Identification of candidate disease genes in patients with common variable immunodeficiency

Guojun Liu , Mikhail A. Bolkov , Irina A. Tuzankina , Irina G. Danilova

Quant. Biol. ›› 2019, Vol. 7 ›› Issue (3) : 190 -201.

PDF (1812KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (3) : 190 -201. DOI: 10.1007/s40484-019-0174-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Identification of candidate disease genes in patients with common variable immunodeficiency

Author information +
History +
PDF (1812KB)

Abstract

Background: Common variable immunodeficiency (CVID), the most prevalent form of primary immunodeficiency (PID), is characterized by hypogammaglobulinemia and recurrent infections. Understanding protein-protein interaction (PPI) networks of CVID genes and identifying candidate CVID genes are critical steps in facilitating the early diagnosis of CVID. Here, the aim was to investigate PPI networks of CVID genes and identify candidate CVID genes using computation techniques.

Methods: Network density and biological distance were used to study PPI data for CVID and PID genes obtained from the STRING database. Gene expression data of patients with CVID were obtained from the Gene Expression Omnibus, and then Pearson’s correlation coefficient, a PPI database, and Kyoto Encyclopedia of Genes and Genomes were used to identify candidate CVID genes. We then evaluated our predictions and identified differentially expressed CVID genes.

Results: The majority of CVID genes are characterized by a high network density and small biological distance, whereas most PID genes are characterized by a low network density and large biological distance, indicating that CVID genes are more functionally similar to each other and closely interact with one other compared with PID genes. Subsequently, we identified 172 CVID candidate genes that have similar biological functions to known CVID genes, and eight genes were recently reported as CVID-related genes. MYC, a candidate gene, was down-regulated in CVID duodenal biopsies, but up-regulated in blood samples compared with levels in healthy controls.

Conclusion: Our findings will aid in a better understanding of the complex of CVID genes, possibly further facilitating the early diagnosis of CVID.

Graphical abstract

Keywords

common variable immunodeficiency / primary immunodeficiency / candidate CVID genes / protein-protein interactions / network density / biological distance

Cite this article

Download citation ▾
Guojun Liu, Mikhail A. Bolkov, Irina A. Tuzankina, Irina G. Danilova. Identification of candidate disease genes in patients with common variable immunodeficiency. Quant. Biol., 2019, 7(3): 190-201 DOI:10.1007/s40484-019-0174-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gathmann, B., Mahlaoui, N., Gérard, L., Oksenhendler, E., Warnatz, K., Schulze, I., Kindle, G., Kuijpers, T. W., van Beem, R. T., Guzman, D., (2014) Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J. Allergy Clin. Immunol., 134, 116–126

[2]

Bonilla, F. A., Barlan, I., Chapel, H., Costa-Carvalho, B. T., Cunningham-Rundles, C., de la Morena, M. T., Espinosa-Rosales, F. J., Hammarström, L., Nonoyama, S., Quinti, I., (2016) International Consensus Document (ICON): common variable immunodeficiency disorders. J. Allergy Clin. Immunol. Pract., 4, 38–59

[3]

Bogaert, D. J., Dullaers, M., Lambrecht, B. N., Vermaelen, K. Y., De Baere, E. and Haerynck, F. (2016) Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J. Med. Genet., 53, 575–590

[4]

van Zelm, M. C., Reisli, I., van der Burg, M., Castaño, D., van Noesel, C. J., van Tol, M. J., Woellner, C., Grimbacher, B., Patiño, P. J., van Dongen, J. J., (2006) An antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med., 354, 1901–1912

[5]

Compeer, E. B., Janssen, W., van Royen-Kerkhof, A., van Gijn, M., van Montfrans, J. M. and Boes, M. (2015) Dysfunctional BLK in common variable immunodeficiency perturbs B-cell proliferation and ability to elicit antigen-specific CD4+ T-cell help. Oncotarget, 6, 10759–10771

[6]

Lo, B., Zhang, K., Lu, W., Zheng, L., Zhang, Q., Kanellopoulou, C., Zhang, Y., Liu, Z., Fritz, J. M., Marsh, R., (2015) Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science, 349, 436–440

[7]

Fliegauf, M., Bryant, V. L., Frede, N., Slade, C., Woon, S. T., Lehnert, K., Winzer, S., Bulashevska, A., Scerri, T., Leung, E., (2015) Haploinsufficiency of the NF-κB1 subunit p50 in common variable immunodeficiency. Am. J. Hum. Genet., 97, 389–403

[8]

Almejun, M. B., Cols, M., Zelazko, M., Oleastro, M., Cerutti, A., Oppezzo, P., Cunningham-Rundles, C. and Danielian, S. (2013) Naturally occurring mutation affecting the MyD88-binding site of TNFRSF13B impairs triggering of class switch recombination. Eur. J. Immunol., 43, 805–814

[9]

Kienzler, A. K., Hargreaves, C. E. and Patel, S. Y. (2017) The role of genomics in common variable immunodeficiency disorders. Clin. Exp. Immunol., 188, 326–332

[10]

van Schouwenburg, P. A., Davenport, E. E., Kienzler, A. K., Marwah, I., Wright, B., Lucas, M., Malinauskas, T., Martin, H. C., Lockstone, H. E., Cazier, J. B., (2015) Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders. Clin. Immunol., 160, 301–314

[11]

Kelsen, J. R., Dawany, N., Moran, C. J., Petersen, B. S., Sarmady, M., Sasson, A., Pauly-Hubbard, H., Martinez, A., Maurer, K., Soong, J., (2015) Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. Gastroenterology, 149, 1415–1424

[12]

Keerthikumar, S., Bhadra, S., Kandasamy, K., Raju, R., Ramachandra, Y. L., Bhattacharyya, C., Imai, K., Ohara, O., Mohan, S. and Pandey, A. (2009) Prediction of candidate primary immunodeficiency disease genes using a support vector machine learning approach. DNA Res., 16, 345–351

[13]

Ortutay, C. and Vihinen, M. (2009) Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res., 37, 622–628

[14]

Itan, Y. and Casanova, J. L. (2015) Novel primary immunodeficiency candidate genes predicted by the human gene connectome. Front. Immunol., 6, 142

[15]

Requena, D., Maffucci, P., Bigio, B., Shang, L., Abhyankar, A., Boisson, B., Stenson, P. D., Cooper, D. N., Cunningham-Rundles, C., Casanova, J. L., (2018) CDG: an online server for detecting biologically closest disease-causing genes and its application to primary immunodeficiency. Front. Immunol., 9, 1340

[16]

van Schouwenburg, P. A., Davenport, E. E., Kienzler, A. K., Marwah, I., Wright, B., Lucas, M., Malinauskas, T., Martin, H. C., Lockstone, H. E., Cazier, J. B., (2015) Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders. Clin. Immunol., 160, 301–314

[17]

Yang, Y., Wang, W., Lou, Y., Yin, J. and Gong, X. (2018) Geometric and amino acid type determinants for protein-protein interaction interfaces. Quant. Biol., 6, 163–174

[18]

Lee, H. C., Lai, K., Lorenc, M. T., Imelfort, M., Duran, C. and Edwards, D. (2012) Bioinformatics tools and databases for analysis of next-generation sequence data. Brief. Funct. Genomics, 11, 12–24

[19]

Charoentong, P., Angelova, M., Efremova, M., Gallasch, R., Hackl, H., Galon, J. and Trajanoski, Z. (2012) Bioinformatics for cancer immunology and immunotherapy. Cancer Immunol. Immunother., 61, 1885–1903

[20]

Vasudevaraja, V., Renbarger, J., Shah, R. G., Kinnebrew, G., Korc, M., Wang, L., Huo, Y., Liu, E., Li, L. and Cheng, L. (2017) PMTDS: a computational method based on genetic interaction networks for precision medicine target-drug selection in cancer. Quant. Biol., 5, 380–394

[21]

Yazdani, R., Ganjalikhani-Hakemi, M., Esmaeili, M., Abolhassani, H., Vaeli, S., Rezaei, A., Sharifi, Z., Azizi, G., Rezaei, N. and Aghamohammadi, A. (2017) Impaired Akt phosphorylation in B-cells of patients with common variable immunodeficiency. Clin. Immunol., 175, 124–132

[22]

Rodríguez-Cortez, V. C., Del Pino-Molina, L., Rodríguez-Ubreva, J., Ciudad, L., Gómez-Cabrero, D., Company, C., Urquiza, J. M., Tegnér, J., Rodríguez-Gallego, C., López-Granados, E., (2015) Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naïve-to-memory B-cell transition. Nat. Commun., 6, 7335

[23]

Keller, B., Cseresnyes, Z., Stumpf, I., Wehr, C., Fliegauf, M., Bulashevska, A., Usadel, S., Grimbacher, B., Rizzi, M., Eibel, H., (2017) Disturbed canonical nuclear factor of κ light chain signaling in B cells of patients with common variable immunodeficiency. J. Allergy Clin. Immunol., 139, 220–231.e8

[24]

Sanaei, R., Rezaei, N., Aghamohammadi, A., Delbandi, A. A., Teimourian, S., Yazdani, R., Tavasolian, P., Kiaee, F. and Tajik, N. (2018) Evaluation of the TLR negative regulatory network in CVID patients. Genes Immun., 20, 198–206

[25]

Clemente, A., Pons, J., Lanio, N., Cunill, V., Frontera, G., Crespí C., Matamoros, N. and Ferrer, J. M. (2015) Increased STAT3 phosphorylation on CD27+ B-cells from common variable immunodeficiency disease patients. Clin. Immunol., 161, 77–88

[26]

Maffucci, P., Filion, C. A., Boisson, B., Itan, Y., Shang, L., Casanova, J. L. and Cunningham-Rundles, C. (2016) Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front. Immunol., 7, 220

[27]

Steele, C. L., Doré M., Ammann, S., Loughrey, M., Montero, A., Burns, S. O., Morris, E. C., Gaspar, B., Gilmour, K., Bibi, S., (2016) X-linked inhibitor of apoptosis complicated by granulomatous lymphocytic interstitial lung disease (GLILD) and granulomatous hepatitis. J. Clin. Immunol., 36, 733–738

[28]

Berrón-Ruiz, L., López-Herrera, G., Vargas-Hernández, A., Mogica-Martínez, D., García-Latorre, E., Blancas-Galicia, L., Espinosa-Rosales, F. J. and Santos-Argumedo, L. (2014) Lymphocytes and B-cell abnormalities in patients with common variable immunodeficiency (CVID). Allergol. Immunopathol. (Madr.), 42, 35–43

[29]

López-Gómez, A., Clemente, A., Cunill, V., Pons, J. and Ferrer, J. M. (2018) IL-21 and anti-CD40 restore Bcl-2 family protein imbalance in vitro in low-survival CD27+ B cells from CVID patients. Cell Death Dis., 9, 1156

[30]

Karnell, J. L., Kumar, V., Wang, J., Wang, S., Voynova, E. and Ettinger, R. (2017) Role of CD11c+ T-bet+ B cells in human health and disease. Cell. Immunol., 321, 40–45

[31]

Niemela, J., Kuehn, H. S., Kelly, C., Zhang, M., Davies, J., Melendez, J., Dreiling, J., Kleiner, D., Calvo, K., Oliveira, J. B., (2015) Caspase-8 deficiency presenting as late-onset multi-organ lymphocytic infiltration with granulomas in two adult siblings. J. Clin. Immunol., 35, 348–355

[32]

Rensing-Ehl, A., Warnatz, K., Fuchs, S., Schlesier, M., Salzer, U., Draeger, R., Bondzio, I., Joos, Y., Janda, A., Gomes, M., (2010) Clinical and immunological overlap between autoimmune lymphoproliferative syndrome and common variable immunodeficiency. Clin. Immunol., 137, 357–365

[33]

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504

[34]

Horvath, S. and Dong, J. (2008) Geometric interpretation of gene coexpression network analysis. PLOS Comput. Biol., 4, e1000117

[35]

Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. InterJournal. Complex Syst., 1695, 1–9

[36]

Itan, Y., Zhang, S. Y., Vogt, G., Abhyankar, A., Herman, M., Nitschke, P., Fried, D., Quintana-Murci, L., Abel, L. and Casanova, J. L. (2013) The human gene connectome as a map of short cuts for morbid allele discovery. Proc. Natl. Acad. Sci. USA, 110, 5558–5563

[37]

Cheng, F., Desai, R. J., Handy, D. E., Wang, R., Schneeweiss, S., Barabási, A. L. and Loscalzo, J. (2018) Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun., 9, 2691

[38]

Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M. (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 34, D535–D539

[39]

Rolland, T., Taşan, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., Yi, S., Lemmens, I., Fontanillo, C., Mosca, R., (2014) A proteome-scale map of the human interactome network. Cell, 159, 1212–1226

[40]

Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., (2009) Human protein reference database—2009 update. Nucleic Acids Res., 37, D767–D772

[41]

Meyer, M. J., Das, J., Wang, X. and Yu, H. (2013) INstruct: a database of high-quality 3D structurally resolved protein interactome networks. Bioinformatics, 29, 1577–1579

[42]

Breuer, K., Foroushani, A. K., Laird, M. R., Chen, C., Sribnaia, A., Lo, R., Winsor, G. L., Hancock, R. E., Brinkman, F. S. and Lynn, D. J. (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res., 41, D1228–D1233

[43]

Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res., 32, D452–D455

[44]

Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L. and Cesareni, G. (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res., 35, D572–D574

[45]

Cowley, M. J., Pinese, M., Kassahn, K. S., Waddell, N., Pearson, J. V., Grimmond, S. M., Biankin, A. V., Hautaniemi, S. and Wu, J. (2012) PINA v2.0: mining interactome modules. Nucleic Acids Res., 40, D862–D865

[46]

Fazekas, D., Koltai, M., Türei, D., Módos, D., Pálfy, M., Dúl, Z., Zsákai, L., Szalay-Bekő M., Lenti, K., Farkas, I. J., (2013) SignaLink 2 – a signaling pathway resource with multi-layered regulatory networks. BMC Syst. Biol., 7, 7

[47]

Cheng, F., Jia, P., Wang, Q. and Zhao, Z. (2014) Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy. Oncotarget, 5, 3697–3710

[48]

Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V. and Sullivan, M. (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res., 40, D261–D270

[49]

Yu, G., Wang, L. G., Han, Y. and He, Q. Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16, 284–287

[50]

Paradis, E., Claude, J. and Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290

[51]

Diboun, I., Wernisch, L., Orengo, C. A. and Koltzenburg, M. (2006) Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics, 7, 252

[52]

Chen, H. and Boutros, P. C. (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 12, 35

[53]

Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., (2009) STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412–D416

[54]

Russell, M. A., Pigors, M., Houssen, M. E., Manson, A., Kelsell, D., Longhurst, H. and Morgan, N. G. (2018) A novel de novo activating mutation in STAT3 identified in a patient with common variable immunodeficiency (CVID). Clin. Immunol., 187, 132–136

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1812KB)

Supplementary files

Supplementary Material1

Supplementary Material2

Supplementary Material3

Supplementary Material4

1317

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/