Insights into the antineoplastic mechanism of Chelidonium majus via systems pharmacology approach

Xinzhe Xiao, Zehui Chen, Zengrui Wu, Tianduanyi Wang, Weihua Li, Guixia Liu, Bo Zhang, Yun Tang

PDF(2439 KB)
PDF(2439 KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (1) : 42-53. DOI: 10.1007/s40484-019-0165-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Insights into the antineoplastic mechanism of Chelidonium majus via systems pharmacology approach

Author information +
History +

Abstract

Background: The antineoplastic activity of Chelidonium majus has been reported, but its mechanism of action (MoA) is unsuspected. The emerging theory of systems pharmacology may be a useful approach to analyze the complicated MoA of this multi-ingredient traditional Chinese medicine (TCM).

Methods: We collected the ingredients and related compound-target interactions of C. majus from several databases. The bSDTNBI (balanced substructure-drug-target network-based inference) method was applied to predict each ingredient’s targets. Pathway enrichment analysis was subsequently conducted to illustrate the potential MoA, and prognostic genes were identified to predict the certain types of cancers that C. majus might be beneficial in treatment. Bioassays and literature survey were used to validate the in silico results.

Results: Systems pharmacology analysis demonstrated that C. majus exerted experimental or putative interactions with 18 cancer-associated pathways, and might specifically act on 13 types of cancers. Chelidonine, sanguinarine, chelerythrine, berberine, and coptisine, which are the predominant components of C. majus, may suppress the cancer genes by regulating cell cycle, inducing cell apoptosis and inhibiting proliferation.

Conclusions: The antineoplastic MoA of C. majus was investigated by systems pharmacology approach. C. majus exhibited promising pharmacological effect against cancer, and may consequently be useful material in further drug development. The alkaloids are the key components in C. majus that exhibit anticancer activity.

Graphical abstract

Keywords

systems pharmacology / mechanism of action / traditional Chinese medicine / Chelidonium majus

Cite this article

Download citation ▾
Xinzhe Xiao, Zehui Chen, Zengrui Wu, Tianduanyi Wang, Weihua Li, Guixia Liu, Bo Zhang, Yun Tang. Insights into the antineoplastic mechanism of Chelidonium majus via systems pharmacology approach. Quant. Biol., 2019, 7(1): 42‒53 https://doi.org/10.1007/s40484-019-0165-x

References

[1]
Chen, S.L., Song, J.Y., Sun, C., Xu, J., Zhu, Y.J. and Verpoorte, R. (2015) Herbal genomics: examining the biology of traditional medicine. Science/AAAS Custom Publishing Office, 347, S27–S29
[2]
Yin, N., Ma, W., Pei, J., Ouyang, Q., Tang, C. and Lai, L. (2014) Synergistic and antagonistic drug combinations depend on network topology. PLoS One, 9, e93960
CrossRef Google scholar
[3]
Colombo, M. L. and Bosisio, E. (1996) Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol. Res., 33, 127–134
CrossRef Google scholar
[4]
Gilca, M., Gaman, L., Panait, E., Stoian, I. and Atanasiu, V. (2010)Chelidonium majus – an integrative review: traditional knowledge versus modern findings. Forsch. Komplementarmed., 17, 241–248
CrossRef Google scholar
[5]
Danhof, M. (2016) Systems pharmacology – towards the modeling of network interactions. Eur. J. Pharm. Sci., 94, 4–14
CrossRef Google scholar
[6]
Xie, L., Draizen, E. J. and Bourne, P. E. (2017) Harnessing big data for systems pharmacology. Annu. Rev. Pharmacol. Toxicol., 57, 245–262
CrossRef Google scholar
[7]
Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J. and Tang, Y. (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 8, e1002503
CrossRef Google scholar
[8]
Wu, Z., Cheng, F., Li, J., Li, W., Liu, G. and Tang, Y. (2017) SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug–target interactions and drug repositioning. Brief. Bioinform., 18, 333–347
[9]
Wu, Z., Lu, W., Wu, D., Luo, A., Bian, H., Li, J., Li, W., Liu, G., Huang, J., Cheng, F., (2016) In silico prediction of chemical mechanism of action via an improved network-based inference method. Br. J. Pharmacol., 173, 3372–3385
CrossRef Google scholar
[10]
Wang, Y., Li, J., Wu, Z., Zhang, B., Yang, H., Wang, Q., Cai, Y., Liu, G., Li, W. and Tang, Y. (2017) Insights into the molecular mechanisms of Polygonum multiflorum Thunb-induced liver injury: a computational systems toxicology approach. Acta Pharmacol. Sin., 38, 719–732
CrossRef Google scholar
[11]
Wang, T., Wu, Z., Sun, L., Li, W., Liu, G. and Tang, Y. (2018) A computational systems pharmacology approach to investigate molecular mechanisms of herbal formula Tian-Ma-Gou-Teng-Yin for treatment of alzheimer’s disease. Front. Pharmacol., 9, 668
CrossRef Google scholar
[12]
Chen, C. Y.-C. (2011) TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 6, e15939
CrossRef Google scholar
[13]
Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 6, 13
CrossRef Google scholar
[14]
Xue, R., Fang, Z., Zhang, M., Yi, Z., Wen, C. and Shi, T. (2013) TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res., 41, D1089–D1095
CrossRef Google scholar
[15]
Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., Mcglinchey, S., Michalovich, D., Al-Lazikani, B., (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 40, D1100–D1107
CrossRef Google scholar
[16]
Liu, T., Lin, Y., Wen, X., Jorissen, R. N. and Gilson, M. K. (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res., 35, D198–D201
CrossRef Google scholar
[17]
Southan, C., Sharman, J. L., Benson, H. E., Faccenda, E., Pawson, A. J., Alexander, S. P. H., Buneman, O. P., Davenport, A. P., McGrath, J. C., Peters, J. A., (2016) The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res., 44, D1054–D1068
CrossRef Google scholar
[18]
Roth, B. L., Lopez, E., Patel, S. and Kroeze, W. K. (2000) The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? Neuroscientist, 6, 252–262
CrossRef Google scholar
[19]
Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57
CrossRef Google scholar
[20]
Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 37, 1–13
CrossRef Google scholar
[21]
Lei, Q., Zhao, X., Xu, L., Peng, Y. and Xiao, P. (2014) Chemical constituents of plants from tribe Chelidonieae and their bioactivities. Chin. Herb. Med., 6, 1–21
CrossRef Google scholar
[22]
Stork, P. J. S. and Schmitt, J. M. (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol., 12, 258–266
CrossRef Google scholar
[23]
Mehlen, P. and Puisieux, A. (2006) Metastasis: a question of life or death. Nat. Rev. Cancer, 6, 449–458
CrossRef Google scholar
[24]
Otrock, Z. K., Mahfouz, R. A. R., Makarem, J. A. and Shamseddine, A. I. (2007) Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol. Dis., 39, 212–220
CrossRef Google scholar
[25]
Lambert, A. W., Pattabiraman, D. R. and Weinberg, R. A. (2017) Emerging biological principles of metastasis. Cell, 168, 670–691
CrossRef Google scholar
[26]
Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., Dimitriadoy, S., Liu, D. L., Kantheti, H. S., Saghafinia, S., (2018) Oncogenic signaling pathways in the Cancer Genome Atlas. Cell, 173, 321–337.e310
CrossRef Google scholar
[27]
Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G., Benfeitas, R., Arif, M., Liu, Z., Edfors, F., (2017) A pathology atlas of the human cancer transcriptome. Science, 357, eaan2507
CrossRef Google scholar
[28]
Sárközi, Á., Janicsák, G., Kursinszki, L. and Kéry, Á. (2006) Alkaloid composition of Chelidonium majus L. studied by different chromatographic techniques. Chromatographia, 63, S81–S86
CrossRef Google scholar
[29]
Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674
CrossRef Google scholar
[30]
Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell, 100, 57–70
CrossRef Google scholar
[31]
Crowley, C. W., Cohen, R. L., Lucas, B. K., Liu, G., Shuman, M. A. and Levinson, A. D. (1993) Prevention of metastasis by inhibition of the urokinase receptor. Proc. Natl. Acad. Sci. USA, 90, 5021–5025
CrossRef Google scholar
[32]
Miller, C. and Koeffler, H. P. (1993) P53 mutations in human cancer. Leukemia, 7, S18–S21
[33]
Achbarou, A., Kaiser, S., Tremblay, G., Ste-Marie, L.-G., Brodt, P., Goltzman, D. and Rabbani, S. A. (1994) Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res., 54, 2372–2377
[34]
Xing, R. H. and Rabbani, S. A. (1996) Overexpression of urokinase receptor in breast cancer cells results in increased tumor invasion, growth and metastasis. Int. J. Cancer, 67, 423–429
