Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network
Wen Yang, Xia Wang, Kenan Li, Yuanru Liu, Ying Liu, Rui Wang, Honglin Li
Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network
Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology.
Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites’ concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC.
Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model.
Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.
arachidonic acid / metabolic network / computational model / anti-inflammation / natural product
[1] |
Libby, P. (2007) Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev., 65, S140–S146
CrossRef
Pubmed
Google scholar
|
[2] |
Davies, P., Bailey, P. J., Goldenberg, M. M. and Ford-Hutchinson, A. W. (1984) The role of arachidonic acid oxygenation products in pain and inflammation. Annu. Rev. Immunol., 2, 335–357
CrossRef
Pubmed
Google scholar
|
[3] |
Marx, J. (2004) Cancer research: inflammation and cancer: the link grows stronger. Science, 306, 966–968
CrossRef
Pubmed
Google scholar
|
[4] |
Needleman, P., Truk, J., Jakschik, B. A., Morrison, A. R. and Lefkowith, J. B. (1986) Arachidonic acid metabolism. Annu. Rev. Biochem., 55, 69–102
CrossRef
Pubmed
Google scholar
|
[5] |
Kühn, H. and O’Donnell, V. B. (2006) Inflammation and immune regulation by 12/15-lipoxygenases. Prog. Lipid Res., 45, 334–356
CrossRef
Pubmed
Google scholar
|
[6] |
Harvey, R. J., Depner, U. B., Wässle, H., Ahmadi, S., Heindl, C., Reinold, H., Smart, T. G., Harvey, K., Schütz, B., Abo-Salem, O. M.,
CrossRef
Pubmed
Google scholar
|
[7] |
Guay, J., Bateman, K., Gordon, R., Mancini, J. and Riendeau, D. (2004) Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1. J. Biol. Chem., 279, 24866–24872
CrossRef
Pubmed
Google scholar
|
[8] |
Nakanishi, M. and Rosenberg, D. W. (2013) Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol., 35, 123–137
CrossRef
Pubmed
Google scholar
|
[9] |
Smith, J. B., Araki, H. and Lefer, A. M. (1980) Thromboxane A2, prostacyclin and aspirin: effects on vascular tone and platelet aggregation. Circulation, 62, V19–V25
Pubmed
|
[10] |
Honn, K. V., Cicone, B. and Skoff, A. (1981) Prostacyclin: a potent antimetastatic agent. Science, 212, 1270–1272
CrossRef
Pubmed
Google scholar
|
[11] |
Scher, J. U. and Pillinger, M. H. (2005) 15d-PGJ2: the anti-inflammatory prostaglandin? Clin. Immunol., 114, 100–109
CrossRef
Pubmed
Google scholar
|
[12] |
Palmblad, J., Malmsten, C. L., Udén, A. M., Rådmark, O., Engstedt, L. and Samuelsson, B. (1981) Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence. Blood, 58, 658–661
Pubmed
|
[13] |
Csoma, Z., Kharitonov, S. A., Balint, B., Bush, A., Wilson, N. M. and Barnes, P. J. (2002) Increased leukotrienes in exhaled breath condensate in childhood asthma. Am. J. Respir. Crit. Care Med., 166, 1345–1349
CrossRef
Pubmed
Google scholar
|
[14] |
Peters-Golden, M., Gleason, M. M. and Togias, A. (2006) Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin. Exp. Allergy, 36, 689–703
CrossRef
Pubmed
Google scholar
|
[15] |
Sozzani, S., Zhou, D., Locati, M., Bernasconi, S., Luini, W., Mantovani, A. and O’Flaherty, J. T. (1996) Stimulating properties of 5-oxo-eicosanoids for human monocytes: synergism with monocyte chemotactic protein-1 and -3. J. Immunol., 157, 4664–4671
Pubmed
|
[16] |
Rainsford, K. D. (1999) Profile and mechanisms of gastrointestinal and other side effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Am. J. Med., 107, 27–35
CrossRef
Pubmed
Google scholar
|
[17] |
Psaty, B. M. and Furberg, C. D. (2005) COX-2 inhibitors–lessons in drug safety. N. Engl. J. Med., 352, 1133–1135
CrossRef
Pubmed
Google scholar
|
[18] |
Singh, D. (2004) Merck withdraws arthritis drug worldwide. BMJ, 329, 816.2
CrossRef
Pubmed
Google scholar
|
[19] |
Berger, W., De Chandt, M. T. and Cairns, C. B. (2007) Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int. J. Clin. Pract., 61, 663–676
CrossRef
Pubmed
Google scholar
|
[20] |
Pergola, C. and Werz, O. (2010) 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin. Ther. Pat., 20, 355–375
CrossRef
Pubmed
Google scholar
|
[21] |
Bertolini, A., Ottani, A. and Sandrini, M. (2001) Dual acting anti-inflammatory drugs: a reappraisal. Pharmacol. Res., 44, 437–450
CrossRef
Pubmed
Google scholar
|
[22] |
Kitano, H. (2007) A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Discov., 6, 202–210
CrossRef
Pubmed
Google scholar
|
[23] |
Yang, K., Ma, W., Liang, H., Ouyang, Q., Tang, C. and Lai, L. (2007) Dynamic simulations on the arachidonic acid metabolic network. PLOS Comput. Biol., 3, e55
CrossRef
Pubmed
Google scholar
|
[24] |
Meng, H., Liu, Y. and Lai, L. (2015) Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation. Acc. Chem. Res., 48, 2242–2250
CrossRef
Pubmed
Google scholar
|
[25] |
Su, Y. Q., Zhang, W. D., Zhang, C., Liu, R. H. and Shen, Y. H. (2008) A new caffeic ester from Incarvillea mairei var. granditlora (Wehrhahn) Grierson. Chin. Chem. Lett., 19, 829–831
CrossRef
Google scholar
|
[26] |
Li, L., Zeng, H., Liu, F., Zhang, J., Yue, R., Lu, W., Yuan, X., Dai, W., Yuan, H., Sun, Q.,
CrossRef
Google scholar
|
[27] |
Buczynski, M. W., Stephens, D. L., Bowers-Gentry, R. C., Grkovich, A., Deems, R. A. and Dennis, E. A. (2007) TLR-4 and sustained calcium agonists synergistically produce eicosanoids independent of protein synthesis in RAW264.7 cells. J. Biol. Chem., 282, 22834–22847
CrossRef
Pubmed
Google scholar
|
[28] |
Leslie, C. C. (2015) Cytosolic phospholipase A2: physiological function and role in disease. J. Lipid Res., 56, 1386–1402
CrossRef
Pubmed
Google scholar
|
[29] |
Christmas, P., Weber, B. M., McKee, M., Brown, D. and Soberman, R. J. (2002) Membrane localization and topology of leukotriene C4 synthase. J. Biol. Chem., 277, 28902–28908
CrossRef
Pubmed
Google scholar
|
[30] |
Funk, C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294, 1871–1875
CrossRef
Pubmed
Google scholar
|
[31] |
Honda, Z., Nakamura, M., Miki, I., Minami, M., Watanabe, T., Seyama, Y., Okado, H., Toh, H., Ito, K., Miyamoto, T.,
CrossRef
Pubmed
Google scholar
|
[32] |
Horton, J. K., Williams, A. S., Smith-Phillips, Z., Martin, R. C. and O’Beirne, G. (1999) Intracellular measurement of prostaglandin E2: effect of anti-inflammatory drugs on cyclooxygenase activity and prostanoid expression. Anal. Biochem., 271, 18–28
CrossRef
Pubmed
Google scholar
|
[33] |
Kramer, R. M., Roberts, E. F., Um, S. L., Börsch-Haubold, A. G., Watson, S. P., Fisher, M. J. and Jakubowski, J. A. (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem., 271, 27723–27729
CrossRef
Pubmed
Google scholar
|
[34] |
Kozawa, O., Tokuda, H., Matsuno, H. and Uematsu, T. (1999) Involvement of p38 mitogen-activated protein kinase in basic fibroblast growth factor-induced interleukin-6 synthesis in osteoblasts. J. Cell. Biochem., 74, 479–485
CrossRef
Pubmed
Google scholar
|
[35] |
Tokuda, H., Kozawa, O. and Uematsu, T. (2000) Basic fibroblast growth factor stimulates vascular endothelial growth factor release in osteoblasts: divergent regulation by p42/p44 mitogen-activated protein kinase and p38 mitogen-activated protein kinase. J. Bone Miner. Res., 15, 2371–2379
CrossRef
Pubmed
Google scholar
|
[36] |
Shen, J.-N., Xu, L.-X., Shan, L., Zhang, W.-D., Li, H.-L. and Wang, R. (2015) Neuroprotection of (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate against hydrogen peroxide and lipopolysaccharide induced injury via modulating arachidonic acid network and p38-MAPK signaling. Curr. Alzheimer Res., 12, 892–902
CrossRef
Pubmed
Google scholar
|
[37] |
Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. and Hirakawa, M. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res., 34, D354–D357
CrossRef
Pubmed
Google scholar
|
[38] |
Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G. and Schomburg, D. (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res., 32, D431–D433
CrossRef
Pubmed
Google scholar
|
[39] |
Yang, K., Bai, H., Ouyang, Q., Lai, L. and Tang, C. (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol., 4, 228
CrossRef
Pubmed
Google scholar
|
[40] |
Csermely, P., Korcsmáros, T., Kiss, H. J., London, G. and Nussinov, R. (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery. A comprehensive review. Pharmacol. Ther., 138, 333–408
CrossRef
Pubmed
Google scholar
|
[41] |
Rossi, A., Pergola, C., Koeberle, A., Hoffmann, M., Dehm, F., Bramanti, P., Cuzzocrea, S., Werz, O. and Sautebin, L. (2010) The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br. J. Pharmacol., 161, 555–570
CrossRef
Pubmed
Google scholar
|
[42] |
Chan, M. M.-Y., Moore, A. R. (2010) Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E(2)-mediated lipoxin A(4) Production. J. Immunol., 184, 6418–6426
|
[43] |
Rajakariar, R., Yaqoob, M. M. and Gilroy, D. W. (2006) COX-2 in inflammation and resolution. Mol. Interv., 6, 199–207
CrossRef
Pubmed
Google scholar
|
[44] |
Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L. and Isakson, P. (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA, 91, 12013–12017
CrossRef
Pubmed
Google scholar
|
[45] |
Samuelsson, B., Dahlén, S. E., Lindgren, J. A., Rouzer, C. A. and Serhan, C. N. (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science, 237, 1171–1176
CrossRef
Pubmed
Google scholar
|
[46] |
Dinarello, C. A. (2000) Proinflammatory cytokines. Chest, 118, 503–508
CrossRef
Pubmed
Google scholar
|
[47] |
Pettus, B. J., Bielawska, A., Spiegel, S., Roddy, P., Hannun, Y. A. and Chalfant, C. E. (2003) Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J. Biol. Chem., 278, 38206–38213
CrossRef
Pubmed
Google scholar
|
[48] |
Piomelli, D. (1993) Arachidonic acid in cell signaling. Curr. Opin. Cell Biol., 5, 274–280
CrossRef
Pubmed
Google scholar
|
[49] |
De Micheli, G. and Benini, L. (2006) Networks on Chips: Technology and Tools. Academic Press.
|
[50] |
Benini, L., De Micheli, G. (2002) Networks on chips: A new SoC paradigm. Computer, 35, 70–78
|
[51] |
Hopkins, A. L. (2008) Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol., 4, 682–690
CrossRef
Pubmed
Google scholar
|
[52] |
Wang, X., Terfve, C., Rose, J. C. and Markowetz, F. (2011) HTSanalyzeR: an R/Bioconductor package for integrated network analysis of high-throughput screens. Bioinformatics, 27, 879–880
CrossRef
Pubmed
Google scholar
|
[53] |
Zhao, S. and Iyengar, R. (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol., 52, 505–521
CrossRef
Pubmed
Google scholar
|
[54] |
Walpole, J., Papin, J. A. and Peirce, S. M. (2013) Multiscale computational models of complex biological systems. Annu. Rev. Biomed. Eng., 15, 137–154
CrossRef
Pubmed
Google scholar
|
[55] |
Gupta, S., Maurya, M. R., Stephens, D. L., Dennis, E. A. and Subramaniam, S. (2009) An integrated model of eicosanoid metabolism and signaling based on lipidomics flux analysis. Biophys. J., 96, 4542–4551
CrossRef
Pubmed
Google scholar
|
[56] |
Kihara, Y., Gupta, S., Maurya, M. R., Armando, A., Shah, I., Quehenberger, O., Glass, C. K., Dennis, E. A. and Subramaniam, S. (2014) Modeling of eicosanoid fluxes reveals functional coupling between cyclooxygenases and terminal synthases. Biophys. J., 106, 966–975
CrossRef
Pubmed
Google scholar
|
[57] |
Yang, K., Ma, W., Liang, H., Ouyang, Q., Tang, C. and Lai, L. (2007) Dynamic simulations on the arachidonic acid metabolic network. PLOS Comput. Biol., 3, e55
CrossRef
Pubmed
Google scholar
|
[58] |
Yang, K., Bai, H., Ouyang, Q., Lai, L. and Tang, C. (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol., 4, 228
CrossRef
Pubmed
Google scholar
|
[59] |
Fajmut, A., Schäfer, D., Brumen, M., Dobovišek, A., Antić, N. and Emeršič, T. (2015) Dynamic model of eicosanoid production with special reference to non-steroidal anti-inflammatory drug-triggered hypersensitivity. IET Syst. Biol., 9, 204–215
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |