A case study on the detailed reproducibility of a Human Cell Atlas project
Kui Hua, Xuegong Zhang
A case study on the detailed reproducibility of a Human Cell Atlas project
Background: Reproducibility is a defining feature of a scientific discovery. Reproducibility can be at different levels for different types of study. The purpose of the Human Cell Atlas (HCA) project is to build maps of molecular signatures of all human cell types and states to serve as references for future discoveries. Constructing such a complex reference atlas must involve the assembly and aggregation of data from multiple labs, probably generated with different technologies. It has much higher requirements on reproducibility than individual research projects. To add another layer of complexity, the bioinformatics procedures involved for single-cell data have high flexibility and diversity. There are many factors in the processing and analysis of single-cell RNA-seq data that can shape the final results in different ways.
Methods: To study what levels of reproducibility can be reached in current practices, we conducted a detailed reproduction study for a well-documented recent publication on the atlas of human blood dendritic cells as an example to break down the bioinformatics steps and factors that are crucial for the reproducibility at different levels.
Results: We found that the major scientific discovery can be well reproduced after some efforts, but there are also some differences in some details that may cause uncertainty in the future reference. This study provides a detailed case observation on the on-going discussions of the type of standards the HCA community should take when releasing data and publications to guarantee the reproducibility and reliability of the future atlas.
Conclusion: Current practices of releasing data and publications may not be adequate to guarantee the reproducibility of HCA. We propose building more stringent guidelines and standards on the information that needs to be provided along with publications for projects that evolved in the HCA program.
Human Cell Atlas / reproducibility / single cell / bioinformatics
[1] |
Watson, J. D. (1990) The human genome project: past, present, and future. Science, 248, 44–49
CrossRef
Pubmed
Google scholar
|
[2] |
Collins, F. S., Morgan, M. and Patrinos, A. (2003) The Human Genome Project: lessons from large-scale biology. Science, 300, 286–290
CrossRef
Pubmed
Google scholar
|
[3] |
Gibbs, R. A., Belmont, J. W., Hardenbol, P., Willis, T. D., Yu, F., Zhang, H., Zeng, C., Matsuda, I., Fukushima, Y., Macer, D. R.,
CrossRef
Pubmed
Google scholar
|
[4] |
Feingold, E. A., Good, P. J., Guyer, M. S., Kamholz, S., Liefer, L., Wetterstrand, K., Collins, F. S., Gingeras, T. R., Kampa, D., Sekinger, E. A.
CrossRef
Pubmed
Google scholar
|
[5] |
Haines, J. L., Hauser, M. A., Schmidt, S., Scott, W. K., Olson, L. M., Gallins, P., Spencer, K. L., Kwan, S. Y., Noureddine, M., Gilbert, J. R.,
CrossRef
Pubmed
Google scholar
|
[6] |
The 1000 Genomes Project Consortium. (2010) A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073
CrossRef
Pubmed
Google scholar
|
[7] |
The 1000 Genomes Project Consortium. (2012) An integrated map of genetic variation from 1092 human genomes. Nature, 491, 56–65
CrossRef
Pubmed
Google scholar
|
[8] |
Kellis, M., Wold, B., Snyder, M. P., Bernstein, B. E., Kundaje, A., Marinov, G. K., Ward, L. D., Birney, E., Crawford, G. E., Dekker, J.,
CrossRef
Pubmed
Google scholar
|
[9] |
The Human Cell Atlas Meeting Participants. (2017) The Human Cell Atlas. eLife, 6, e27041
CrossRef
Pubmed
Google scholar
|
[10] |
Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. and Teichmann, S. A. (2017) The Human Cell Atlas: from vision to reality. Nature, 550, 451–453
CrossRef
Pubmed
Google scholar
|
[11] |
Svensson, V., Vento-Tormo, R. and Teichmann, S. A. (2018) Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc., 13, 599–604
CrossRef
Pubmed
Google scholar
|
[12] |
Cusanovich, D. A., Daza, R., Adey, A., Pliner, H. A., Christiansen, L., Gunderson, K. L., Steemers, F. J., Trapnell, C. and Shendure, J. (2015) Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science, 348, 910–914
CrossRef
Pubmed
Google scholar
|
[13] |
Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E. D., Tanay, A. and Fraser, P. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502, 59–64
CrossRef
Pubmed
Google scholar
|
[14] |
Zenobi, R. (2013) Single-cell metabolomics: analytical and biological perspectives. Science, 342, 1243259
CrossRef
Pubmed
Google scholar
|
[15] |
Crosetto, N., Bienko, M. and van Oudenaarden, A. (2015) Spatially resolved transcriptomics and beyond. Nat. Rev. Genet., 16, 57–66
CrossRef
Pubmed
Google scholar
|
[16] |
Lein, E., Borm, L. E. and Linnarsson, S. (2017) The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science, 358, 64–69
CrossRef
Pubmed
Google scholar
|
[17] |
Zhong, S., Zhang, S., Fan, X., Wu, Q., Yan, L., Dong, J., Zhang, H., Li, L., Sun, L., Pan, N.,
CrossRef
Pubmed
Google scholar
|
[18] |
Muraro, M. J., Dharmadhikari G., Grün, D., Groen, N., Dielen, T., Jansen, E., van Gurp, L., Engelse, M. A., Carlotti, F., de Koning, E. J. P.
CrossRef
Google scholar
|
[19] |
Darmanis, S., Sloan, S. A., Zhang, Y., Enge, M., Caneda, C., Shuer, L. M., Hayden Gephart, M. G., Barres, B. A. and Quake, S. R. (2015) A survey of human brain transcriptome diversity at the single cell level. Proc. Natl. Acad. Sci. USA, 112, 7285–7290
CrossRef
Pubmed
Google scholar
|
[20] |
Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M.,
CrossRef
Pubmed
Google scholar
|
[21] |
Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. and Teichmann, S. A. (2017) Single-cell transcriptomics to explore the immune system in health and disease. Science, 358, 58–63
CrossRef
Pubmed
Google scholar
|
[22] |
Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A.,
CrossRef
Pubmed
Google scholar
|
[23] |
Villani, A. C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., Griesbeck, M., Butler, A., Zheng, S., Lazo, S.,
CrossRef
Pubmed
Google scholar
|
[24] |
Data Coordination – Human Cell Atlas (https://www.humancellatlas.org/data-sharing)
|
[25] |
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 36, 411–420
CrossRef
Pubmed
Google scholar
|
[26] |
van der Maaten, L. and Hinton, G. (2008) Visualizing data using t-SNE. J. Mach. Learn. Res., 9, 2579–2605.
|
[27] |
Wattenberg, F. V. M. and Johnson, I. (2016) How to use t-SNE effectively. Distillhttp://doi.org/10.23915/distill.00002
|
[28] |
Yuansheng Zhou, T. O. S. (2018) Using global t-SNE to preserve inter-cluster data structure. bioRxiv, Doi: https://doi.org/10.1101/331611
|
[29] |
Kobak, D. and Berens, P. (2018) The art of using t-SNE for single-cell transcriptomics. bioRxiv, Doi: https://doi.org/10.1101/453449
|
[30] |
Baker, M. (2016) Is there a reproducibility crisis? Nature. 533, 452–454
|
[31] |
Berg, J. (2018) Progress on reproducibility. Science, 359, 9
CrossRef
Pubmed
Google scholar
|
[32] |
Stark, P. B. (2018) Before reproducibility must come preproducibility. Nature, 557, 613
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |