PDF
(1681KB)
Abstract
Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology.
Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites’ concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC.
Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model.
Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.
Graphical abstract
Keywords
arachidonic acid
/
metabolic network
/
computational model
/
anti-inflammation
/
natural product
Cite this article
Download citation ▾
Wen Yang, Xia Wang, Kenan Li, Yuanru Liu, Ying Liu, Rui Wang, Honglin Li.
Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network.
Quant. Biol., 2019, 7(1): 30-41 DOI:10.1007/s40484-018-0163-4
| [1] |
Libby, P. (2007) Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev., 65, S140–S146
|
| [2] |
Davies, P., Bailey, P. J., Goldenberg, M. M. and Ford-Hutchinson, A. W. (1984) The role of arachidonic acid oxygenation products in pain and inflammation. Annu. Rev. Immunol., 2, 335–357
|
| [3] |
Marx, J. (2004) Cancer research: inflammation and cancer: the link grows stronger. Science, 306, 966–968
|
| [4] |
Needleman, P., Truk, J., Jakschik, B. A., Morrison, A. R. and Lefkowith, J. B. (1986) Arachidonic acid metabolism. Annu. Rev. Biochem., 55, 69–102
|
| [5] |
Kühn, H. and O’Donnell, V. B. (2006) Inflammation and immune regulation by 12/15-lipoxygenases. Prog. Lipid Res., 45, 334–356
|
| [6] |
Harvey, R. J., Depner, U. B., Wässle, H., Ahmadi, S., Heindl, C., Reinold, H., Smart, T. G., Harvey, K., Schütz, B., Abo-Salem, O. M., (2004) GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science, 304, 884–887
|
| [7] |
Guay, J., Bateman, K., Gordon, R., Mancini, J. and Riendeau, D. (2004) Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1. J. Biol. Chem., 279, 24866–24872
|
| [8] |
Nakanishi, M. and Rosenberg, D. W. (2013) Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol., 35, 123–137
|
| [9] |
Smith, J. B., Araki, H. and Lefer, A. M. (1980) Thromboxane A2, prostacyclin and aspirin: effects on vascular tone and platelet aggregation. Circulation, 62, V19–V25
|
| [10] |
Honn, K. V., Cicone, B. and Skoff, A. (1981) Prostacyclin: a potent antimetastatic agent. Science, 212, 1270–1272
|
| [11] |
Scher, J. U. and Pillinger, M. H. (2005) 15d-PGJ2: the anti-inflammatory prostaglandin? Clin. Immunol., 114, 100–109
|
| [12] |
Palmblad, J., Malmsten, C. L., Udén, A. M., Rådmark, O., Engstedt, L. and Samuelsson, B. (1981) Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence. Blood, 58, 658–661
|
| [13] |
Csoma, Z., Kharitonov, S. A., Balint, B., Bush, A., Wilson, N. M. and Barnes, P. J. (2002) Increased leukotrienes in exhaled breath condensate in childhood asthma. Am. J. Respir. Crit. Care Med., 166, 1345–1349
|
| [14] |
Peters-Golden, M., Gleason, M. M. and Togias, A. (2006) Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin. Exp. Allergy, 36, 689–703
|
| [15] |
Sozzani, S., Zhou, D., Locati, M., Bernasconi, S., Luini, W., Mantovani, A. and O’Flaherty, J. T. (1996) Stimulating properties of 5-oxo-eicosanoids for human monocytes: synergism with monocyte chemotactic protein-1 and -3. J. Immunol., 157, 4664–4671
|
| [16] |
Rainsford, K. D. (1999) Profile and mechanisms of gastrointestinal and other side effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Am. J. Med., 107, 27–35
|
| [17] |
Psaty, B. M. and Furberg, C. D. (2005) COX-2 inhibitors–lessons in drug safety. N. Engl. J. Med., 352, 1133–1135
|
| [18] |
Singh, D. (2004) Merck withdraws arthritis drug worldwide. BMJ, 329, 816.2
|
| [19] |
Berger, W., De Chandt, M. T. and Cairns, C. B. (2007) Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int. J. Clin. Pract., 61, 663–676
|
| [20] |
Pergola, C. and Werz, O. (2010) 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin. Ther. Pat., 20, 355–375
|
| [21] |
Bertolini, A., Ottani, A. and Sandrini, M. (2001) Dual acting anti-inflammatory drugs: a reappraisal. Pharmacol. Res., 44, 437–450
|
| [22] |
Kitano, H. (2007) A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Discov., 6, 202–210
|
| [23] |
Yang, K., Ma, W., Liang, H., Ouyang, Q., Tang, C. and Lai, L. (2007) Dynamic simulations on the arachidonic acid metabolic network. PLOS Comput. Biol., 3, e55
|
| [24] |
Meng, H., Liu, Y. and Lai, L. (2015) Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation. Acc. Chem. Res., 48, 2242–2250
|
| [25] |
Su, Y. Q., Zhang, W. D., Zhang, C., Liu, R. H. and Shen, Y. H. (2008) A new caffeic ester from Incarvillea mairei var. granditlora (Wehrhahn) Grierson. Chin. Chem. Lett., 19, 829–831
|
| [26] |
Li, L., Zeng, H., Liu, F., Zhang, J., Yue, R., Lu, W., Yuan, X., Dai, W., Yuan, H., Sun, Q., (2012) Target identification and validation of (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate, an anti-inflammatory natural product. Eur. J. Inflamm., 10, 297–309
|
| [27] |
Buczynski, M. W., Stephens, D. L., Bowers-Gentry, R. C., Grkovich, A., Deems, R. A. and Dennis, E. A. (2007) TLR-4 and sustained calcium agonists synergistically produce eicosanoids independent of protein synthesis in RAW264.7 cells. J. Biol. Chem., 282, 22834–22847
|
| [28] |
Leslie, C. C. (2015) Cytosolic phospholipase A2: physiological function and role in disease. J. Lipid Res., 56, 1386–1402
|
| [29] |
Christmas, P., Weber, B. M., McKee, M., Brown, D. and Soberman, R. J. (2002) Membrane localization and topology of leukotriene C4 synthase. J. Biol. Chem., 277, 28902–28908
|
| [30] |
Funk, C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294, 1871–1875
|
| [31] |
Honda, Z., Nakamura, M., Miki, I., Minami, M., Watanabe, T., Seyama, Y., Okado, H., Toh, H., Ito, K., Miyamoto, T., (1991) Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature, 349, 342–346
|
| [32] |
Horton, J. K., Williams, A. S., Smith-Phillips, Z., Martin, R. C. and O’Beirne, G. (1999) Intracellular measurement of prostaglandin E2: effect of anti-inflammatory drugs on cyclooxygenase activity and prostanoid expression. Anal. Biochem., 271, 18–28
|
| [33] |
Kramer, R. M., Roberts, E. F., Um, S. L., Börsch-Haubold, A. G., Watson, S. P., Fisher, M. J. and Jakubowski, J. A. (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem., 271, 27723–27729
|
| [34] |
Kozawa, O., Tokuda, H., Matsuno, H. and Uematsu, T. (1999) Involvement of p38 mitogen-activated protein kinase in basic fibroblast growth factor-induced interleukin-6 synthesis in osteoblasts. J. Cell. Biochem., 74, 479–485
|
| [35] |
Tokuda, H., Kozawa, O. and Uematsu, T. (2000) Basic fibroblast growth factor stimulates vascular endothelial growth factor release in osteoblasts: divergent regulation by p42/p44 mitogen-activated protein kinase and p38 mitogen-activated protein kinase. J. Bone Miner. Res., 15, 2371–2379
|
| [36] |
Shen, J.-N., Xu, L.-X., Shan, L., Zhang, W.-D., Li, H.-L. and Wang, R. (2015) Neuroprotection of (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate against hydrogen peroxide and lipopolysaccharide induced injury via modulating arachidonic acid network and p38-MAPK signaling. Curr. Alzheimer Res., 12, 892–902
|
| [37] |
Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. and Hirakawa, M. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res., 34, D354–D357
|
| [38] |
Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G. and Schomburg, D. (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res., 32, D431–D433
|
| [39] |
Yang, K., Bai, H., Ouyang, Q., Lai, L. and Tang, C. (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol., 4, 228
|
| [40] |
Csermely, P., Korcsmáros, T., Kiss, H. J., London, G. and Nussinov, R. (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery. A comprehensive review. Pharmacol. Ther., 138, 333–408
|
| [41] |
Rossi, A., Pergola, C., Koeberle, A., Hoffmann, M., Dehm, F., Bramanti, P., Cuzzocrea, S., Werz, O. and Sautebin, L. (2010) The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br. J. Pharmacol., 161, 555–570
|
| [42] |
Chan, M. M.-Y., Moore, A. R. (2010) Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E(2)-mediated lipoxin A(4) Production. J. Immunol., 184, 6418–6426
|
| [43] |
Rajakariar, R., Yaqoob, M. M. and Gilroy, D. W. (2006) COX-2 in inflammation and resolution. Mol. Interv., 6, 199–207
|
| [44] |
Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L. and Isakson, P. (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA, 91, 12013–12017
|
| [45] |
Samuelsson, B., Dahlén, S. E., Lindgren, J. A., Rouzer, C. A. and Serhan, C. N. (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science, 237, 1171–1176
|
| [46] |
Dinarello, C. A. (2000) Proinflammatory cytokines. Chest, 118, 503–508
|
| [47] |
Pettus, B. J., Bielawska, A., Spiegel, S., Roddy, P., Hannun, Y. A. and Chalfant, C. E. (2003) Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J. Biol. Chem., 278, 38206–38213
|
| [48] |
Piomelli, D. (1993) Arachidonic acid in cell signaling. Curr. Opin. Cell Biol., 5, 274–280
|
| [49] |
De Micheli, G. and Benini, L. (2006) Networks on Chips: Technology and Tools. Academic Press.
|
| [50] |
Benini, L., De Micheli, G. (2002) Networks on chips: A new SoC paradigm. Computer, 35, 70–78
|
| [51] |
Hopkins, A. L. (2008) Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol., 4, 682–690
|
| [52] |
Wang, X., Terfve, C., Rose, J. C. and Markowetz, F. (2011) HTSanalyzeR: an R/Bioconductor package for integrated network analysis of high-throughput screens. Bioinformatics, 27, 879–880
|
| [53] |
Zhao, S. and Iyengar, R. (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol., 52, 505–521
|
| [54] |
Walpole, J., Papin, J. A. and Peirce, S. M. (2013) Multiscale computational models of complex biological systems. Annu. Rev. Biomed. Eng., 15, 137–154
|
| [55] |
Gupta, S., Maurya, M. R., Stephens, D. L., Dennis, E. A. and Subramaniam, S. (2009) An integrated model of eicosanoid metabolism and signaling based on lipidomics flux analysis. Biophys. J., 96, 4542–4551
|
| [56] |
Kihara, Y., Gupta, S., Maurya, M. R., Armando, A., Shah, I., Quehenberger, O., Glass, C. K., Dennis, E. A. and Subramaniam, S. (2014) Modeling of eicosanoid fluxes reveals functional coupling between cyclooxygenases and terminal synthases. Biophys. J., 106, 966–975
|
| [57] |
Yang, K., Ma, W., Liang, H., Ouyang, Q., Tang, C. and Lai, L. (2007) Dynamic simulations on the arachidonic acid metabolic network. PLOS Comput. Biol., 3, e55
|
| [58] |
Yang, K., Bai, H., Ouyang, Q., Lai, L. and Tang, C. (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol., 4, 228
|
| [59] |
Fajmut, A., Schäfer, D., Brumen, M., Dobovišek, A., Antić N. and Emeršič T. (2015) Dynamic model of eicosanoid production with special reference to non-steroidal anti-inflammatory drug-triggered hypersensitivity. IET Syst. Biol., 9, 204–215
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature