PDF
(1003KB)
Abstract
Background: Traditional Chinese medicine (TCM) treats diseases in a holistic manner, while TCM formulae are multi-component, multi-target agents at the molecular level. Thus there are many parallels between the key ideas of TCM pharmacology and network pharmacology. These years, TCM network pharmacology has developed as an interdisciplinary of TCM science and network pharmacology, which studies the mechanism of TCM at the molecular level and in the context of biological networks. It provides a new research paradigm that can use modern biomedical science to interpret the mechanism of TCM, which is promising to accelerate the modernization and internationalization of TCM.
Results: In this paper we introduce state-of-the-art free data sources, web servers and softwares that can be used in the TCM network pharmacology, including databases of TCM, drug targets and diseases, web servers for the prediction of drug targets, and tools for network and functional analysis.
Conclusions: This review could help experimental pharmacologists make better use of the existing data and methods in their study of TCM.
Graphical abstract
Keywords
TCM network pharmacology
/
molecular networks
/
signaling pathways
/
databases
/
web servers
Cite this article
Download citation ▾
Jing Zhao, Jian Yang, Saisai Tian, Weidong Zhang.
A survey of web resources and tools for the study of TCM network pharmacology.
Quant. Biol., 2019, 7(1): 17-29 DOI:10.1007/s40484-019-0167-8
| [1] |
Li, S. and Zhang, B. (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med., 11, 110–120
|
| [2] |
Zhao, J., Jiang, P. and Zhang, W. (2010) Molecular networks for the study of TCM pharmacology. Brief. Bioinform., 11, 417–430
|
| [3] |
Li, S., Fan T.-P., Jia, W., Lu, A., Zhang, W. (2014) Network pharmacology in traditional Chinese medicine, evidence-based complementary and alternative medicine. Article ID 138460
|
| [4] |
Li, P., Chen, J., Wang, J., Zhou, W., Wang, X., Li, B., Tao, W., Wang, W., Wang, Y. and Yang, L. (2014) Systems pharmacology strategies for drug discovery and combination with applications to cardiovascular diseases. J. Ethnopharmacol., 151, 93–107
|
| [5] |
Huang, C., Zheng, C., Li, Y., Wang, Y., Lu, A. and Yang, L. (2014) Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief. Bioinform., 15, 710–733
|
| [6] |
Chen, C. Y.-C. (2011) TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 6, e15939
|
| [7] |
Chen, X., Zhou, H., Liu, Y. B., Wang, J. F., Li, H., Ung, C. Y., Han, L. Y., Cao, Z. W. and Chen, Y. Z. (2006) Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Br. J. Pharmacol., 149, 1092–1103
|
| [8] |
Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 6, 13
|
| [9] |
Xue, R., Fang, Z., Zhang, M., Yi, Z., Wen, C. and Shi, T. (2013) TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res., 41, D1089–D1095
|
| [10] |
Li, S., Zhang, B. and Zhang, N. (2011) Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst. Biol., 5, S10
|
| [11] |
Lin, L., Yang, T., Fang, L., Yang, J., Yang, F. and Zhao, J. (2017) Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network. BMC Syst. Biol., 11, 121
|
| [12] |
Sun, Y., Sheng, Z., Ma, C., Tang, K., Zhu, R., Wu, Z., Shen, R., Feng, J., Wu, D., Huang, D., (2015) Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun., 6, 8481
|
| [13] |
Yang, K., Bai, H., Ouyang, Q., Lai, L. and Tang, C. (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol., 4, 228
|
| [14] |
Fang, H., Wang, Y., Yang T., Ga, Y., Zhang, Y., Liu, R., Zhang, W. and Zhao, J. (2013) Bioinformatics analysis for the antirheumatic effects of Huang-Lian-Jie-Du-Tang from a network perspective. Evid-Based Compl. Alt., Article ID 245357,
|
| [15] |
Le, D. H. and Le, L. (2016) Systems pharmacology: a unified framework for prediction of drug-target interactions. Curr. Pharm. Des., 22, 3569–3575
