Predicting microRNA-disease association based on microRNA structural and functional similarity network
Tao Ding, Jie Gao, Shanshan Zhu, Junhua Xu, Min Wu
Predicting microRNA-disease association based on microRNA structural and functional similarity network
Background: Increasing evidences indicate that microRNAs (miRNAs) are functionally related to the development and progression of various human diseases. Inferring disease-related miRNAs can be helpful in promoting disease biomarker detection for the treatment, diagnosis, and prevention of complex diseases.
Methods: To improve the prediction accuracy of miRNA-disease association and capture more potential disease-related miRNAs, we constructed a precise miRNA global similarity network (MSFSN) via calculating the miRNA similarity based on secondary structures, families, and functions.
Results: We tested the network on the classical algorithms: WBSMDA and RWRMDA through the method of leave-one-out cross-validation. Eventually, AUCs of 0.8212 and 0.9657 are obtained, respectively. Also, the proposed MSFSN is applied to three cancers for breast neoplasms, hepatocellular carcinoma, and prostate neoplasms. Consequently, 82%, 76%, and 82% of the top 50 potential miRNAs for these diseases are respectively validated by the miRNA-disease associations database miR2Disease and oncomiRDB.
Conclusion: Therefore, MSFSN provides a novel miRNA similarity network combining precise function network with global structure network of miRNAs to predict the associations between miRNAs and diseases in various models.
miRNAs; hairpin structure / miRNA families / functional similarity / disease semantic / leave-one-out cross-validation
[1] |
Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297
CrossRef
Pubmed
Google scholar
|
[2] |
Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233
CrossRef
Pubmed
Google scholar
|
[3] |
Karp, X. and Ambros, V. (2005) Encountering microRNAs in cell fate signaling. Science, 310, 1288–1289
CrossRef
Pubmed
Google scholar
|
[4] |
Miska, E. A. (2005) How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev., 15, 563–568
CrossRef
Pubmed
Google scholar
|
[5] |
Mendell, J. T. and Olson, E. N. (2012) MicroRNAs in stress signaling and human disease. Cell, 148, 1172–1187
CrossRef
Pubmed
Google scholar
|
[6] |
Xuan, P., Han, K., Guo, M., Guo, Y., Li, J., Ding, J., Liu, Y., Dai, Q., Li, J., Teng, Z.,
CrossRef
Pubmed
Google scholar
|
[7] |
Chen, X., Liu, M. X. and Yan, G. Y. (2012) RWRMDA: predicting novel human microRNA-disease associations. Mol. Biosyst., 8, 2792–2798
CrossRef
Pubmed
Google scholar
|
[8] |
Chen, X., Yan, C. C., Zhang, X., You, Z. H., Deng, L., Liu, Y., Zhang, Y. and Dai, Q. (2016) WBSMDA: within and between score for miRNA-disease association prediction. Sci. Rep., 6, 21106
CrossRef
Pubmed
Google scholar
|
[9] |
Chen, X., Yan, C. C., Zhang, X., You, Z. H., Huang, Y. A. and Yan, G. Y. (2016) HGIMDA: heterogeneous graph inference for miRNA-disease association prediction. Oncotarget, 7, 65257–65269
CrossRef
Pubmed
Google scholar
|
[10] |
Chen, X. and Yan, G. Y. (2014) Semi-supervised learning for potential human microRNA-disease associations inference. Sci. Rep., 4, 5501
CrossRef
Pubmed
Google scholar
|
[11] |
Li, J. Q., Rong, Z. H., Chen, X., Yan, G. Y. and You, Z. H. (2017) MCMDA: matrix completion for miRNA-disease association prediction. Oncotarget, 8, 21187–21199
CrossRef
Pubmed
Google scholar
|
[12] |
Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W. and Cui, Q. (2008) An analysis of human microRNA and disease associations. PLoS One, 3, e3420
CrossRef
Pubmed
Google scholar
|
[13] |
Bandyopadhyay, S., Mitra, R., Maulik, U. and Zhang, M. Q. (2010) Development of the human cancer microRNA network. Silence, 1, 6
CrossRef
Pubmed
Google scholar
|
[14] |
Chen, H. and Zhang, Z. (2013) Similarity-based methods for potential human microRNA-disease association prediction. BMC Med. Genomics, 6, 12
CrossRef
Pubmed
Google scholar
|
[15] |
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S.,
CrossRef
Pubmed
Google scholar
|
[16] |
Baskerville, S. and Bartel, D. P. (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11, 241–247
CrossRef
Pubmed
Google scholar
|
[17] |
Kaczkowski, B., Torarinsson, E., Reiche, K., Havgaard, J. H., Stadler, P. F. and Gorodkin, J. (2009) Structural profiles of human miRNA families from pairwise clustering. Bioinformatics, 25, 291–294
CrossRef
Pubmed
Google scholar
|
[18] |
Ding, T., Gao , J. (2016) Prediction of human miRNA functions by gene cluster discriminant analysis. Chinese Journal of Cell Biology 12, 1467–1472
|
[19] |
Griffithsjones, S. (2010) miRBase: microRNA sequences and annotation. Curr. Protoc. Bioinformatics , Chapter 12, 12.9.1–10
|
[20] |
Washietl, S., Hofacker, I. L., Lukasser, M., Hüttenhofer, A. and Stadler, P. F. (2005) Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol., 23, 1383–1390
CrossRef
Pubmed
Google scholar
|
[21] |
Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G. and Liu, Y. (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res., 37, D98–D104
CrossRef
Pubmed
Google scholar
|
[22] |
Khurana, R., Verma, V. K., Rawoof, A., Tiwari, S., Nair, R. A., Mahidhara, G., Idris, M. M., Clarke, A. R. and Kumar, L. D. (2014) OncomiRdbB: a comprehensive database of microRNAs and their targets in breast cancer. BMC Bioinformatics, 15, 15
CrossRef
Pubmed
Google scholar
|
[23] |
Zhang, W., Zeng, T., Liu, X. and Chen, L. (2015) Diagnosing phenotypes of single-sample individuals by edge biomarkers. J. Mol. Cell Biol., 7, 231–241
CrossRef
Pubmed
Google scholar
|
[24] |
Rask, L., Balslev, E., Søkilde, R., Høgdall, E., Flyger, H., Eriksen, J. and Litman, T. (2014) Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol. (Dordr.), 37, 215–227
CrossRef
Pubmed
Google scholar
|
[25] |
Stückrath, I., Rack, B., Janni, W., Jäger, B., Pantel, K. and Schwarzenbach, H. (2015) Aberrant plasma levels of circulating miR-16, miR-107, miR-130a and miR-146a are associated with lymph node metastasis and receptor status of breast cancer patients. Oncotarget, 6, 13387–13401
CrossRef
Pubmed
Google scholar
|
[26] |
Yang, Z., Wu, L., Wang, A., Tang, W., Zhao, Y., Zhao, H. and Teschendorff, A. E. (2017) dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res., 45, D812–D818
CrossRef
Pubmed
Google scholar
|
[27] |
Meola, N., Gennarino, V. A. and Banfi, S. (2009) microRNAs and genetic diseases. PathoGenetics, 2, 7
CrossRef
Pubmed
Google scholar
|
[28] |
Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T. and Cui, Q. (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res., 42, D1070–D1074
CrossRef
Pubmed
Google scholar
|
[29] |
Wang, D., Wang, J., Lu, M., Song, F. and Cui, Q. (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics, 26, 1644–1650
CrossRef
Pubmed
Google scholar
|
[30] |
Kim, V. N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol., 6, 376–385
CrossRef
Pubmed
Google scholar
|
[31] |
Griffiths-Jones, S., Saini, H. K., van Dongen, S. and Enright, A. J. (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res., 36, D154–D158
CrossRef
Pubmed
Google scholar
|
[32] |
Hofacker, I. L., Fontana , W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatsh. Chem., 125, 167–188
|
[33] |
Han, S. Q., Pei, Z. L., Wang, Q. F. and Shi, X. H. (2007). A characteristic sequences and normalized euclidean distance based method for RNA secondary structures comparison. In: The International Conference on Bioinformatics and Biomedical Engineering, 222–225
|
/
〈 | 〉 |