (2015) Haploinsufficiency of the NF-κB1 subunit p50 in common variable immunodeficiency. Am. J. Hum. Genet., 97, 389–403
CrossRef Pubmed Google scholar
[8]
Almejun, M. B., Cols, M., Zelazko, M., Oleastro, M., Cerutti, A., Oppezzo, P., Cunningham-Rundles, C. and Danielian, S. (2013) Naturally occurring mutation affecting the MyD88-binding site of TNFRSF13B impairs triggering of class switch recombination. Eur. J. Immunol., 43, 805–814
CrossRef Pubmed Google scholar
[9]
Kienzler, A. K., Hargreaves, C. E. and Patel, S. Y. (2017) The role of genomics in common variable immunodeficiency disorders. Clin. Exp. Immunol., 188, 326–332
CrossRef Pubmed Google scholar
[10]
van Schouwenburg, P. A., Davenport, E. E., Kienzler, A. K., Marwah, I., Wright, B., Lucas, M., Malinauskas, T., Martin, H. C., Lockstone, H. E., Cazier, J. B., (2015) Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders. Clin. Immunol., 160, 301–314
CrossRef Pubmed Google scholar
[11]
Kelsen, J. R., Dawany, N., Moran, C. J., Petersen, B. S., Sarmady, M., Sasson, A., Pauly-Hubbard, H., Martinez, A., Maurer, K., Soong, J., (2015) Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. Gastroenterology, 149, 1415–1424
CrossRef Pubmed Google scholar
[12]
Keerthikumar, S., Bhadra, S., Kandasamy, K., Raju, R., Ramachandra, Y. L., Bhattacharyya, C., Imai, K., Ohara, O., Mohan, S. and Pandey, A. (2009) Prediction of candidate primary immunodeficiency disease genes using a support vector machine learning approach. DNA Res., 16, 345–351
CrossRef Pubmed Google scholar
[13]
Ortutay, C. and Vihinen, M. (2009) Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res., 37, 622–628
CrossRef Pubmed Google scholar
[14]
Itan, Y. and Casanova, J. L. (2015) Novel primary immunodeficiency candidate genes predicted by the human gene connectome. Front. Immunol., 6, 142
CrossRef Pubmed Google scholar
[15]
Requena, D., Maffucci, P., Bigio, B., Shang, L., Abhyankar, A., Boisson, B., Stenson, P. D., Cooper, D. N., Cunningham-Rundles, C., Casanova, J. L., (2018) CDG: an online server for detecting biologically closest disease-causing genes and its application to primary immunodeficiency. Front. Immunol., 9, 1340
CrossRef Pubmed Google scholar
[16]
van Schouwenburg, P. A., Davenport, E. E., Kienzler, A. K., Marwah, I., Wright, B., Lucas, M., Malinauskas, T., Martin, H. C., Lockstone, H. E., Cazier, J. B., (2015) Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders. Clin. Immunol., 160, 301–314
CrossRef Pubmed Google scholar
[17]
Yang, Y., Wang, W., Lou, Y., Yin, J. and Gong, X. (2018) Geometric and amino acid type determinants for protein-protein interaction interfaces. Quant. Biol., 6, 163–174
CrossRef Google scholar
[18]
Lee, H. C., Lai, K., Lorenc, M. T., Imelfort, M., Duran, C. and Edwards, D. (2012) Bioinformatics tools and databases for analysis of next-generation sequence data. Brief. Funct. Genomics, 11, 12–24
CrossRef Pubmed Google scholar
[19]
Charoentong, P., Angelova, M., Efremova, M., Gallasch, R., Hackl, H., Galon, J. and Trajanoski, Z. (2012) Bioinformatics for cancer immunology and immunotherapy. Cancer Immunol. Immunother., 61, 1885–1903
CrossRef Pubmed Google scholar
[20]
Vasudevaraja, V., Renbarger, J., Shah, R. G., Kinnebrew, G., Korc, M., Wang, L., Huo, Y., Liu, E., Li, L. and Cheng, L. (2017) PMTDS: a computational method based on genetic interaction networks for precision medicine target-drug selection in cancer. Quant. Biol., 5, 380–394
CrossRef Google scholar
[21]
Yazdani, R., Ganjalikhani-Hakemi, M., Esmaeili, M., Abolhassani, H., Vaeli, S., Rezaei, A., Sharifi, Z., Azizi, G., Rezaei, N. and Aghamohammadi, A. (2017) Impaired Akt phosphorylation in B-cells of patients with common variable immunodeficiency. Clin. Immunol., 175, 124–132
CrossRef Pubmed Google scholar
[22]
Rodríguez-Cortez, V. C., Del Pino-Molina, L., Rodríguez-Ubreva, J., Ciudad, L., Gómez-Cabrero, D., Company, C., Urquiza, J. M., Tegnér, J., Rodríguez-Gallego, C., López-Granados, E., (2015) Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naïve-to-memory B-cell transition. Nat. Commun., 6, 7335
CrossRef Pubmed Google scholar
[23]
Keller, B., Cseresnyes, Z., Stumpf, I., Wehr, C., Fliegauf, M., Bulashevska, A., Usadel, S., Grimbacher, B., Rizzi, M., Eibel, H., (2017) Disturbed canonical nuclear factor of κ light chain signaling in B cells of patients with common variable immunodeficiency. J. Allergy Clin. Immunol., 139, 220–231.e8
CrossRef Pubmed Google scholar
[24]
Sanaei, R., Rezaei, N., Aghamohammadi, A., Delbandi, A. A., Teimourian, S., Yazdani, R., Tavasolian, P., Kiaee, F. and Tajik, N. (2018) Evaluation of the TLR negative regulatory network in CVID patients. Genes Immun., 20, 198–206
Pubmed
[25]
Clemente, A., Pons, J., Lanio, N., Cunill, V., Frontera, G., Crespí, C., Matamoros, N. and Ferrer, J. M. (2015) Increased STAT3 phosphorylation on CD27+ B-cells from common variable immunodeficiency disease patients. Clin. Immunol., 161, 77–88
CrossRef Pubmed Google scholar
[26]
Maffucci, P., Filion, C. A., Boisson, B., Itan, Y., Shang, L., Casanova, J. L. and Cunningham-Rundles, C. (2016) Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front. Immunol., 7, 220
CrossRef Pubmed Google scholar
[27]
Steele, C. L., Doré, M., Ammann, S., Loughrey, M., Montero, A., Burns, S. O., Morris, E. C., Gaspar, B., Gilmour, K., Bibi, S., (2016) X-linked inhibitor of apoptosis complicated by granulomatous lymphocytic interstitial lung disease (GLILD) and granulomatous hepatitis. J. Clin. Immunol., 36, 733–738
CrossRef Pubmed Google scholar
[28]
Berrón-Ruiz, L., López-Herrera, G., Vargas-Hernández, A., Mogica-Martínez, D., García-Latorre, E., Blancas-Galicia, L., Espinosa-Rosales, F. J. and Santos-Argumedo, L. (2014) Lymphocytes and B-cell abnormalities in patients with common variable immunodeficiency (CVID). Allergol. Immunopathol. (Madr.), 42, 35–43
CrossRef Pubmed Google scholar
[29]
López-Gómez, A., Clemente, A., Cunill, V., Pons, J. and Ferrer, J. M. (2018) IL-21 and anti-CD40 restore Bcl-2 family protein imbalance in vitro in low-survival CD27+ B cells from CVID patients. Cell Death Dis., 9, 1156
CrossRef Pubmed Google scholar
[30]
Karnell, J. L., Kumar, V., Wang, J., Wang, S., Voynova, E. and Ettinger, R. (2017) Role of CD11c+ T-bet+ B cells in human health and disease. Cell. Immunol., 321, 40–45
CrossRef Pubmed Google scholar
[31]
Niemela, J., Kuehn, H. S., Kelly, C., Zhang, M., Davies, J., Melendez, J., Dreiling, J., Kleiner, D., Calvo, K., Oliveira, J. B., (2015) Caspase-8 deficiency presenting as late-onset multi-organ lymphocytic infiltration with granulomas in two adult siblings. J. Clin. Immunol., 35, 348–355
CrossRef Pubmed Google scholar
[32]
Rensing-Ehl, A., Warnatz, K., Fuchs, S., Schlesier, M., Salzer, U., Draeger, R., Bondzio, I., Joos, Y., Janda, A., Gomes, M., (2010) Clinical and immunological overlap between autoimmune lymphoproliferative syndrome and common variable immunodeficiency. Clin. Immunol., 137, 357–365
CrossRef Pubmed Google scholar
[33]
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef Pubmed Google scholar
[34]
Horvath, S. and Dong, J. (2008) Geometric interpretation of gene coexpression network analysis. PLOS Comput. Biol., 4, e1000117
CrossRef Pubmed Google scholar
[35]
Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. InterJournal. Complex Syst., 1695, 1–9
[36]
Itan, Y., Zhang, S. Y., Vogt, G., Abhyankar, A., Herman, M., Nitschke, P., Fried, D., Quintana-Murci, L., Abel, L. and Casanova, J. L. (2013) The human gene connectome as a map of short cuts for morbid allele discovery. Proc. Natl. Acad. Sci. USA, 110, 5558–5563
CrossRef Pubmed Google scholar
[37]
Cheng, F., Desai, R. J., Handy, D. E., Wang, R., Schneeweiss, S., Barabási, A. L. and Loscalzo, J. (2018) Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun., 9, 2691
CrossRef Pubmed Google scholar
[38]
Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M. (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 34, D535–D539
CrossRef Pubmed Google scholar
[39]
Rolland, T., Taşan, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., Yi, S., Lemmens, I., Fontanillo, C., Mosca, R., (2014) A proteome-scale map of the human interactome network. Cell, 159, 1212–1226
CrossRef Pubmed Google scholar
[40]
Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., (2009) Human protein reference database—2009 update. Nucleic Acids Res., 37, D767–D772
CrossRef Pubmed Google scholar
[41]
Meyer, M. J., Das, J., Wang, X. and Yu, H. (2013) INstruct: a database of high-quality 3D structurally resolved protein interactome networks. Bioinformatics, 29, 1577–1579
CrossRef Pubmed Google scholar
[42]
Breuer, K., Foroushani, A. K., Laird, M. R., Chen, C., Sribnaia, A., Lo, R., Winsor, G. L., Hancock, R. E., Brinkman, F. S. and Lynn, D. J. (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res., 41, D1228–D1233
CrossRef Pubmed Google scholar
[43]
Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res., 32, D452–D455
CrossRef Pubmed Google scholar
[44]
Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L. and Cesareni, G. (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res., 35, D572–D574
CrossRef Pubmed Google scholar
[45]
Cowley, M. J., Pinese, M., Kassahn, K. S., Waddell, N., Pearson, J. V., Grimmond, S. M., Biankin, A. V., Hautaniemi, S. and Wu, J. (2012) PINA v2.0: mining interactome modules. Nucleic Acids Res., 40, D862–D865
CrossRef Pubmed Google scholar
[46]
Fazekas, D., Koltai, M., Türei, D., Módos, D., Pálfy, M., Dúl, Z., Zsákai, L., Szalay-Bekő, M., Lenti, K., Farkas, I. J., (2013) SignaLink 2 – a signaling pathway resource with multi-layered regulatory networks. BMC Syst. Biol., 7, 7
CrossRef Pubmed Google scholar
[47]
Cheng, F., Jia, P., Wang, Q. and Zhao, Z. (2014) Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy. Oncotarget, 5, 3697–3710
CrossRef Pubmed Google scholar
[48]
Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V. and Sullivan, M. (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res., 40, D261–D270
CrossRef Pubmed Google scholar
[49]
Yu, G., Wang, L. G., Han, Y. and He, Q. Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16, 284–287
CrossRef Pubmed Google scholar
[50]
Paradis, E., Claude, J. and Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290
CrossRef Pubmed Google scholar
[51]
Diboun, I., Wernisch, L., Orengo, C. A. and Koltzenburg, M. (2006) Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics, 7, 252
CrossRef Pubmed Google scholar
[52]
Chen, H. and Boutros, P. C. (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 12, 35
CrossRef Pubmed Google scholar
[53]
Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., (2009) STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412–D416
CrossRef Pubmed Google scholar
[54]
Russell, M. A., Pigors, M., Houssen, M. E., Manson, A., Kelsell, D., Longhurst, H. and Morgan, N. G. (2018) A novel de novo activating mutation in STAT3 identified in a patient with common variable immunodeficiency (CVID). Clin. Immunol., 187, 132–136
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/ 10.1007/s40484-019-0174-9.

AUTHOR CONTRIBUTIONS

Guojun Liu performed the computations and analysis; Mikhail A. Bolkov contributed to the preparation and interpretation of the data; Irina A. Tuzankina and Irina G. Danilova conceptualized the study. All authors contributed to the writing of the manuscript and approved the final version of the manuscript.

ACKNOWLEDGEMENTS

This study was funded by the Act 211 Government of the Russian Federation (No. 02.A03.21.0006) and the IIP UB RAS project (No. AAAA-A18-118020590108-7).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Guojun Liu, Mikhail A. Bolkov, Irina A. Tuzankina and Irina G. Danilova declare that they have no conflict of interests.
All procedures performed in studies were in accordance with the ethical standards of the institution or practice at which the studies were conducted, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1812 KB)

Accesses

Citations

Detail

Sections
Recommended

/