|
| [16] |
Fang, H.-Y., Zeng, H.-W., Lin, L.-M., Chen, X., Shen, X.-N., Fu, P., Lv, C., Liu, Q., Liu, R.-H., Zhang, W.-D., (2017) A network-based method for mechanistic investigation of Shexiang Baoxin Pill’s treatment of cardiovascular diseases. Sci. Rep., 7, 43632
|
| [17] |
Wang, T., Yang, J., Chen, X., Zhao, K., Wang, J., Zhang, Y., Zhao, J. and Ga, Y. (2017) Systems study on the antirheumatic mechanism of Tibetan medicated-bath therapy using Wuwei-Ganlu-Yaoyu-Keli. BioMed Res. Int., 2017, 2320932
|
| [18] |
Liang, X., Li, H. and Li, S. (2014) A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang pill as a case study. Mol. Biosyst., 10, 1014–1022
|
| [19] |
Zhang, W., Tao, Q., Guo, Z., Fu, Y., Chen, X., Shar, P. A., Shahen, M., Zhu, J., Xue, J., Bai, Y., (2016) Systems pharmacology dissection of the integrated treatment for cardiovascular and gastrointestinal disorders by traditional Chinese medicine. Sci. Rep., 6, 32400
|
| [20] |
Zhou, W., Cheng, X. and Zhang, Y. (2016) Effect of Liuwei Dihuang decoction, a traditional Chinese medicinal prescription, on the neuroendocrine immunomodulation network. Pharmacol. Ther., 162, 170–178
|
| [21] |
Ye, H., Ye, L., Kang, H., Zhang, D., Tao, L., Tang K., Liu, X., Zhu, R.,Liu, Q., Chen, Y.Z. (2011) HIT: linking herbal active ingredients to targets. Nucleic Acids Res., 39 (suppl_1), D1055–D1059
|
| [22] |
Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., Li, X., Zhou, W., Wang, W. and Wang, Y. (2012) A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 7, e37608
|
| [23] |
Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang, J., Yang, Q., Fu, T., Zhang, X., Cui, X., Tu, G., (2018) Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 46, D1121–D1127
|
| [24] |
Whirl-Carrillo, M., McDonagh, E. M., Hebert, J. M., Gong, L., Sangkuhl, K., Thorn, C. F., Altman, R. B. and Klein, T. E. (2012) Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 92, 414–417
|
| [25] |
Huang, C., Yang, Y., Chen, X., Wang, C., Li, Y., Zheng, C. and Wang, Y. (2017) Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines. PLoS One, 12, e0184880
|
| [26] |
Lee, A. Y., Park, W., Kang, T.-W., Cha, M. H. and Chun, J. M. (2018) Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis. J. Ethnopharmacol., 221, 151–159
|
| [27] |
Kuhn, M., von Mering, M., Campillos, M., Jensen, L.J., Bork, P. (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res., 36(suppl_1), D684–688
|
| [28] |
Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini C.A., McKusick, V.A. (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders, Nucleic Acids Res., 33(suppl_1), D514–517
|
| [29] |
Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z. and Woolsey, J. (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 34, D668–D672
|
| [30] |
Mangal, M., Sagar, P., Singh, H., Raghava, G. P. S. and Agarwal, S. M. (2013) NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res., 41, D1124–D1129
|
| [31] |
Tao, W., Li, B., Gao, S., Bai, Y., Shar, P. A., Zhang, W., Guo, Z., Sun, K., Fu, Y., Huang, C., (2015) CancerHSP: anticancer herbs database of systems pharmacology. Sci. Rep., 5, 11481
|
| [32] |
Zeng, X., Zhang, P., He, W., Qin, C., Chen, S., Tao, L., Wang, Y., Tan, Y., Gao, D., Wang, B., (2018) NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res., 46, D1217–D1222
|
| [33] |
Fang, J., Cai, C., Wang, Q., Lin, P., Zhao, Z. and Cheng, F. (2017) Systems pharmacology-based discovery of natural products for precision oncology through targeting cancer mutated genes. CPT Pharmacometrics Syst. Pharmacol., 6, 177–187
|
| [34] |
Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 46, D1074–D1082
|
| [35] |
Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Krüger, F. A., Light, Y., Mak, L., McGlinchey, S., (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res., 42, D1083–D1090
|
| [36] |
Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L. and Chong, J. (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 44, D1045–D1053
|
| [37] |
Günther, S., Kuhn, M., Dunkel, M., Campillos, M., Senger, C., Petsalaki, E., Ahmed, J., Urdiales, E. G., Gewiess, A., Jensen, L. J., (2008) SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res., 36, D919–D922
|
| [38] |
Kumar, R., Chaudhary, K., Gupta, S., Singh, H., Kumar, S., Gautam, A., Kapoor, P., Raghava, G. P. S. and Cancer, D. R. (2013) CancerDR: cancer drug resistance database. Sci. Rep., 3, 1445
|
| [39] |
Cotto, K. C., Wagner, A. H., Feng, Y.-Y., Kiwala, S., Coffman, A. C., Spies, G., Wollam, A., Spies, N. C., Griffith, O. L. and Griffith, M. (2018) DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res., 46, D1068–D1073
|
| [40] |
Siramshetty, V. B., Eckert, O. A., Gohlke, B.-O., Goede, A., Chen, Q., Devarakonda, P., Preissner, S. and Preissner, R. (2018) SuperDRUG2: a one stop resource for approved/marketed drugs. Nucleic Acids Res., 46, D1137–D1143
|
| [41] |
Yu, G., Zhang, Y., Ren, W., Dong, L., Li, J., Geng, Y., Zhang, Y., Li, D., Xu, H. and Yang, H. (2016) Network pharmacology-based identification of key pharmacological pathways of Yin-Huang-Qing-Fei capsule acting on chronic bronchitis. Int. J. Chron. Obstruct. Pulmon. Dis., 12, 85–94
|
| [42] |
Fang, H., Wang, Y., Yang, T., Ga, Y., Zhang, Y., Liu, R., Zhang, W. and Zhao, J. (2013) Bioinformatics analysis for the antirheumatic effects of Huang-Lian-Jie-Du-Tang from a network perspective. Evid. Based Complement. Alternat. Med., 2013, 245357
|
| [43] |
Zhang, Y., Lin, Y., Zhao, H., Guo, Q., Yan, C. and Lin, N. (2016) Revealing the effects of the herbal pair of Euphorbia kansui and Glycyrrhiza on hepatocellular carcinoma ascites with integrating network target analysis and experimental validation. Int. J. Biol. Sci., 12, 594–606
|
| [44] |
Okuno, Y., Tamon, A., Yabuuchi, H., Niijima, S., Minowa, Y., Tonomura, K., Kunimoto, R., Feng, C. (2008) GLIDA: GPCR—ligand database for chemical genomics drug discovery—database and tools update, Nucleic Acids Res., 36(suppl_1), D907–D912
|
| [45] |
Chen, X., Ji, Z. L. and Chen, Y. Z. (2002) TTD: Therapeutic Target Database. Nucleic Acids Res., 30, 412–415
|
| [46] |
Davis, A. P., Grondin, C. J., Lennon-Hopkins, K., Saraceni-Richards, C., Sciaky, D., King, B. L., Wiegers, T. C. and Mattingly, C. J. (2015) The Comparative Toxicogenomics Database’s 10th year anniversary: update 2015. Nucleic Acids Res., 43, D914–D920
|
| [47] |
Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 28, 27–30.
|
| [48] |
Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T. and Buetow, K. H. (2009) PID: the Pathway Interaction Database. Nucleic Acids Res., 37, D674–D679
|
| [49] |
Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., Jassal, B., Jupe, S., Korninger, F., McKay, S., (2016) The Reactome pathway Knowledgebase. Nucleic Acids Res., 44, D481–D487
|
| [50] |
Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 44, D471–D480
|
| [51] |
Roth, B. L., Lopez, E., Patel, S. and Kroeze, W. K. (2000) The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? Neuroscientist, 6, 252–262
|
| [52] |
Rose, P. W., Prlić A., Bi, C., Bluhm, W. F., Christie, C. H., Dutta, S., Green, R. K., Goodsell, D. S., Westbrook, J. D., Woo, J., (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res., 43, D345–D356
|
| [53] |
Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., (2016) PubChem Substance and Compound databases. Nucleic Acids Res., 44, D1202–D1213
|
| [54] |
Carlson, H. A., Smith, R. D., Damm-Ganamet, K. L., Stuckey, J. A., Ahmed, A., Convery, M. A., Somers, D. O., Kranz, M., Elkins, P. A., Cui, G., (2016) CSAR 2014: a benchmark exercise using unpublished data from pharma. J. Chem. Inf. Model., 56, 1063–1077.
|
| [55] |
Sterling, T. and Irwin, J. J. (2015) ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model., 55, 2324–2337
|
| [56] |
Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res., 46, D608–D617
|
| [57] |
Liu, Z., Guo, F., Wang, Y., Li, C., Zhang, X., Li, H., Diao, L., Gu, J., Wang, W., Li, D., (2016) BATMAN-TCM: a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Sci. Rep., 6, 21146
|
| [58] |
Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., Lai, L., Pei, J. and Li, H. (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 45, W356–W360
|
| [59] |
Luo, H., Chen, J., Shi, L., Mikailov, M., Zhu, H., Wang, K., He, L., and Yang, L. (2011) DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical–protein interactome, Nucleic Acids Res., 39(suppl_2), W492–W498
|
| [60] |
Pereira, A. S. P., Bester, M. J. and Apostolides, Z. (2017) Exploring the anti-proliferative activity of Pelargonium sidoides DC with in silico target identification and network pharmacology. Mol. Divers., 21, 809–820
|
| [61] |
Wei, J., Zhang, Y., Jia, Q., Liu, M., Li, D., Zhang, Y., Song, L., Hu, Y., Xian, M., Yang, H., (2016) Systematic investigation of transcription factors critical in the protection against cerebral ischemia by Danhong injection. Sci. Rep., 6, 29823
|
| [62] |
Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., Dunkel, M. and Preissner, R. (2014) SuperPred: update on drug classification and target prediction. Nucleic Acids Res., 42, W26–W31
|
| [63] |
Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O. and Zoete, V. (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res., 42, W32–W38
|
| [64] |
Yao, Z.-J., Dong, J., Che, Y.-J., Zhu, M.-F., Wen, M., Wang, N.-N., Wang, S., Lu, A.-P. and Cao, D.-S. (2016) TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des., 30, 413–424
|
| [65] |
Hsin, K.-Y., Matsuoka, Y., Asai, Y., Kamiyoshi, K., Watanabe, T., Kawaoka, Y. and Kitano, H. (2016) systemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Res., 44, W507–W513
|
| [66] |
Hsin, K.-Y., Ghosh, S. and Kitano, H. (2013) Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 8, e83922
|
| [67] |
Zsoldos, Z., Reid, D., Simon, A., Sadjad, B. S. and Johnson, A. P. (2006) eHiTS: an innovative approach to the docking and scoring function problems. Curr. Protein Pept. Sci., 7, 421–435.
|
| [68] |
Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F. and Furlong, L. I. (2017) DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 45, D833–D839
|
| [69] |
Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., King, B. L., McMorran, R., Wiegers, J., Wiegers, T. C. and Mattingly, C. J. (2017) The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res., 45, D972–D978
|
| [70] |
Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res., 32, D115–D119
|
| [71] |
Landrum, M. J., Lee, J. M., Benson, M., Brown, G., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Hoover, J., (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res., 44, D862–D868
|
| [72] |
Aymé S. and Schmidtke, J. (2007) Networking for rare diseases: a necessity for Europe. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 50, 1477–1483, in German
|
| [73] |
MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., Morales, J., (2017) The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res., 45, D896–D901
|
| [74] |
Becker, K.G., Barnes, K.C., Bright, T.J, Wang, S.A. (2004) The Genetic Association Database. Nature Genet ., 36 431–432
|
| [75] |
Blake, J. A., Richardson, J. E., Bult, C. J., Kadin, J. A. and Eppig, J. T., and the Mouse Genome Database Group. (2003) MGD: the Mouse Genome Database. Nucleic Acids Res., 31, 193–195
|
| [76] |
Twigger, S., Lu, J., Shimoyama, M., Chen, D., Pasko, D., Long, H., Ginster, J., Chen, C.-F., Nigam, R., Kwitek, A., (2002) Rat Genome Database (RGD): mapping disease onto the genome. Nucleic Acids Res., 30, 125–128
|
| [77] |
Gutiérrez-Sacristán, A., Grosdidier, S., Valverde, O., Torrens, M., Bravo, À., Piñero, J., Sanz, F. and Furlong, L. I. (2015) PsyGeNET: a knowledge platform on psychiatric disorders and their genes. Bioinformatics, 31, 3075–3077
|
| [78] |
Robinson, P. N., Köhler, S., Bauer, S., Seelow, D., Horn, D. and Mundlos, S. (2008) The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet., 83, 610–615
|
| [79] |
Bundschus, M., Dejori, M., Stetter, M., Tresp, V. and Kriegel, H.-P. (2008) Extraction of semantic biomedical relations from text using conditional random fields. BMC Bioinformatics, 9, 207
|
| [80] |
Bravo, À., Piñero, J., Queralt-Rosinach, N., Rautschka, M. and Furlong, L. I. (2015) Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research. BMC Bioinformatics, 16, 55
|
| [81] |
Rappaport, N., Twik, M., Plaschkes, I., Nudel, R., Iny Stein, T., Levitt, J., Gershoni, M., Morrey, C. P., Safran, M. and Lancet, D. (2017) MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res., 45, D877–D887
|
| [82] |
Roberta, A. (2007) GeneTests: integrating genetic services into patient care. Am. J. Hum. Genet., 81, 658–659
|
| [83] |
Pletscher-Frankild, S., Pallejà A., Tsafou, K., Binder, J. X. and Jensen, L. J. (2015) DISEASES: text mining and data integration of disease-gene associations. Methods, 74, 83–89
|
| [84] |
Allende, R. A. (2009) Accelerating searches of research grants and scientific literature with novo|seekSM. Nat. Methods, 6, 394
|
| [85] |
Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., Nativ, N., Bahir, I., Doniger, T., Krug, H., (2010) GeneCards Version 3: the human gene integrator. Database (Oxford), 2010, baq020
|
| [86] |
Kim, J., So, S., Lee, H.-J., Park, J. C., Kim, J. J. and Lee, H. (2013) DigSee: disease gene search engine with evidence sentences (version cancer). Nucleic Acids Res., 41, W510–W517
|
| [87] |
Zhang, Y., Bai, M., Zhang, B., Liu, C., Guo, Q., Sun, Y., Wang, D., Wang, C., Jiang, Y., Lin, N., (2015) Uncovering pharmacological mechanisms of Wu-tou decoction acting on rheumatoid arthritis through systems approaches: drug-target prediction, network analysis and experimental validation. Sci. Rep., 5, 9463
|
| [88] |
Huang, W., Sherman, B. T. and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57
|
| [89] |
Subramanian, A., Narayan, R., Corsello, S.M., Peck, D.D., Natoli, T.E., Lu, X., Gould, J., Davis, J.F., Tubelli, A.A., Asiedu, J. K. (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles, Cell 171, 1437–1452. e17
|
| [90] |
Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.-P., Subramanian, A., Ross, K.N. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313,1929–1935
|
| [91] |
Wen, Z., Wang, Z., Wang, S., Ravula, R., Yang, L., Xu, J., Wang, C., Zuo, Z., Chow, M. S., Shi, L., (2011) Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map. PLoS One, 6, e18278
|
| [92] |
Lv, C., Wu, X., Wang, X., Su, J., Zeng, H., Zhao, J., Lin, S., Liu, R., Li, H., Li, X., (2017) The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: a general template for research on TCMs. Sci. Rep., 7, 352
|
| [93] |
Yoo, M., Shin, J., Kim, H., Kim, J., Kang, J. and Tan, A. C. (2018) Exploring the molecular mechanisms of traditional Chinese medicine components using gene expression signatures and connectivity map. Comput. Methods Programs Biomed.,
|
| [94] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
|
| [95] |
Vennix, P. P., Kuijpers, W., Tonnaer, E. L., Peters, T. A. and Ramaekers, F. C. (1990) Cytokeratins in induced epidermoid formations and cholesteatoma lesions. Arch. Otolaryngol. Head Neck Surg., 116, 560–565
|
| [96] |
Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.-L. (2002) Hierarchical organization of modularity in metabolic networks. Science 297,1551–1555
|
| [97] |
Padmanabhan, K., Wang, K. and Samatova, N. F. (2012) Functional annotation of hierarchical modularity. PLoS One, 7, e33744
|
| [98] |
Kim, H. U., Ryu, J. Y., Lee, J. O. and Lee, S. Y. (2015) A systems approach to traditional oriental medicine. Nat. Biotechnol., 33, 264–268
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature