Identification of candidate disease genes in patients with common variable immunodeficiency
Guojun Liu, Mikhail A. Bolkov, Irina A. Tuzankina, Irina G. Danilova
Identification of candidate disease genes in patients with common variable immunodeficiency
Background: Common variable immunodeficiency (CVID), the most prevalent form of primary immunodeficiency (PID), is characterized by hypogammaglobulinemia and recurrent infections. Understanding protein-protein interaction (PPI) networks of CVID genes and identifying candidate CVID genes are critical steps in facilitating the early diagnosis of CVID. Here, the aim was to investigate PPI networks of CVID genes and identify candidate CVID genes using computation techniques.
Methods: Network density and biological distance were used to study PPI data for CVID and PID genes obtained from the STRING database. Gene expression data of patients with CVID were obtained from the Gene Expression Omnibus, and then Pearson’s correlation coefficient, a PPI database, and Kyoto Encyclopedia of Genes and Genomes were used to identify candidate CVID genes. We then evaluated our predictions and identified differentially expressed CVID genes.
Results: The majority of CVID genes are characterized by a high network density and small biological distance, whereas most PID genes are characterized by a low network density and large biological distance, indicating that CVID genes are more functionally similar to each other and closely interact with one other compared with PID genes. Subsequently, we identified 172 CVID candidate genes that have similar biological functions to known CVID genes, and eight genes were recently reported as CVID-related genes. MYC, a candidate gene, was down-regulated in CVID duodenal biopsies, but up-regulated in blood samples compared with levels in healthy controls.
Conclusion: Our findings will aid in a better understanding of the complex of CVID genes, possibly further facilitating the early diagnosis of CVID.
common variable immunodeficiency / primary immunodeficiency / candidate CVID genes / protein-protein interactions / network density / biological distance
[1] |
Gathmann, B., Mahlaoui, N., Gérard, L., Oksenhendler, E., Warnatz, K., Schulze, I., Kindle, G., Kuijpers, T. W., van Beem, R. T., Guzman, D.,
CrossRef
Pubmed
Google scholar
|
[2] |
Bonilla, F. A., Barlan, I., Chapel, H., Costa-Carvalho, B. T., Cunningham-Rundles, C., de la Morena, M. T., Espinosa-Rosales, F. J., Hammarström, L., Nonoyama, S., Quinti, I.,
CrossRef
Pubmed
Google scholar
|
[3] |
Bogaert, D. J., Dullaers, M., Lambrecht, B. N., Vermaelen, K. Y., De Baere, E. and Haerynck, F. (2016) Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J. Med. Genet., 53, 575–590
CrossRef
Pubmed
Google scholar
|
[4] |
van Zelm, M. C., Reisli, I., van der Burg, M., Castaño, D., van Noesel, C. J., van Tol, M. J., Woellner, C., Grimbacher, B., Patiño, P. J., van Dongen, J. J.,
CrossRef
Pubmed
Google scholar
|
[5] |
Compeer, E. B., Janssen, W., van Royen-Kerkhof, A., van Gijn, M., van Montfrans, J. M. and Boes, M. (2015) Dysfunctional BLK in common variable immunodeficiency perturbs B-cell proliferation and ability to elicit antigen-specific CD4+ T-cell help. Oncotarget, 6, 10759–10771
CrossRef
Pubmed
Google scholar
|
[6] |
Lo, B., Zhang, K., Lu, W., Zheng, L., Zhang, Q., Kanellopoulou, C., Zhang, Y., Liu, Z., Fritz, J. M., Marsh, R.,
CrossRef
Pubmed
Google scholar
|
[7] |
Fliegauf, M., Bryant, V. L., Frede, N., Slade, C., Woon, S. T., Lehnert, K., Winzer, S., Bulashevska, A., Scerri, T., Leung, E.,
CrossRef
Pubmed
Google scholar
|
[8] |
Almejun, M. B., Cols, M., Zelazko, M., Oleastro, M., Cerutti, A., Oppezzo, P., Cunningham-Rundles, C. and Danielian, S. (2013) Naturally occurring mutation affecting the MyD88-binding site of TNFRSF13B impairs triggering of class switch recombination. Eur. J. Immunol., 43, 805–814
CrossRef
Pubmed
Google scholar
|
[9] |
Kienzler, A. K., Hargreaves, C. E. and Patel, S. Y. (2017) The role of genomics in common variable immunodeficiency disorders. Clin. Exp. Immunol., 188, 326–332
CrossRef
Pubmed
Google scholar
|
[10] |
van Schouwenburg, P. A., Davenport, E. E., Kienzler, A. K., Marwah, I., Wright, B., Lucas, M., Malinauskas, T., Martin, H. C., Lockstone, H. E., Cazier, J. B.,
CrossRef
Pubmed
Google scholar
|
[11] |
Kelsen, J. R., Dawany, N., Moran, C. J., Petersen, B. S., Sarmady, M., Sasson, A., Pauly-Hubbard, H., Martinez, A., Maurer, K., Soong, J.,
CrossRef
Pubmed
Google scholar
|
[12] |
Keerthikumar, S., Bhadra, S., Kandasamy, K., Raju, R., Ramachandra, Y. L., Bhattacharyya, C., Imai, K., Ohara, O., Mohan, S. and Pandey, A. (2009) Prediction of candidate primary immunodeficiency disease genes using a support vector machine learning approach. DNA Res., 16, 345–351
CrossRef
Pubmed
Google scholar
|
[13] |
Ortutay, C. and Vihinen, M. (2009) Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res., 37, 622–628
CrossRef
Pubmed
Google scholar
|
[14] |
Itan, Y. and Casanova, J. L. (2015) Novel primary immunodeficiency candidate genes predicted by the human gene connectome. Front. Immunol., 6, 142
CrossRef
Pubmed
Google scholar
|
[15] |
Requena, D., Maffucci, P., Bigio, B., Shang, L., Abhyankar, A., Boisson, B., Stenson, P. D., Cooper, D. N., Cunningham-Rundles, C., Casanova, J. L.,
CrossRef
Pubmed
Google scholar
|
[16] |
van Schouwenburg, P. A., Davenport, E. E., Kienzler, A. K., Marwah, I., Wright, B., Lucas, M., Malinauskas, T., Martin, H. C., Lockstone, H. E., Cazier, J. B.,
CrossRef
Pubmed
Google scholar
|
[17] |
Yang, Y., Wang, W., Lou, Y., Yin, J. and Gong, X. (2018) Geometric and amino acid type determinants for protein-protein interaction interfaces. Quant. Biol., 6, 163–174
CrossRef
Google scholar
|
[18] |
Lee, H. C., Lai, K., Lorenc, M. T., Imelfort, M., Duran, C. and Edwards, D. (2012) Bioinformatics tools and databases for analysis of next-generation sequence data. Brief. Funct. Genomics, 11, 12–24
CrossRef
Pubmed
Google scholar
|
[19] |
Charoentong, P., Angelova, M., Efremova, M., Gallasch, R., Hackl, H., Galon, J. and Trajanoski, Z. (2012) Bioinformatics for cancer immunology and immunotherapy. Cancer Immunol. Immunother., 61, 1885–1903
CrossRef
Pubmed
Google scholar
|
[20] |
Vasudevaraja, V., Renbarger, J., Shah, R. G., Kinnebrew, G., Korc, M., Wang, L., Huo, Y., Liu, E., Li, L. and Cheng, L. (2017) PMTDS: a computational method based on genetic interaction networks for precision medicine target-drug selection in cancer. Quant. Biol., 5, 380–394
CrossRef
Google scholar
|
[21] |
Yazdani, R., Ganjalikhani-Hakemi, M., Esmaeili, M., Abolhassani, H., Vaeli, S., Rezaei, A., Sharifi, Z., Azizi, G., Rezaei, N. and Aghamohammadi, A. (2017) Impaired Akt phosphorylation in B-cells of patients with common variable immunodeficiency. Clin. Immunol., 175, 124–132
CrossRef
Pubmed
Google scholar
|
[22] |
Rodríguez-Cortez, V. C., Del Pino-Molina, L., Rodríguez-Ubreva, J., Ciudad, L., Gómez-Cabrero, D., Company, C., Urquiza, J. M., Tegnér, J., Rodríguez-Gallego, C., López-Granados, E.,
CrossRef
Pubmed
Google scholar
|
[23] |
Keller, B., Cseresnyes, Z., Stumpf, I., Wehr, C., Fliegauf, M., Bulashevska, A., Usadel, S., Grimbacher, B., Rizzi, M., Eibel, H.,
CrossRef
Pubmed
Google scholar
|
[24] |
Sanaei, R., Rezaei, N., Aghamohammadi, A., Delbandi, A. A., Teimourian, S., Yazdani, R., Tavasolian, P., Kiaee, F. and Tajik, N. (2018) Evaluation of the TLR negative regulatory network in CVID patients. Genes Immun., 20, 198–206
Pubmed
|
[25] |
Clemente, A., Pons, J., Lanio, N., Cunill, V., Frontera, G., Crespí, C., Matamoros, N. and Ferrer, J. M. (2015) Increased STAT3 phosphorylation on CD27+ B-cells from common variable immunodeficiency disease patients. Clin. Immunol., 161, 77–88
CrossRef
Pubmed
Google scholar
|
[26] |
Maffucci, P., Filion, C. A., Boisson, B., Itan, Y., Shang, L., Casanova, J. L. and Cunningham-Rundles, C. (2016) Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front. Immunol., 7, 220
CrossRef
Pubmed
Google scholar
|
[27] |
Steele, C. L., Doré, M., Ammann, S., Loughrey, M., Montero, A., Burns, S. O., Morris, E. C., Gaspar, B., Gilmour, K., Bibi, S.,
CrossRef
Pubmed
Google scholar
|
[28] |
Berrón-Ruiz, L., López-Herrera, G., Vargas-Hernández, A., Mogica-Martínez, D., García-Latorre, E., Blancas-Galicia, L., Espinosa-Rosales, F. J. and Santos-Argumedo, L. (2014) Lymphocytes and B-cell abnormalities in patients with common variable immunodeficiency (CVID). Allergol. Immunopathol. (Madr.), 42, 35–43
CrossRef
Pubmed
Google scholar
|
[29] |
López-Gómez, A., Clemente, A., Cunill, V., Pons, J. and Ferrer, J. M. (2018) IL-21 and anti-CD40 restore Bcl-2 family protein imbalance in vitro in low-survival CD27+ B cells from CVID patients. Cell Death Dis., 9, 1156
CrossRef
Pubmed
Google scholar
|
[30] |
Karnell, J. L., Kumar, V., Wang, J., Wang, S., Voynova, E. and Ettinger, R. (2017) Role of CD11c+ T-bet+ B cells in human health and disease. Cell. Immunol., 321, 40–45
CrossRef
Pubmed
Google scholar
|
[31] |
Niemela, J., Kuehn, H. S., Kelly, C., Zhang, M., Davies, J., Melendez, J., Dreiling, J., Kleiner, D., Calvo, K., Oliveira, J. B.,
CrossRef
Pubmed
Google scholar
|
[32] |
Rensing-Ehl, A., Warnatz, K., Fuchs, S., Schlesier, M., Salzer, U., Draeger, R., Bondzio, I., Joos, Y., Janda, A., Gomes, M.,
CrossRef
Pubmed
Google scholar
|
[33] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef
Pubmed
Google scholar
|
[34] |
Horvath, S. and Dong, J. (2008) Geometric interpretation of gene coexpression network analysis. PLOS Comput. Biol., 4, e1000117
CrossRef
Pubmed
Google scholar
|
[35] |
Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. InterJournal. Complex Syst., 1695, 1–9
|
[36] |
Itan, Y., Zhang, S. Y., Vogt, G., Abhyankar, A., Herman, M., Nitschke, P., Fried, D., Quintana-Murci, L., Abel, L. and Casanova, J. L. (2013) The human gene connectome as a map of short cuts for morbid allele discovery. Proc. Natl. Acad. Sci. USA, 110, 5558–5563
CrossRef
Pubmed
Google scholar
|
[37] |
Cheng, F., Desai, R. J., Handy, D. E., Wang, R., Schneeweiss, S., Barabási, A. L. and Loscalzo, J. (2018) Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun., 9, 2691
CrossRef
Pubmed
Google scholar
|
[38] |
Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M. (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 34, D535–D539
CrossRef
Pubmed
Google scholar
|
[39] |
Rolland, T., Taşan, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., Yi, S., Lemmens, I., Fontanillo, C., Mosca, R.,
CrossRef
Pubmed
Google scholar
|
[40] |
Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A.,
CrossRef
Pubmed
Google scholar
|
[41] |
Meyer, M. J., Das, J., Wang, X. and Yu, H. (2013) INstruct: a database of high-quality 3D structurally resolved protein interactome networks. Bioinformatics, 29, 1577–1579
CrossRef
Pubmed
Google scholar
|
[42] |
Breuer, K., Foroushani, A. K., Laird, M. R., Chen, C., Sribnaia, A., Lo, R., Winsor, G. L., Hancock, R. E., Brinkman, F. S. and Lynn, D. J. (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res., 41, D1228–D1233
CrossRef
Pubmed
Google scholar
|
[43] |
Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A.,
CrossRef
Pubmed
Google scholar
|
[44] |
Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L. and Cesareni, G. (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res., 35, D572–D574
CrossRef
Pubmed
Google scholar
|
[45] |
Cowley, M. J., Pinese, M., Kassahn, K. S., Waddell, N., Pearson, J. V., Grimmond, S. M., Biankin, A. V., Hautaniemi, S. and Wu, J. (2012) PINA v2.0: mining interactome modules. Nucleic Acids Res., 40, D862–D865
CrossRef
Pubmed
Google scholar
|
[46] |
Fazekas, D., Koltai, M., Türei, D., Módos, D., Pálfy, M., Dúl, Z., Zsákai, L., Szalay-Bekő, M., Lenti, K., Farkas, I. J.,
CrossRef
Pubmed
Google scholar
|
[47] |
Cheng, F., Jia, P., Wang, Q. and Zhao, Z. (2014) Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy. Oncotarget, 5, 3697–3710
CrossRef
Pubmed
Google scholar
|
[48] |
Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V. and Sullivan, M. (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res., 40, D261–D270
CrossRef
Pubmed
Google scholar
|
[49] |
Yu, G., Wang, L. G., Han, Y. and He, Q. Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16, 284–287
CrossRef
Pubmed
Google scholar
|
[50] |
Paradis, E., Claude, J. and Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290
CrossRef
Pubmed
Google scholar
|
[51] |
Diboun, I., Wernisch, L., Orengo, C. A. and Koltzenburg, M. (2006) Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics, 7, 252
CrossRef
Pubmed
Google scholar
|
[52] |
Chen, H. and Boutros, P. C. (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 12, 35
CrossRef
Pubmed
Google scholar
|
[53] |
Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M.,
CrossRef
Pubmed
Google scholar
|
[54] |
Russell, M. A., Pigors, M., Houssen, M. E., Manson, A., Kelsell, D., Longhurst, H. and Morgan, N. G. (2018) A novel de novo activating mutation in STAT3 identified in a patient with common variable immunodeficiency (CVID). Clin. Immunol., 187, 132–136
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |