Computational prediction and functional analysis of arsenic-binding proteins in human cells
Shichao Pang, Junchen Yang, Yilei Zhao, Yixue Li, Jingfang Wang
Computational prediction and functional analysis of arsenic-binding proteins in human cells
Background: Arsenic has a broad anti-cancer ability against hematologic malignancies and solid tumors. To systematically understand the biological functions of arsenic, we need to identify arsenic-binding proteins in human cells. However, due to lack of effective theoretical tools and experimental methods, only a few arsenic-binding proteins have been identified.
Methods: Based on the crystal structure of ArsM, we generated a single mutation free energy profile for arsenic binding using free energy perturbation methods. Multiple validations provide an indication that our computational model has the ability to predict arsenic-binding proteins with desirable accuracy. We subsequently apply this computational model to scan the entire human genome to identify all the potential arsenic-binding proteins.
Results: The computationally predicted arsenic-binding proteins show a wide range of biological functions, especially in the signaling transduction pathways. In the signaling transduction pathways, arsenic directly binds to the key factors (e.g., Notch receptors, Notch ligands, Wnt family proteins, TGF-beta, and their interacting proteins) and results in significant inhibitions on their enzymatic activities, further having a crucial impact on the related signaling pathways.
Conclusions: Arsenic has a significant impact on signaling transduction in cells. Arsenic binding to proteins can lead to dysfunctions of the target proteins, having crucial impacts on both signaling pathway and gene transcription. We hope that the computationally predicted arsenic-binding proteins and the functional analysis can provide a novel insight into the biological functions of arsenic, revealing a mechanism for the broad anti-cancer of arsenic.
arsenic-binding proteins / free energy profile / position-specific score matrix / signaling transduction
[1] |
Hong, Y. S., Song, K. H. and Chung, J. Y. (2014) Health effects of chronic arsenic exposure. J. Prev. Med. Public Health, 47, 245–252
CrossRef
Pubmed
Google scholar
|
[2] |
List, A., Beran, M., DiPersio, J., Slack, J., Vey, N., Rosenfeld, C. S. and Greenberg, P. (2003) Opportunities for Trisenox (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia, 17, 1499–1507
CrossRef
Pubmed
Google scholar
|
[3] |
Burnett, A. K., Russell, N. H., Hills, R. K., Bowen, D., Kell, J., Knapper, S., Morgan, Y. G., Lok, J., Grech, A., Jones, G.,
CrossRef
Pubmed
Google scholar
|
[4] |
Hoonjan, M., Jadhav, V. and Bhatt, P. (2018) Arsenic trioxide: insights into its evolution to an anticancer agent. J. Biol. Inorg. Chem., 23, 313–329
CrossRef
Pubmed
Google scholar
|
[5] |
Zhang, X. W., Yan, X. J., Zhou, Z. R., Yang, F. F., Wu, Z. Y., Sun, H. B., Liang, W. X., Song, A. X., Lallemand-Breitenbach, V., Jeanne, M.,
CrossRef
Pubmed
Google scholar
|
[6] |
Mao, J. H., Sun, X. Y., Liu, J. X., Zhang, Q. Y., Liu, P., Huang, Q. H., Li, K. K., Chen, Q., Chen, Z. and Chen, S. J. (2010) As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA, 107, 21683–21688
CrossRef
Pubmed
Google scholar
|
[7] |
Lu, J., Chew, E. H. and Holmgren, A. (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 104, 12288–12293
CrossRef
Pubmed
Google scholar
|
[8] |
Hu, X., Dong, Q., Yang, J. and Zhang, Y. (2016) Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals. Bioinformatics, 32, 3260–3269
CrossRef
Pubmed
Google scholar
|
[9] |
Yang, J., Roy, A. and Zhang, Y. (2013) BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res., 41, D1096–D1103
CrossRef
Pubmed
Google scholar
|
[10] |
Ge, F., Lu, X. P., Zeng, H. L., He, Q. Y., Xiong, S., Jin, L. and He, Q. Y. (2009) Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J. Proteome Res., 8, 3006–3019
CrossRef
Pubmed
Google scholar
|
[11] |
Zhang, H. N., Yang, L., Ling, J. Y., Czajkowsky, D. M., Wang, J. F., Zhang, X. W., Zhou, Y. M., Ge, F., Yang, M. K., Xiong, Q.,
CrossRef
Pubmed
Google scholar
|
[12] |
Smedley, D., Haider, S., Durinck, S., Pandini, L., Provero, P., Allen, J., Arnaiz, O., Awedh, M. H., Baldock, R., Barbiera, G.,
CrossRef
Pubmed
Google scholar
|
[13] |
Zhen, Y., Zhao, S., Li, Q., Li, Y. and Kawamoto, K. (2010) Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett., 292, 64–72
CrossRef
Pubmed
Google scholar
|
[14] |
Cialfi, S., Palermo, R., Manca, S., De Blasio, C., Vargas Romero, P., Checquolo, S., Bellavia, D., Uccelletti, D., Saliola, M., D’Alessandro, A.,
CrossRef
Pubmed
Google scholar
|
[15] |
Neumann, J. E., Wefers, A. K., Lambo, S., Bianchi, E., Bockstaller, M., Dorostkar, M. M., Meister, V., Schindler, P., Korshunov, A., von Hoff, K.,
CrossRef
Pubmed
Google scholar
|
[16] |
Zhang, F., Paramasivam, M., Cai, Q., Dai, X., Wang, P., Lin, K., Song, J., Seidman, M. M. and Wang, Y. (2014) Arsenite binds to the RING finger domains of RNF20-RNF40 histone E3 ubiquitin ligase and inhibits DNA double-strand break repair. J. Am. Chem. Soc., 136, 12884–12887
CrossRef
Pubmed
Google scholar
|
[17] |
Furukawa, M., He, Y. J., Borchers, C. and Xiong, Y. (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat. Cell Biol., 5, 1001–1007
CrossRef
Pubmed
Google scholar
|
[18] |
Girard, N., Tremblay, M., Humbert, M., Grondin, B., Haman, A., Labrecque, J., Chen, B., Chen, Z., Chen, S. J. and Hoang, T. (2013) RARα-PLZF oncogene inhibits C/EBPα function in myeloid cells. Proc. Natl. Acad. Sci. USA, 110, 13522–13527
CrossRef
Pubmed
Google scholar
|
[19] |
Bose, R., Karthaus, W. R., Armenia, J., Abida, W., Iaquinta, P. J., Zhang, Z., Wongvipat, J., Wasmuth, E. V., Shah, N., Sullivan, P. S.,
CrossRef
Pubmed
Google scholar
|
[20] |
Ajees, A. A., Marapakala, K., Packianathan, C., Sankaran, B. and Rosen, B. P. (2012) Structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation. Biochemistry, 51, 5476–5485
CrossRef
Pubmed
Google scholar
|
[21] |
Gunner, M. R., Mao, J., Song, Y. and Kim, J. (2006) Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. Biochim. Biophys. Acta, 1757, 942–968
CrossRef
Pubmed
Google scholar
|
[22] |
Antosiewicz, J. M. and Shugar, D. (2011) Poisson-Boltzmann continuum-solvation models: applications to pH-dependent properties of biomolecules. Mol. Biosyst., 7, 2923–2949
CrossRef
Pubmed
Google scholar
|
[23] |
Anandakrishnan, R., Aguilar, B. and Onufriev, A. V. (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res., 40, W537–W541
CrossRef
Pubmed
Google scholar
|
[24] |
Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E. and Simmerling, C. (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 11, 3696–3713
CrossRef
Pubmed
Google scholar
|
[25] |
Xu, X. and Truhlar, D. G. (2011) Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds. J. Chem. Theory Comput., 7, 2766–2779
CrossRef
Pubmed
Google scholar
|
[26] |
Jorgensen, W. L. and Thomas, L. L. (2008) Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theory Comput., 4, 869–876
CrossRef
Pubmed
Google scholar
|
[27] |
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L. and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem., 26, 1781–1802
CrossRef
Pubmed
Google scholar
|
[28] |
Wagner, G. J. and Liu, W. K. (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys., 190, 249–274
CrossRef
Google scholar
|
[29] |
Hünenberger, P. (2005) Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci., 173, 105–149
CrossRef
Google scholar
|
[30] |
Krautler, V., Van Gunsteren, W. F. and Hunenberger, P. H. (2001) A fast SHAKE: algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem., 22, 501–508
CrossRef
Google scholar
|
[31] |
Cerutti, D. S., Duke, R. E., Darden, T. A. and Lybrand, T. P. (2009) Staggered Mesh Ewald: an extension of the Smooth Particle-Mesh Ewald method adding great versatility. J. Chem. Theory Comput., 5, 2322–2338
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |