A survey of web resources and tools for the study of TCM network pharmacology

Jing Zhao, Jian Yang, Saisai Tian, Weidong Zhang

PDF(1003 KB)
PDF(1003 KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (1) : 17-29. DOI: 10.1007/s40484-019-0167-8
REVIEW
REVIEW

A survey of web resources and tools for the study of TCM network pharmacology

Author information +
History +

Abstract

Background: Traditional Chinese medicine (TCM) treats diseases in a holistic manner, while TCM formulae are multi-component, multi-target agents at the molecular level. Thus there are many parallels between the key ideas of TCM pharmacology and network pharmacology. These years, TCM network pharmacology has developed as an interdisciplinary of TCM science and network pharmacology, which studies the mechanism of TCM at the molecular level and in the context of biological networks. It provides a new research paradigm that can use modern biomedical science to interpret the mechanism of TCM, which is promising to accelerate the modernization and internationalization of TCM.

Results: In this paper we introduce state-of-the-art free data sources, web servers and softwares that can be used in the TCM network pharmacology, including databases of TCM, drug targets and diseases, web servers for the prediction of drug targets, and tools for network and functional analysis.

Conclusions: This review could help experimental pharmacologists make better use of the existing data and methods in their study of TCM.

Author summary

TCM network pharmacology studies the therapeutic mechanism of TCM formulae from a systems perspective and at the molecular level. Years of research in related fields has developed many databases and tools that are useful for the study of TCM network pharmacology. In this paper, we introduce some of such free resources.

Graphical abstract

Keywords

TCM network pharmacology / molecular networks / signaling pathways / databases / web servers

Cite this article

Download citation ▾
Jing Zhao, Jian Yang, Saisai Tian, Weidong Zhang. A survey of web resources and tools for the study of TCM network pharmacology. Quant. Biol., 2019, 7(1): 17‒29 https://doi.org/10.1007/s40484-019-0167-8

References

[1]
Li, S. and Zhang, B. (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med., 11, 110–120
CrossRef Pubmed Google scholar
[2]
Zhao, J., Jiang, P. and Zhang, W. (2010) Molecular networks for the study of TCM pharmacology. Brief. Bioinform., 11, 417–430
CrossRef Pubmed Google scholar
[3]
Li, S., Fan T.-P., Jia, W., Lu, A., Zhang, W. (2014) Network pharmacology in traditional Chinese medicine, evidence-based complementary and alternative medicine. Article ID 138460 https://doi.org/10.1155/2014/138460
[4]
Li, P., Chen, J., Wang, J., Zhou, W., Wang, X., Li, B., Tao, W., Wang, W., Wang, Y. and Yang, L. (2014) Systems pharmacology strategies for drug discovery and combination with applications to cardiovascular diseases. J. Ethnopharmacol., 151, 93–107
CrossRef Pubmed Google scholar
[5]
Huang, C., Zheng, C., Li, Y., Wang, Y., Lu, A. and Yang, L. (2014) Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief. Bioinform., 15, 710–733
CrossRef Pubmed Google scholar
[6]
Chen, C. Y.-C. (2011) TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 6, e15939
CrossRef Pubmed Google scholar
[7]
Chen, X., Zhou, H., Liu, Y. B., Wang, J. F., Li, H., Ung, C. Y., Han, L. Y., Cao, Z. W. and Chen, Y. Z. (2006) Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Br. J. Pharmacol., 149, 1092–1103
CrossRef Pubmed Google scholar
[8]
Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 6, 13
CrossRef Pubmed Google scholar
[9]
Xue, R., Fang, Z., Zhang, M., Yi, Z., Wen, C. and Shi, T. (2013) TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res., 41, D1089–D1095
CrossRef Pubmed Google scholar
[10]
Li, S., Zhang, B. and Zhang, N. (2011) Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst. Biol., 5, S10
CrossRef Pubmed Google scholar
[11]
Lin, L., Yang, T., Fang, L., Yang, J., Yang, F. and Zhao, J. (2017) Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network. BMC Syst. Biol., 11, 121
CrossRef Pubmed Google scholar
[12]
Sun, Y., Sheng, Z., Ma, C., Tang, K., Zhu, R., Wu, Z., Shen, R., Feng, J., Wu, D., Huang, D., (2015) Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun., 6, 8481
CrossRef Pubmed Google scholar
[13]
Yang, K., Bai, H., Ouyang, Q., Lai, L. and Tang, C. (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol., 4, 228
CrossRef Pubmed Google scholar
[14]
Fang, H., Wang, Y., Yang T., Ga, Y., Zhang, Y., Liu, R., Zhang, W. and Zhao, J. (2013) Bioinformatics analysis for the antirheumatic effects of Huang-Lian-Jie-Du-Tang from a network perspective. Evid-Based Compl. Alt., Article ID 245357, http://dx.doi.org/10.1155/2013/245357
[15]
Le, D. H. and Le, L. (2016) Systems pharmacology: a unified framework for prediction of drug-target interactions. Curr. Pharm. Des., 22, 3569–3575
CrossRef Pubmed Google scholar
[16]
Fang, H.-Y., Zeng, H.-W., Lin, L.-M., Chen, X., Shen, X.-N., Fu, P., Lv, C., Liu, Q., Liu, R.-H., Zhang, W.-D., (2017) A network-based method for mechanistic investigation of Shexiang Baoxin Pill’s treatment of cardiovascular diseases. Sci. Rep., 7, 43632
CrossRef Pubmed Google scholar
[17]
Wang, T., Yang, J., Chen, X., Zhao, K., Wang, J., Zhang, Y., Zhao, J. and Ga, Y. (2017) Systems study on the antirheumatic mechanism of Tibetan medicated-bath therapy using Wuwei-Ganlu-Yaoyu-Keli. BioMed Res. Int., 2017, 2320932
CrossRef Pubmed Google scholar
[18]
Liang, X., Li, H. and Li, S. (2014) A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang pill as a case study. Mol. Biosyst., 10, 1014–1022
CrossRef Pubmed Google scholar
[19]
Zhang, W., Tao, Q., Guo, Z., Fu, Y., Chen, X., Shar, P. A., Shahen, M., Zhu, J., Xue, J., Bai, Y., (2016) Systems pharmacology dissection of the integrated treatment for cardiovascular and gastrointestinal disorders by traditional Chinese medicine. Sci. Rep., 6, 32400
CrossRef Pubmed Google scholar
[20]
Zhou, W., Cheng, X. and Zhang, Y. (2016) Effect of Liuwei Dihuang decoction, a traditional Chinese medicinal prescription, on the neuroendocrine immunomodulation network. Pharmacol. Ther., 162, 170–178
CrossRef Pubmed Google scholar
[21]
Ye, H., Ye, L., Kang, H., Zhang, D., Tao, L., Tang K., Liu, X., Zhu, R.,Liu, Q., Chen, Y.Z. (2011) HIT: linking herbal active ingredients to targets. Nucleic Acids Res., 39 (suppl_1), D1055–D1059
[22]
Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., Li, X., Zhou, W., Wang, W. and Wang, Y. (2012) A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 7, e37608
CrossRef Pubmed Google scholar
[23]
Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang, J., Yang, Q., Fu, T., Zhang, X., Cui, X., Tu, G., (2018) Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 46, D1121–D1127
Pubmed
[24]
Whirl-Carrillo, M., McDonagh, E. M., Hebert, J. M., Gong, L., Sangkuhl, K., Thorn, C. F., Altman, R. B. and Klein, T. E. (2012) Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 92, 414–417
CrossRef Pubmed Google scholar
[25]
Huang, C., Yang, Y., Chen, X., Wang, C., Li, Y., Zheng, C. and Wang, Y. (2017) Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines. PLoS One, 12, e0184880
CrossRef Pubmed Google scholar
[26]
Lee, A. Y., Park, W., Kang, T.-W., Cha, M. H. and Chun, J. M. (2018) Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis. J. Ethnopharmacol., 221, 151–159
CrossRef Pubmed Google scholar
[27]
Kuhn, M., von Mering, M., Campillos, M., Jensen, L.J., Bork, P. (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res., 36(suppl_1), D684–688
[28]
Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini C.A., McKusick, V.A. (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders, Nucleic Acids Res., 33(suppl_1), D514–517
[29]
Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z. and Woolsey, J. (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 34, D668–D672
CrossRef Pubmed Google scholar
[30]
Mangal, M., Sagar, P., Singh, H., Raghava, G. P. S. and Agarwal, S. M. (2013) NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res., 41, D1124–D1129
CrossRef Pubmed Google scholar
[31]
Tao, W., Li, B., Gao, S., Bai, Y., Shar, P. A., Zhang, W., Guo, Z., Sun, K., Fu, Y., Huang, C., (2015) CancerHSP: anticancer herbs database of systems pharmacology. Sci. Rep., 5, 11481
CrossRef Pubmed Google scholar
[32]
Zeng, X., Zhang, P., He, W., Qin, C., Chen, S., Tao, L., Wang, Y., Tan, Y., Gao, D., Wang, B., (2018) NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res., 46, D1217–D1222
CrossRef Pubmed Google scholar
[33]
Fang, J., Cai, C., Wang, Q., Lin, P., Zhao, Z. and Cheng, F. (2017) Systems pharmacology-based discovery of natural products for precision oncology through targeting cancer mutated genes. CPT Pharmacometrics Syst. Pharmacol., 6, 177–187
CrossRef Pubmed Google scholar
[34]
Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 46, D1074–D1082
CrossRef Pubmed Google scholar
[35]
Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Krüger, F. A., Light, Y., Mak, L., McGlinchey, S., (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res., 42, D1083–D1090
CrossRef Pubmed Google scholar
[36]
Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L. and Chong, J. (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 44, D1045–D1053
CrossRef Pubmed Google scholar
[37]
Günther, S., Kuhn, M., Dunkel, M., Campillos, M., Senger, C., Petsalaki, E., Ahmed, J., Urdiales, E. G., Gewiess, A., Jensen, L. J., (2008) SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res., 36, D919–D922
CrossRef Pubmed Google scholar
[38]
Kumar, R., Chaudhary, K., Gupta, S., Singh, H., Kumar, S., Gautam, A., Kapoor, P., Raghava, G. P. S. and Cancer, D. R. (2013) CancerDR: cancer drug resistance database. Sci. Rep., 3, 1445
CrossRef Pubmed Google scholar
[39]
Cotto, K. C., Wagner, A. H., Feng, Y.-Y., Kiwala, S., Coffman, A. C., Spies, G., Wollam, A., Spies, N. C., Griffith, O. L. and Griffith, M. (2018) DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res., 46, D1068–D1073
CrossRef Pubmed Google scholar
[40]
Siramshetty, V. B., Eckert, O. A., Gohlke, B.-O., Goede, A., Chen, Q., Devarakonda, P., Preissner, S. and Preissner, R. (2018) SuperDRUG2: a one stop resource for approved/marketed drugs. Nucleic Acids Res., 46, D1137–D1143
CrossRef Pubmed Google scholar
[41]
Yu, G., Zhang, Y., Ren, W., Dong, L., Li, J., Geng, Y., Zhang, Y., Li, D., Xu, H. and Yang, H. (2016) Network pharmacology-based identification of key pharmacological pathways of Yin-Huang-Qing-Fei capsule acting on chronic bronchitis. Int. J. Chron. Obstruct. Pulmon. Dis., 12, 85–94
CrossRef Pubmed Google scholar
[42]
Fang, H., Wang, Y., Yang, T., Ga, Y., Zhang, Y., Liu, R., Zhang, W. and Zhao, J. (2013) Bioinformatics analysis for the antirheumatic effects of Huang-Lian-Jie-Du-Tang from a network perspective. Evid. Based Complement. Alternat. Med., 2013, 245357
CrossRef Pubmed Google scholar
[43]
Zhang, Y., Lin, Y., Zhao, H., Guo, Q., Yan, C. and Lin, N. (2016) Revealing the effects of the herbal pair of Euphorbia kansui and Glycyrrhiza on hepatocellular carcinoma ascites with integrating network target analysis and experimental validation. Int. J. Biol. Sci., 12, 594–606
CrossRef Pubmed Google scholar
[44]
Okuno, Y., Tamon, A., Yabuuchi, H., Niijima, S., Minowa, Y., Tonomura, K., Kunimoto, R., Feng, C. (2008) GLIDA: GPCR—ligand database for chemical genomics drug discovery—database and tools update, Nucleic Acids Res., 36(suppl_1), D907–D912
[45]
Chen, X., Ji, Z. L. and Chen, Y. Z. (2002) TTD: Therapeutic Target Database. Nucleic Acids Res., 30, 412–415
CrossRef Pubmed Google scholar
[46]
Davis, A. P., Grondin, C. J., Lennon-Hopkins, K., Saraceni-Richards, C., Sciaky, D., King, B. L., Wiegers, T. C. and Mattingly, C. J. (2015) The Comparative Toxicogenomics Database’s 10th year anniversary: update 2015. Nucleic Acids Res., 43, D914–D920
CrossRef Pubmed Google scholar
[47]
Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 28, 27–30.
CrossRef Pubmed Google scholar
[48]
Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T. and Buetow, K. H. (2009) PID: the Pathway Interaction Database. Nucleic Acids Res., 37, D674–D679
CrossRef Pubmed Google scholar
[49]
Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., Jassal, B., Jupe, S., Korninger, F., McKay, S., (2016) The Reactome pathway Knowledgebase. Nucleic Acids Res., 44, D481–D487
CrossRef Pubmed Google scholar
[50]
Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 44, D471–D480
CrossRef Pubmed Google scholar
[51]
Roth, B. L., Lopez, E., Patel, S. and Kroeze, W. K. (2000) The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? Neuroscientist, 6, 252–262
CrossRef Google scholar
[52]
Rose, P. W., Prlić, A., Bi, C., Bluhm, W. F., Christie, C. H., Dutta, S., Green, R. K., Goodsell, D. S., Westbrook, J. D., Woo, J., (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res., 43, D345–D356
CrossRef Pubmed Google scholar
[53]
Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., (2016) PubChem Substance and Compound databases. Nucleic Acids Res., 44, D1202–D1213
CrossRef Pubmed Google scholar
[54]
Carlson, H. A., Smith, R. D., Damm-Ganamet, K. L., Stuckey, J. A., Ahmed, A., Convery, M. A., Somers, D. O., Kranz, M., Elkins, P. A., Cui, G., (2016) CSAR 2014: a benchmark exercise using unpublished data from pharma. J. Chem. Inf. Model., 56, 1063–1077.
[55]
Sterling, T. and Irwin, J. J. (2015) ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model., 55, 2324–2337
CrossRef Pubmed Google scholar
[56]
Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res., 46, D608–D617
CrossRef Pubmed Google scholar
[57]
Liu, Z., Guo, F., Wang, Y., Li, C., Zhang, X., Li, H., Diao, L., Gu, J., Wang, W., Li, D., (2016) BATMAN-TCM: a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Sci. Rep., 6, 21146
CrossRef Pubmed Google scholar
[58]
Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., Lai, L., Pei, J. and Li, H. (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 45, W356–W360
CrossRef Pubmed Google scholar
[59]
Luo, H., Chen, J., Shi, L., Mikailov, M., Zhu, H., Wang, K., He, L., and Yang, L. (2011) DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical–protein interactome, Nucleic Acids Res., 39(suppl_2), W492–W498
[60]
Pereira, A. S. P., Bester, M. J. and Apostolides, Z. (2017) Exploring the anti-proliferative activity of Pelargonium sidoides DC with in silico target identification and network pharmacology. Mol. Divers., 21, 809–820
CrossRef Pubmed Google scholar
[61]
Wei, J., Zhang, Y., Jia, Q., Liu, M., Li, D., Zhang, Y., Song, L., Hu, Y., Xian, M., Yang, H., (2016) Systematic investigation of transcription factors critical in the protection against cerebral ischemia by Danhong injection. Sci. Rep., 6, 29823
CrossRef Pubmed Google scholar
[62]
Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., Dunkel, M. and Preissner, R. (2014) SuperPred: update on drug classification and target prediction. Nucleic Acids Res., 42, W26–W31
CrossRef Pubmed Google scholar
[63]
Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O. and Zoete, V. (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res., 42, W32–W38
CrossRef Pubmed Google scholar
[64]
Yao, Z.-J., Dong, J., Che, Y.-J., Zhu, M.-F., Wen, M., Wang, N.-N., Wang, S., Lu, A.-P. and Cao, D.-S. (2016) TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des., 30, 413–424
CrossRef Pubmed Google scholar
[65]
Hsin, K.-Y., Matsuoka, Y., Asai, Y., Kamiyoshi, K., Watanabe, T., Kawaoka, Y. and Kitano, H. (2016) systemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Res., 44, W507–W513
[66]
Hsin, K.-Y., Ghosh, S. and Kitano, H. (2013) Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 8, e83922
CrossRef Pubmed Google scholar
[67]
Zsoldos, Z., Reid, D., Simon, A., Sadjad, B. S. and Johnson, A. P. (2006) eHiTS: an innovative approach to the docking and scoring function problems. Curr. Protein Pept. Sci., 7, 421–435.
CrossRef Pubmed Google scholar
[68]
Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F. and Furlong, L. I. (2017) DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 45, D833–D839
CrossRef Pubmed Google scholar
[69]
Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., King, B. L., McMorran, R., Wiegers, J., Wiegers, T. C. and Mattingly, C. J. (2017) The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res., 45, D972–D978
CrossRef Pubmed Google scholar
[70]
Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res., 32, D115–D119
CrossRef Pubmed Google scholar
[71]
Landrum, M. J., Lee, J. M., Benson, M., Brown, G., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Hoover, J., (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res., 44, D862–D868
CrossRef Pubmed Google scholar
[72]
Aymé, S. and Schmidtke, J. (2007) Networking for rare diseases: a necessity for Europe. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 50, 1477–1483, in German
CrossRef Pubmed Google scholar
[73]
MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., Morales, J., (2017) The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res., 45, D896–D901
CrossRef Pubmed Google scholar
[74]
Becker, K.G., Barnes, K.C., Bright, T.J, Wang, S.A. (2004) The Genetic Association Database. Nature Genet ., 36 431–432
[75]
Blake, J. A., Richardson, J. E., Bult, C. J., Kadin, J. A. and Eppig, J. T., and the Mouse Genome Database Group. (2003) MGD: the Mouse Genome Database. Nucleic Acids Res., 31, 193–195
CrossRef Pubmed Google scholar
[76]
Twigger, S., Lu, J., Shimoyama, M., Chen, D., Pasko, D., Long, H., Ginster, J., Chen, C.-F., Nigam, R., Kwitek, A., (2002) Rat Genome Database (RGD): mapping disease onto the genome. Nucleic Acids Res., 30, 125–128
CrossRef Pubmed Google scholar
[77]
Gutiérrez-Sacristán, A., Grosdidier, S., Valverde, O., Torrens, M., Bravo, À., Piñero, J., Sanz, F. and Furlong, L. I. (2015) PsyGeNET: a knowledge platform on psychiatric disorders and their genes. Bioinformatics, 31, 3075–3077
CrossRef Pubmed Google scholar
[78]
Robinson, P. N., Köhler, S., Bauer, S., Seelow, D., Horn, D. and Mundlos, S. (2008) The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet., 83, 610–615
CrossRef Pubmed Google scholar
[79]
Bundschus, M., Dejori, M., Stetter, M., Tresp, V. and Kriegel, H.-P. (2008) Extraction of semantic biomedical relations from text using conditional random fields. BMC Bioinformatics, 9, 207
CrossRef Pubmed Google scholar
[80]
Bravo, À., Piñero, J., Queralt-Rosinach, N., Rautschka, M. and Furlong, L. I. (2015) Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research. BMC Bioinformatics, 16, 55
CrossRef Pubmed Google scholar
[81]
Rappaport, N., Twik, M., Plaschkes, I., Nudel, R., Iny Stein, T., Levitt, J., Gershoni, M., Morrey, C. P., Safran, M. and Lancet, D. (2017) MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res., 45, D877–D887
CrossRef Pubmed Google scholar
[82]
Roberta, A. (2007) GeneTests: integrating genetic services into patient care. Am. J. Hum. Genet., 81, 658–659
CrossRef Google scholar
[83]
Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J. X. and Jensen, L. J. (2015) DISEASES: text mining and data integration of disease-gene associations. Methods, 74, 83–89
CrossRef Pubmed Google scholar
[84]
Allende, R. A. (2009) Accelerating searches of research grants and scientific literature with novo|seekSM. Nat. Methods, 6, 394
CrossRef Google scholar
[85]
Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., Nativ, N., Bahir, I., Doniger, T., Krug, H., (2010) GeneCards Version 3: the human gene integrator. Database (Oxford), 2010, baq020
CrossRef Pubmed Google scholar
[86]
Kim, J., So, S., Lee, H.-J., Park, J. C., Kim, J. J. and Lee, H. (2013) DigSee: disease gene search engine with evidence sentences (version cancer). Nucleic Acids Res., 41, W510–W517
CrossRef Pubmed Google scholar
[87]
Zhang, Y., Bai, M., Zhang, B., Liu, C., Guo, Q., Sun, Y., Wang, D., Wang, C., Jiang, Y., Lin, N., (2015) Uncovering pharmacological mechanisms of Wu-tou decoction acting on rheumatoid arthritis through systems approaches: drug-target prediction, network analysis and experimental validation. Sci. Rep., 5, 9463
CrossRef Pubmed Google scholar
[88]
Huang, W., Sherman, B. T. and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57
CrossRef Pubmed Google scholar
[89]
Subramanian, A., Narayan, R., Corsello, S.M., Peck, D.D., Natoli, T.E., Lu, X., Gould, J., Davis, J.F., Tubelli, A.A., Asiedu, J. K. (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles, Cell 171, 1437–1452. e17
[90]
Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.-P., Subramanian, A., Ross, K.N. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313,1929–1935
[91]
Wen, Z., Wang, Z., Wang, S., Ravula, R., Yang, L., Xu, J., Wang, C., Zuo, Z., Chow, M. S., Shi, L., (2011) Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map. PLoS One, 6, e18278
CrossRef Pubmed Google scholar
[92]
Lv, C., Wu, X., Wang, X., Su, J., Zeng, H., Zhao, J., Lin, S., Liu, R., Li, H., Li, X., (2017) The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: a general template for research on TCMs. Sci. Rep., 7, 352
CrossRef Pubmed Google scholar
[93]
Yoo, M., Shin, J., Kim, H., Kim, J., Kang, J. and Tan, A. C. (2018) Exploring the molecular mechanisms of traditional Chinese medicine components using gene expression signatures and connectivity map. Comput. Methods Programs Biomed.,
CrossRef Pubmed Google scholar
[94]
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef Pubmed Google scholar
[95]
Vennix, P. P., Kuijpers, W., Tonnaer, E. L., Peters, T. A. and Ramaekers, F. C. (1990) Cytokeratins in induced epidermoid formations and cholesteatoma lesions. Arch. Otolaryngol. Head Neck Surg., 116, 560–565
CrossRef Pubmed Google scholar
[96]
Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.-L. (2002) Hierarchical organization of modularity in metabolic networks. Science 297,1551–1555
[97]
Padmanabhan, K., Wang, K. and Samatova, N. F. (2012) Functional annotation of hierarchical modularity. PLoS One, 7, e33744
CrossRef Pubmed Google scholar
[98]
Kim, H. U., Ryu, J. Y., Lee, J. O. and Lee, S. Y. (2015) A systems approach to traditional oriental medicine. Nat. Biotechnol., 33, 264–268
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 81520108030, 21472238, 61372194 and 81260672), Professor of Chang Jiang Scholars Program, Shanghai Engineering Research Center for the Preparation of Bioactive Natural Products (No. 16DZ2280200), the Scientific Foundation of Shanghai China (Nos. 13401900103 and 13401900101), the National Key Research and Development Program of China (No. 2017YFC1700200), the Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0090) and Chongqing Education Reform Project of Graduate (No. yjg152017). The funders had no role in study design, data collection, analysis, decision to publish and preparation of the manuscript.

COMPLIANCE WITH ETHICAL GUIDELINES

The authors Jing Zhao, Jian Yang, Saisai Tian and Weidong Zhang declare that they have no conflict of interest. ƒThis paper is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1003 KB)

Accesses

Citations

Detail

Sections
Recommended

/