CrossRef Google scholar
[35]
Vogt, P. K. (2001) Jun, the oncoprotein. Oncogene, 20, 2365–2377
CrossRef Google scholar
[36]
Stead, E., White, J., Faast, R., Conn, S., Goldstone, S., Rathjen, J., Dhingra, U., Rathjen, P., Walker, D. and Dalton, S. (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene, 21, 8320–8333
CrossRef Google scholar
[37]
Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A. and Mccubrey, J. A. (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 17, 590–603
CrossRef Google scholar
[38]
Michalik, L., Desvergne, B. and Wahli, W. (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat. Rev. Cancer, 4, 61–70
CrossRef Google scholar
[39]
Ciocca, D. R. and Calderwood, S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 10, 86–103
CrossRef Google scholar
[40]
Hui, L., Bakiri, L., Mairhorfer, A., Schweifer, N., Haslinger, C., Kenner, L., Komnenovic, V., Scheuch, H., Beug, H. and Wagner, E. F. (2007) p38α suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat. Genet., 39, 741–749
CrossRef Google scholar
[41]
Gustafson, A. M., Soldi, R., Anderlind, C., Scholand, M. B., Qian, J., Zhang, X., Cooper, K., Walker, D., Mcwilliams, A., Liu, G., (2010) Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci. Transl. Med., 2, 26ra25
CrossRef Google scholar
[42]
Malumbres, M. (2014) Cyclin-dependent kinases. Genome Biol., 15, 122
CrossRef Google scholar
[43]
Chen, X.-M., Zhang, M., Fan, P.-L., Qin, Y.-H. and Zhao, H.-W. (2016) Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines. Oncol. Lett., 11, 3917–3924
CrossRef Google scholar
[44]
Noureini, S. K. and Esmaili, H. (2014) Multiple mechanisms of cell death induced by chelidonine in MCF-7 breast cancer cell line. Chem. Biol. Interact., 223, 141–149
CrossRef Google scholar
[45]
Lee, J. S., Jung, W.-K., Jeong, M. H., Yoon, T. R. and Kim, H. K. (2012) Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 Ratio and caspase-9-dependent pathway. Int. J. Toxicol., 31, 70–77
CrossRef Google scholar
[46]
Ahmad, N., Gupta, S., Husain, M. M., Heiskanen, K. M. and Mukhtar, H. (2000) Differential antiproliferative and apoptotic response of sanguinarine for cancer cells versus normal cells. Clin. Cancer Res., 6, 1524–1528
[47]
Adhami, V. M., Aziz, M. H., Reagan-Shaw, S. R., Nihal, M., Mukhtar, H. and Ahmad, N. (2004) Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol. Cancer Ther., 3, 933–940.
[48]
Herbert, J. M., Augereau, J. M., Gleye, J. and Maffrand, J. P. (1990) Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun., 172, 993–999
CrossRef Google scholar
[49]
Malikova, J., Zdarilova, A. and Hlobilkova, A. (2006) Effects of sanguinarine and chelerythrine on the cell cycle and apoptosis. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub ., 150, 5–12
CrossRef Google scholar
[50]
Vrba, J., Doležel, P., Vičar, J., Modrianský, M. and Ulrichová, J. (2008) Chelerythrine and dihydrochelerythrine induce G1 phase arrest and bimodal cell death in human leukemia HL-60 cells. Toxicol. In Vitro, 22, 1008–1017
CrossRef Google scholar
[51]
Sun, Y., Xun, K., Wang, Y. and Chen, X. (2009) A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 20, 757–769
CrossRef Google scholar
[52]
Li, J., Qiu, D. M., Chen, S. H., Cao, S. P. and Xia, X. L. (2014) Suppression of human breast cancer cell metastasis by coptisine in vitro. Asian Pac. J. Cancer Prev., 15, 5747–5751
CrossRef Google scholar
[53]
Rao, P. C., Begum, S., Sahai, M. and Sriram, D. S. (2017) Coptisine-induced cell cycle arrest at G2/M phase and reactive oxygen species–dependent mitochondria-mediated apoptosis in non-small-cell lung cancer A549 cells. Tumour Biol., 39
CrossRef Google scholar
[54]
Nadova, S., Miadokova, E., Alfoldiova, L., Kopaskova, M., Hasplova, K., Hudecova, A., Vaculcikova, D., Gregan, F. and Cipak, L. (2008) Potential antioxidant activity, cytotoxic and apoptosis-inducing effects of Chelidonium majus L. extract on leukemia cells. Neuroendocrinol. Lett., 29, 649–652
[55]
Deljanin, M., Nikolic, M., Baskic, D., Todorovic, D., Djurdjevic, P., Zaric, M., Stankovic, M., Todorovic, M., Avramovic, D. and Popovic, S. (2016) Chelidonium majus crude extract inhibits migration and induces cell cycle arrest and apoptosis in tumor cell lines. J. Ethnopharmacol., 190, 362–371
CrossRef Google scholar
[56]
Zhang, L., Chen, Z. H., Chen, H. Y., Wang, X. Q., Zhang, B. and University, S. (2018) Study on antitumor molecular mechanism of Chelidonium majus based on network pharmacology. Chin. Tradit. Herbal Drugs, 49, 646–657
[57]
Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., Li, X., Zhou, W., Wang, W. and Wang, Y. (2012) A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 7, e37608
CrossRef Google scholar
[58]
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011) Open Babel: an open chemical toolbox. J. Cheminform., 3, 33
CrossRef Google scholar
[59]
Small-Molecule Drug Discovery Suite 2015-2, Schrödinger, LLC, New York, 2015
[60]
Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res., 33, D154–D159
CrossRef Google scholar
[61]
Klekota, J. and Roth, F. P. (2008) Chemical substructures that enrich for biological activity. Bioinformatics, 24, 2518–2525
CrossRef Google scholar
[62]
Yap, C. W. (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 32, 1466–1474
CrossRef Google scholar
[63]
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef Google scholar

ACKNOWLEDGEMENTS

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0502304), the National Natural Science Foundation of China (Nos. 81673356 and U1603122) and the 111 Project (No. B07023).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Xinzhe Xiao, Zehui Chen, Zengrui Wu, Tianduanyi Wang, Weihua Li, Guixia Liu, Bo Zhang and Yun Tang declare that they have no conflict of interests.ƒThis article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2439 KB)

Accesses

Citations

Detail

Sections
Recommended

/