Computational prediction and functional analysis of arsenic-binding proteins in human cells

Shichao Pang , Junchen Yang , Yilei Zhao , Yixue Li , Jingfang Wang

Quant. Biol. ›› 2019, Vol. 7 ›› Issue (3) : 182 -189.

PDF (538KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (3) : 182 -189. DOI: 10.1007/s40484-019-0169-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Computational prediction and functional analysis of arsenic-binding proteins in human cells

Author information +
History +
PDF (538KB)

Abstract

Background: Arsenic has a broad anti-cancer ability against hematologic malignancies and solid tumors. To systematically understand the biological functions of arsenic, we need to identify arsenic-binding proteins in human cells. However, due to lack of effective theoretical tools and experimental methods, only a few arsenic-binding proteins have been identified.

Methods: Based on the crystal structure of ArsM, we generated a single mutation free energy profile for arsenic binding using free energy perturbation methods. Multiple validations provide an indication that our computational model has the ability to predict arsenic-binding proteins with desirable accuracy. We subsequently apply this computational model to scan the entire human genome to identify all the potential arsenic-binding proteins.

Results: The computationally predicted arsenic-binding proteins show a wide range of biological functions, especially in the signaling transduction pathways. In the signaling transduction pathways, arsenic directly binds to the key factors (e.g., Notch receptors, Notch ligands, Wnt family proteins, TGF-beta, and their interacting proteins) and results in significant inhibitions on their enzymatic activities, further having a crucial impact on the related signaling pathways.

Conclusions: Arsenic has a significant impact on signaling transduction in cells. Arsenic binding to proteins can lead to dysfunctions of the target proteins, having crucial impacts on both signaling pathway and gene transcription. We hope that the computationally predicted arsenic-binding proteins and the functional analysis can provide a novel insight into the biological functions of arsenic, revealing a mechanism for the broad anti-cancer of arsenic.

Graphical abstract

Keywords

arsenic-binding proteins / free energy profile / position-specific score matrix / signaling transduction

Cite this article

Download citation ▾
Shichao Pang, Junchen Yang, Yilei Zhao, Yixue Li, Jingfang Wang. Computational prediction and functional analysis of arsenic-binding proteins in human cells. Quant. Biol., 2019, 7(3): 182-189 DOI:10.1007/s40484-019-0169-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hong, Y. S., Song, K. H. and Chung, J. Y. (2014) Health effects of chronic arsenic exposure. J. Prev. Med. Public Health, 47, 245–252

[2]

List, A., Beran, M., DiPersio, J., Slack, J., Vey, N., Rosenfeld, C. S. and Greenberg, P. (2003) Opportunities for Trisenox (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia, 17, 1499–1507

[3]

Burnett, A. K., Russell, N. H., Hills, R. K., Bowen, D., Kell, J., Knapper, S., Morgan, Y. G., Lok, J., Grech, A., Jones, G., (2015) Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol., 16, 1295–1305

[4]

Hoonjan, M., Jadhav, V. and Bhatt, P. (2018) Arsenic trioxide: insights into its evolution to an anticancer agent. J. Biol. Inorg. Chem., 23, 313–329

[5]

Zhang, X. W., Yan, X. J., Zhou, Z. R., Yang, F. F., Wu, Z. Y., Sun, H. B., Liang, W. X., Song, A. X., Lallemand-Breitenbach, V., Jeanne, M., (2010) Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 328, 240–243

[6]

Mao, J. H., Sun, X. Y., Liu, J. X., Zhang, Q. Y., Liu, P., Huang, Q. H., Li, K. K., Chen, Q., Chen, Z. and Chen, S. J. (2010) As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA, 107, 21683–21688

[7]

Lu, J., Chew, E. H. and Holmgren, A. (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 104, 12288–12293

[8]

Hu, X., Dong, Q., Yang, J. and Zhang, Y. (2016) Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals. Bioinformatics, 32, 3260–3269

[9]

Yang, J., Roy, A. and Zhang, Y. (2013) BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res., 41, D1096–D1103

[10]

Ge, F., Lu, X. P., Zeng, H. L., He, Q. Y., Xiong, S., Jin, L. and He, Q. Y. (2009) Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J. Proteome Res., 8, 3006–3019

[11]

Zhang, H. N., Yang, L., Ling, J. Y., Czajkowsky, D. M., Wang, J. F., Zhang, X. W., Zhou, Y. M., Ge, F., Yang, M. K., Xiong, Q., (2015) Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proc. Natl. Acad. Sci. USA, 112, 15084–15089

[12]

Smedley, D., Haider, S., Durinck, S., Pandini, L., Provero, P., Allen, J., Arnaiz, O., Awedh, M. H., Baldock, R., Barbiera, G., (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res., 43, W589–W598

[13]

Zhen, Y., Zhao, S., Li, Q., Li, Y. and Kawamoto, K. (2010) Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett., 292, 64–72

[14]

Cialfi, S., Palermo, R., Manca, S., De Blasio, C., Vargas Romero, P., Checquolo, S., Bellavia, D., Uccelletti, D., Saliola, M., D’Alessandro, A., (2014) Loss of Notch1-dependent p21(Waf1/Cip1) expression influences the Notch1 outcome in tumorigenesis. Cell Cycle, 13, 2046–2055

[15]

Neumann, J. E., Wefers, A. K., Lambo, S., Bianchi, E., Bockstaller, M., Dorostkar, M. M., Meister, V., Schindler, P., Korshunov, A., von Hoff, K., (2017) A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat. Med., 23, 1191–1202

[16]

Zhang, F., Paramasivam, M., Cai, Q., Dai, X., Wang, P., Lin, K., Song, J., Seidman, M. M. and Wang, Y. (2014) Arsenite binds to the RING finger domains of RNF20-RNF40 histone E3 ubiquitin ligase and inhibits DNA double-strand break repair. J. Am. Chem. Soc., 136, 12884–12887

[17]

Furukawa, M., He, Y. J., Borchers, C. and Xiong, Y. (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat. Cell Biol., 5, 1001–1007

[18]

Girard, N., Tremblay, M., Humbert, M., Grondin, B., Haman, A., Labrecque, J., Chen, B., Chen, Z., Chen, S. J. and Hoang, T. (2013) RARα-PLZF oncogene inhibits C/EBPα function in myeloid cells. Proc. Natl. Acad. Sci. USA, 110, 13522–13527

[19]

Bose, R., Karthaus, W. R., Armenia, J., Abida, W., Iaquinta, P. J., Zhang, Z., Wongvipat, J., Wasmuth, E. V., Shah, N., Sullivan, P. S., (2017) ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature, 546, 671–675

[20]

Ajees, A. A., Marapakala, K., Packianathan, C., Sankaran, B. and Rosen, B. P. (2012) Structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation. Biochemistry, 51, 5476–5485

[21]

Gunner, M. R., Mao, J., Song, Y. and Kim, J. (2006) Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. Biochim. Biophys. Acta, 1757, 942–968

[22]

Antosiewicz, J. M. and Shugar, D. (2011) Poisson-Boltzmann continuum-solvation models: applications to pH-dependent properties of biomolecules. Mol. Biosyst., 7, 2923–2949

[23]

Anandakrishnan, R., Aguilar, B. and Onufriev, A. V. (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res., 40, W537–W541

[24]

Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E. and Simmerling, C. (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 11, 3696–3713

[25]

Xu, X. and Truhlar, D. G. (2011) Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds. J. Chem. Theory Comput., 7, 2766–2779

[26]

Jorgensen, W. L. and Thomas, L. L. (2008) Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theory Comput., 4, 869–876

[27]

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé L. and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem., 26, 1781–1802

[28]

Wagner, G. J. and Liu, W. K. (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys., 190, 249–274

[29]

Hünenberger, P. (2005) Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci., 173, 105–149

[30]

Krautler, V., Van Gunsteren, W. F. and Hunenberger, P. H. (2001) A fast SHAKE: algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem., 22, 501–508

[31]

Cerutti, D. S., Duke, R. E., Darden, T. A. and Lybrand, T. P. (2009) Staggered Mesh Ewald: an extension of the Smooth Particle-Mesh Ewald method adding great versatility. J. Chem. Theory Comput., 5, 2322–2338

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (538KB)

Supplementary files

Supplementary Material 1

1555

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/