Progress in molecular docking
Jiyu Fan, Ailing Fu, Le Zhang
Progress in molecular docking
Background: In recent years, since the molecular docking technique can greatly improve the efficiency and reduce the research cost, it has become a key tool in computer-assisted drug design to predict the binding affinity and analyze the interactive mode.
Results: This study introduces the key principles, procedures and the widely-used applications for molecular docking. Also, it compares the commonly used docking applications and recommends which research areas are suitable for them. Lastly, it briefly reviews the latest progress in molecular docking such as the integrated method and deep learning.
Conclusion: Limited to the incomplete molecular structure and the shortcomings of the scoring function, current docking applications are not accurate enough to predict the binding affinity. However, we could improve the current molecular docking technique by integrating the big biological data into scoring function.
molecular docking / numerical analysis / optimization / data mining
[1] |
Morris, G. M. and Lim-Wilby, M. (2008) Molecular docking. Methods Mol. Biol., 443, 365–382
CrossRef
Pubmed
Google scholar
|
[2] |
Chen, Y. Z. and Zhi, D. G. (2001) Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins, 43, 217–226
CrossRef
Pubmed
Google scholar
|
[3] |
Morrison, J. L., Breitling, R., Higham, D. J. and Gilbert, D. R. (2006) A lock-and-key model for protein-protein interactions. Bioinformatics, 22, 2012–2019
CrossRef
Pubmed
Google scholar
|
[4] |
Koshland Jr, D. E. (2010) The key–lock theory and the induced fit theory. Angew. Chem. Int. Ed., 33, 2375–2378
|
[5] |
Audie, J. and Scarlata, S. (2007) A novel empirical free energy function that explains and predicts protein-protein binding affinities. Biophys. Chem., 129, 198–211
CrossRef
Pubmed
Google scholar
|
[6] |
Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31, 455–461
Pubmed
|
[7] |
DeLano, W. L. (2002) Pymol: an open-source molecular graphics tool. Ccp4 Newslett. Protein Crystallogr., 40,11
|
[8] |
Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I. and Bourne, P. (2000) The Protein Data Bank, 1999 –. In: International Tables for Crystallography, Eds. Rossmann, M. G. and Arnold, E. 67, 675–684
|
[9] |
Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A.,
CrossRef
Pubmed
Google scholar
|
[10] |
Irwin, J. J. and Shoichet, B. K. (2005) ZINC–a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 45, 177–182
CrossRef
Pubmed
Google scholar
|
[11] |
Martin, G. E., Hadden, C. E., Russell, D. J., Kaluzny, B. D., Guido, J. E., Duholke, W. K., Stiemsma, B. A., Thamann, T. J., Crouch, R. C., Blinov, K.,
CrossRef
Google scholar
|
[12] |
Groom, C. R., Bruno, I. J., Lightfoot, M. P. and Ward, S. C. (2016) The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 72, 171–179
CrossRef
Pubmed
Google scholar
|
[13] |
Kitchen, D. B., Decornez, H., Furr, J. R. and Bajorath, J. (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 3, 935–949
CrossRef
Pubmed
Google scholar
|
[14] |
Joseph-McCarthy, D., Baber, J. C., Feyfant, E., Thompson, D. C. and Humblet, C. (2007) Lead optimization via high-throughput molecular docking. Curr. Opin. Drug Discov. Devel., 10, 264–274
|
[15] |
Ge, H., Wang, Y., Li, C., Chen, N., Xie, Y., Xu, M., He, Y., Gu, X., Wu, R., Gu, Q.,
CrossRef
Pubmed
Google scholar
|
[16] |
Melville, J. L., Burke, E. K. and Hirst, J. D. (2009) Machine learning in virtual screening. Comb. Chem. High Throughput Screen., 12, 332–343
CrossRef
Pubmed
Google scholar
|
[17] |
Gawehn, E., Hiss, J. A. and Schneider, G. (2016) Deep learning in drug discovery. Mol. Inform., 35, 3–14
CrossRef
Pubmed
Google scholar
|
[18] |
Pereira, J. C., Caffarena, E. R. and Dos Santos, C. N. (2016) Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model., 56, 2495–2506
CrossRef
Pubmed
Google scholar
|
[19] |
Pyzerknapp, E. O., Suh, C., Gómezbombarelli, R., Aguileraiparraguirre, J. and Aspuruguzik, A. (2015) What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res., 45, 45:195–216
|
[20] |
Grinter, S. Z., Liang, Y., Huang, S. Y., Hyder, S. M. and Zou, X. (2011) An inverse docking approach for identifying new potential anti-cancer targets. J. Mol. Graph. Model., 29, 795–799
CrossRef
Pubmed
Google scholar
