Computational prediction and functional analysis of arsenic-binding proteins in human cells

Shichao Pang, Junchen Yang, Yilei Zhao, Yixue Li, Jingfang Wang

PDF(538 KB)
PDF(538 KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (3) : 182-189. DOI: 10.1007/s40484-019-0169-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Computational prediction and functional analysis of arsenic-binding proteins in human cells

Author information +
History +

Abstract

Background: Arsenic has a broad anti-cancer ability against hematologic malignancies and solid tumors. To systematically understand the biological functions of arsenic, we need to identify arsenic-binding proteins in human cells. However, due to lack of effective theoretical tools and experimental methods, only a few arsenic-binding proteins have been identified.

Methods: Based on the crystal structure of ArsM, we generated a single mutation free energy profile for arsenic binding using free energy perturbation methods. Multiple validations provide an indication that our computational model has the ability to predict arsenic-binding proteins with desirable accuracy. We subsequently apply this computational model to scan the entire human genome to identify all the potential arsenic-binding proteins.

Results: The computationally predicted arsenic-binding proteins show a wide range of biological functions, especially in the signaling transduction pathways. In the signaling transduction pathways, arsenic directly binds to the key factors (e.g., Notch receptors, Notch ligands, Wnt family proteins, TGF-beta, and their interacting proteins) and results in significant inhibitions on their enzymatic activities, further having a crucial impact on the related signaling pathways.

Conclusions: Arsenic has a significant impact on signaling transduction in cells. Arsenic binding to proteins can lead to dysfunctions of the target proteins, having crucial impacts on both signaling pathway and gene transcription. We hope that the computationally predicted arsenic-binding proteins and the functional analysis can provide a novel insight into the biological functions of arsenic, revealing a mechanism for the broad anti-cancer of arsenic.

Graphical abstract

Keywords

arsenic-binding proteins / free energy profile / position-specific score matrix / signaling transduction

Cite this article

Download citation ▾
Shichao Pang, Junchen Yang, Yilei Zhao, Yixue Li, Jingfang Wang. Computational prediction and functional analysis of arsenic-binding proteins in human cells. Quant. Biol., 2019, 7(3): 182‒189 https://doi.org/10.1007/s40484-019-0169-6

References

[1]
Hong, Y. S., Song, K. H. and Chung, J. Y. (2014) Health effects of chronic arsenic exposure. J. Prev. Med. Public Health, 47, 245–252
CrossRef Pubmed Google scholar
[2]
List, A., Beran, M., DiPersio, J., Slack, J., Vey, N., Rosenfeld, C. S. and Greenberg, P. (2003) Opportunities for Trisenox (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia, 17, 1499–1507
CrossRef Pubmed Google scholar
[3]
Burnett, A. K., Russell, N. H., Hills, R. K., Bowen, D., Kell, J., Knapper, S., Morgan, Y. G., Lok, J., Grech, A., Jones, G., (2015) Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol., 16, 1295–1305
CrossRef Pubmed Google scholar
[4]
Hoonjan, M., Jadhav, V. and Bhatt, P. (2018) Arsenic trioxide: insights into its evolution to an anticancer agent. J. Biol. Inorg. Chem., 23, 313–329
CrossRef Pubmed Google scholar
[5]
Zhang, X. W., Yan, X. J., Zhou, Z. R., Yang, F. F., Wu, Z. Y., Sun, H. B., Liang, W. X., Song, A. X., Lallemand-Breitenbach, V., Jeanne, M., (2010) Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 328, 240–243
CrossRef Pubmed Google scholar
[6]
Mao, J. H., Sun, X. Y., Liu, J. X., Zhang, Q. Y., Liu, P., Huang, Q. H., Li, K. K., Chen, Q., Chen, Z. and Chen, S. J. (2010) As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA, 107, 21683–21688
CrossRef Pubmed Google scholar
[7]
Lu, J., Chew, E. H. and Holmgren, A. (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 104, 12288–12293
CrossRef Pubmed Google scholar
[8]
Hu, X., Dong, Q., Yang, J. and Zhang, Y. (2016) Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals. Bioinformatics, 32, 3260–3269
CrossRef Pubmed Google scholar
[9]
Yang, J., Roy, A. and Zhang, Y. (2013) BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res., 41, D1096–D1103
CrossRef Pubmed Google scholar
[10]
Ge, F., Lu, X. P., Zeng, H. L., He, Q. Y., Xiong, S., Jin, L. and He, Q. Y. (2009) Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J. Proteome Res., 8, 3006–3019
CrossRef Pubmed Google scholar
[11]
Zhang, H. N., Yang, L., Ling, J. Y., Czajkowsky, D. M., Wang, J. F., Zhang, X. W., Zhou, Y. M., Ge, F., Yang, M. K., Xiong, Q., (2015) Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proc. Natl. Acad. Sci. USA, 112, 15084–15089
CrossRef Pubmed Google scholar
[12]
Smedley, D., Haider, S., Durinck, S., Pandini, L., Provero, P., Allen, J., Arnaiz, O., Awedh, M. H., Baldock, R., Barbiera, G., (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res., 43, W589–W598
CrossRef Pubmed Google scholar
[13]
Zhen, Y., Zhao, S., Li, Q., Li, Y. and Kawamoto, K. (2010) Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett., 292, 64–72
CrossRef Pubmed Google scholar
[14]
Cialfi, S., Palermo, R., Manca, S., De Blasio, C., Vargas Romero, P., Checquolo, S., Bellavia, D., Uccelletti, D., Saliola, M., D’Alessandro, A., (2014) Loss of Notch1-dependent p21(Waf1/Cip1) expression influences the Notch1 outcome in tumorigenesis. Cell Cycle, 13, 2046–2055
CrossRef Pubmed Google scholar
[15]
Neumann, J. E., Wefers, A. K., Lambo, S., Bianchi, E., Bockstaller, M., Dorostkar, M. M., Meister, V., Schindler, P., Korshunov, A., von Hoff, K., (2017) A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat. Med., 23, 1191–1202
CrossRef Pubmed Google scholar
[16]
Zhang, F., Paramasivam, M., Cai, Q., Dai, X., Wang, P., Lin, K., Song, J., Seidman, M. M. and Wang, Y. (2014) Arsenite binds to the RING finger domains of RNF20-RNF40 histone E3 ubiquitin ligase and inhibits DNA double-strand break repair. J. Am. Chem. Soc., 136, 12884–12887
CrossRef Pubmed Google scholar
[17]
Furukawa, M., He, Y. J., Borchers, C. and Xiong, Y. (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat. Cell Biol., 5, 1001–1007
CrossRef Pubmed Google scholar
[18]
Girard, N., Tremblay, M., Humbert, M., Grondin, B., Haman, A., Labrecque, J., Chen, B., Chen, Z., Chen, S. J. and Hoang, T. (2013) RARα-PLZF oncogene inhibits C/EBPα function in myeloid cells. Proc. Natl. Acad. Sci. USA, 110, 13522–13527
CrossRef Pubmed Google scholar
[19]
Bose, R., Karthaus, W. R., Armenia, J., Abida, W., Iaquinta, P. J., Zhang, Z., Wongvipat, J., Wasmuth, E. V., Shah, N., Sullivan, P. S., (2017) ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature, 546, 671–675
CrossRef Pubmed Google scholar
[20]
Ajees, A. A., Marapakala, K., Packianathan, C., Sankaran, B. and Rosen, B. P. (2012) Structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation. Biochemistry, 51, 5476–5485
CrossRef Pubmed Google scholar
[21]
Gunner, M. R., Mao, J., Song, Y. and Kim, J. (2006) Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. Biochim. Biophys. Acta, 1757, 942–968
CrossRef Pubmed Google scholar
[22]
Antosiewicz, J. M. and Shugar, D. (2011) Poisson-Boltzmann continuum-solvation models: applications to pH-dependent properties of biomolecules. Mol. Biosyst., 7, 2923–2949
CrossRef Pubmed Google scholar
[23]
Anandakrishnan, R., Aguilar, B. and Onufriev, A. V. (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res., 40, W537–W541
CrossRef Pubmed Google scholar
[24]
Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E. and Simmerling, C. (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 11, 3696–3713
CrossRef Pubmed Google scholar
[25]
Xu, X. and Truhlar, D. G. (2011) Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds. J. Chem. Theory Comput., 7, 2766–2779
CrossRef Pubmed Google scholar
[26]
Jorgensen, W. L. and Thomas, L. L. (2008) Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theory Comput., 4, 869–876
CrossRef Pubmed Google scholar
[27]
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L. and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem., 26, 1781–1802
CrossRef Pubmed Google scholar
[28]
Wagner, G. J. and Liu, W. K. (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys., 190, 249–274
CrossRef Google scholar
[29]
Hünenberger, P. (2005) Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci., 173, 105–149
CrossRef Google scholar
[30]
Krautler, V., Van Gunsteren, W. F. and Hunenberger, P. H. (2001) A fast SHAKE: algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem., 22, 501–508
CrossRef Google scholar
[31]
Cerutti, D. S., Duke, R. E., Darden, T. A. and Lybrand, T. P. (2009) Staggered Mesh Ewald: an extension of the Smooth Particle-Mesh Ewald method adding great versatility. J. Chem. Theory Comput., 5, 2322–2338
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/10.1007/s40484-019-0169-6.

ACKNOWLEDGEMENTS

This work was supported by the National Key R&D Program of China (Nos. 2016YFC0901704 and 2017YFA0505500), National High-Tech R&D Program (863 Program, No. 2015AA020105), the National Natural Science Foundation of China (Nos. 21377085 and 31770070), MOE New Century Excellent Talents in University (No. NCET-12-0354), and SJTU Med-Eng Joint Program (No. YG2016MS33) for financial supports.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Shichao Pang, Junchen Yang, Yilei Zhao, Yixue Li and Jingfang Wang declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(538 KB)

Accesses

Citations

Detail

Sections
Recommended

/