|
[21] |
Chen, F., Wang, Z., Wang, C., Xu, Q., Liang, J., Xu, X., Yang, J., Wang, C., Jiang, T. and Yu, R. (2017) Application of reverse docking for target prediction of marine compounds with anti-tumor activity. J. Mol. Graph. Model., 77, 372–377
CrossRef
Pubmed
Google scholar
|
[22] |
Xie, H., Lee, M. H., Zhu, F., Reddy, K., Huang, Z., Kim, D. J., Li, Y., Peng, C., Lim, D. Y., Kang, S.,
CrossRef
Pubmed
Google scholar
|
[23] |
Liu, Z. P., Liu, S., Chen, R., Huang, X. and Wu, L. Y. (2017) Structure alignment-based classification of RNA-binding pockets reveals regional RNA recognition motifs on protein surfaces. BMC Bioinformatics, 18, 27
CrossRef
Pubmed
Google scholar
|
[24] |
Ferreira, R. S., Simeonov, A., Jadhav, A., Eidam, O., Mott, B. T., Keiser, M. J., McKerrow, J. H., Maloney, D. J., Irwin, J. J. and Shoichet, B. K. (2010) Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J. Med. Chem., 53, 4891–4905
CrossRef
Pubmed
Google scholar
|
[25] |
Zhang, L., Qiao, M., Gao, H., Hu, B., Tan, H., Zhou, X. and Li, C. M. (2016) Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation. Nanoscale, 8, 14877–14887
CrossRef
Pubmed
Google scholar
|
[26] |
Zhang, L.,Zheng, C., Li, T., Xing, L., Zeng, H., Li, T., Yang, H., Cao, J., Chen, B. and Zhou, Z. (2017) Building up a robust risk mathematical platform to predict colorectal cancer. Complexity, 8917258
|
[27] |
Enyedy, I. J. and Egan, W. J. (2008) Can we use docking and scoring for hit-to-lead optimization? J. Comput. Aided Mol. Des., 22, 161–168
CrossRef
Pubmed
Google scholar
|
[28] |
Tame, J. R. (1999) Scoring functions: a view from the bench. J. Comput. Aided Mol. Des., 13, 99–108
CrossRef
Pubmed
Google scholar
|
[29] |
Yabuuchi, H., Niijima, S., Takematsu, H., Ida, T., Hirokawa, T., Hara, T., Ogawa, T., Minowa, Y., Tsujimoto, G. and Okuno, Y. (2011) Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol. Syst. Biol., 7, 472
CrossRef
Pubmed
Google scholar
|
[30] |
Zhang, L., Liu, Y., Wang, M., Wu, Z., Li, N., Zhang, J. and Yang, C. (2017) EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J. Mol. Cell Biol., 9, 477–488
CrossRef
Pubmed
Google scholar
|
[31] |
Zhang, L., Xiao, M., Zhou, J. and Yu, J. (2018) Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based on a Jellyfish-based LAUPs analysis application (JBLA). Bioinformatics, 34, 3624–3630
CrossRef
Pubmed
Google scholar
|
[32] |
Zhang, L. and Zhang, S. (2017) Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: “Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition” by Qian Wang et al. Phys. Life Rev., 20, 140–142
CrossRef
Pubmed
Google scholar
|
[33] |
Kramer, B., Rarey, M. and Lengauer, T. (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins, 37, 228–241
CrossRef
Pubmed
Google scholar
|
[34] |
Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W. and Taylor, R. D. (2003) Improved protein-ligand docking using GOLD. Proteins, 52, 609–623
CrossRef
Pubmed
Google scholar
|
[35] |
Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T. and Banks, J. L. (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 47, 1750–1759
CrossRef
Pubmed
Google scholar
|
[36] |
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 30, 2785–2791
CrossRef
Pubmed
Google scholar
|
[37] |
Chen, R., Li, L. and Weng, Z. (2003) ZDOCK: an initial‒stage protein‒docking algorithm. Proteins, 52, 80–87
CrossRef
Pubmed
Google scholar
|
[38] |
Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T. and Weng, Z. (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30, 1771–1773
CrossRef
Pubmed
Google scholar
|
[39] |
Li, L., Chen, R. and Weng, Z. (2010) RDOCK: refinement of rigid-body protein docking predictions. Proteins, 53, 693–707
CrossRef
Google scholar
|
[40] |
Zhao, H. and Caflisch, A. (2013) Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg. Med. Chem. Lett., 23, 5721–5726
CrossRef
Pubmed
Google scholar
|
[41] |
Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Tian, S. and Hou, T. (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys., 18, 12964–12975
CrossRef
Pubmed
Google scholar
|
[42] |
Therese, P.L., Brozell, S. R., Sudipto, M., Pettersen, E. F., Meng, E. C., Veena, T., Rizzo, R. C., Case, D. A., James, T. L., Kuntz, I. D. (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. Rna, 15, 1219–1230
|
/
〈 | 〉 |