Computational methods and applications for quantitative systems pharmacology

Fuda Xie, Jiangyong Gu

PDF(341 KB)
PDF(341 KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (1) : 3-16. DOI: 10.1007/s40484-018-0161-6
REVIEW
REVIEW

Computational methods and applications for quantitative systems pharmacology

Author information +
History +

Abstract

Background: Quantitative systems pharmacology (QSP) is an emerging discipline that integrates diverse data to quantitatively explore the interactions between drugs and multi-scale systems including small compounds, nucleic acids, proteins, pathways, cells, organs and disease processes.

Results: Various computational methods such as ADME/T evaluation, molecular modeling, logical modeling, network modeling, pathway analysis, multi-scale systems pharmacology platforms and virtual patient for QSP have been developed. We reviewed the major progresses and broad applications in medical guidance, drug discovery and exploration of pharmacodynamic material basis and mechanism of traditional Chinese medicine.

Conclusion: QSP has significant achievements in recent years and is a promising approach for quantitative evaluation of drug efficacy and systematic exploration of mechanisms of action of drugs.

Graphical abstract

Keywords

quantitative systems pharmacology / network modeling / multi-scale platforms / traditional Chinese medicine

Cite this article

Download citation ▾
Fuda Xie, Jiangyong Gu. Computational methods and applications for quantitative systems pharmacology. Quant. Biol., 2019, 7(1): 3‒16 https://doi.org/10.1007/s40484-018-0161-6

References

[1]
Berger, S. I. and Iyengar, R. (2009) Network analyses in systems pharmacology. Bioinformatics, 25, 2466–2472
CrossRef Pubmed Google scholar
[2]
Zhao, S. and Iyengar, R. (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol., 52, 505–521
CrossRef Pubmed Google scholar
[3]
Boran, A. D. and Iyengar, R. (2010) Systems pharmacology. Mt. Sinai J. Med., 77, 333–344
CrossRef Pubmed Google scholar
[4]
Zhou, W., Wang, Y., Lu, A. and Zhang, G. (2016) Systems pharmacology in small molecular drug discovery. Int. J. Mol. Sci., 17, 246
CrossRef Pubmed Google scholar
[5]
Gu, J., Zhang, X., Ma, Y., Li, N., Luo, F., Cao, L., Wang, Z., Yuan, G., Chen, L., Xiao, W., (2015) Quantitative modeling of dose-response and drug combination based on pathway network. J. Cheminform., 7, 19
CrossRef Pubmed Google scholar
[6]
Spiros, A., Roberts, P. and Geerts, H. (2014) A computer-based quantitative systems pharmacology model of negative symptoms in schizophrenia: exploring glycine modulation of excitation-inhibition balance. Front. Pharmacol., 5, 229
CrossRef Pubmed Google scholar
[7]
Fang, J., Wu, Z., Cai, C., Wang, Q., Tang, Y. and Cheng, F. (2017) Quantitative and systems pharmacology. 1. in silico prediction of drug-target interactions of natural products enables new targeted cancer therapy. J. Chem. Inf. Model., 57, 2657–2671
CrossRef Pubmed Google scholar
[8]
Fleisher, B., Brown, A. N. and Ait-Oudhia, S. (2017) Application of pharmacometrics and quantitative systems pharmacology to cancer therapy: the example of luminal a breast cancer. Pharmacol. Res., 124, 20–33
CrossRef Pubmed Google scholar
[9]
Geerts, H., Spiros, A. and Roberts, P. (2018) Impact of amyloid-beta changes on cognitive outcomes in Alzheimer’s disease: analysis of clinical trials using a quantitative systems pharma-cology model. Alzheimers Res. Ther., 10, 14
CrossRef Pubmed Google scholar
[10]
Barabási, A. L., Gulbahce, N. and Loscalzo, J. (2011) Network medicine: a network-based approach to human disease. Nat. Rev. Genet., 12, 56–68
CrossRef Pubmed Google scholar
[11]
Pérez-Nueno, V. I. (2015) Using quantitative systems pharmacology for novel drug discovery. Expert Opin. Drug Discov., 10, 1315–1331
CrossRef Pubmed Google scholar
[12]
Woodhead, J. L., Watkins, P. B., Howell, B. A., Siler, S. Q. and Shoda, L. K. M. (2017) The role of quantitative systems pharmacology modeling in the prediction and explanation of idiosyncratic drug-induced liver injury. Drug Metab. Pharmacokinet., 32, 40–45
CrossRef Pubmed Google scholar
[13]
Androulakis, I. P. (2016) Quantitative systems pharmacology: a framework for context. Curr. Pharmacol. Rep., 2, 152–160
CrossRef Pubmed Google scholar
[14]
van der Graaf, P. H. and Benson, N. (2011) Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm. Res., 28, 1460–1464
CrossRef Pubmed Google scholar
[15]
Leil, T. A. and Bertz, R. (2014) Quantitative systems pharma-cology can reduce attrition and improve productivity in pharmaceutical research and development. Front. Pharmacol., 5, 247
CrossRef Pubmed Google scholar
[16]
Rao, R. T., Scherholz, M. L., Hartmanshenn, C., Bae, S. A. and Androulakis, I. P. (2017) On the analysis of complex biological supply chains: from process systems engineering to quantitative systems pharmacology. Comput. Chem. Eng., 107, 100–110
CrossRef Pubmed Google scholar
[17]
Yu, J., Cilfone, N. A., Large, E. M., Sarkar, U., Wishnok, J. S., Tannenbaum, S. R., Hughes, D. J., Lauffenburger, D. A., Griffith, L. G., Stokes, C. L., (2015) Quantitative systems pharmacology approaches applied to microphysiological systems (MPS): data interpretation and multi-MPS integration. CPT Pharmacometrics Syst. Pharmacol., 4, 585–594
CrossRef Pubmed Google scholar
[18]
Musante, C. J., Abernethy, D. R., Allerheiligen, S. R., Lauffenburger, D. A. and Zager, M. G. (2016) GPS for QSP: A summary of the ACoP6 symposium on quantitative systems pharmacology and a stage for near-term efforts in the field. CPT Pharmacometrics Syst. Pharmacol., 5, 449–451
CrossRef Pubmed Google scholar
[19]
Ribba, B., Grimm, H. P., Agoram, B., Davies, M. R., Gadkar, K., Niederer, S., van Riel, N., Timmis, J. and van der Graaf, P. H. (2017) Methodologies for quantitative systems pharmacology (QSP) models: design and estimation. CPT Pharmacometrics Syst. Pharmacol., 6, 496–498
CrossRef Pubmed Google scholar
[20]
Timmis, J., Alden, K., Andrews, P., Clark, E., Nellis, A., Naylor, B., Coles, M. and Kaye, P. (2017) Building confidence in quantitative systems pharmacology models: an engineer’s guide to exploring the rationale in model design and development. CPT Pharmacometrics Syst. Pharmacol., 6, 156–167
CrossRef Pubmed Google scholar
[21]
Cherkaoui-Rbati, M. H., Paine, S. W., Littlewood, P. and Rauch, C. (2017) A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions. PLoS One, 12, e0183794
CrossRef Pubmed Google scholar
[22]
Rogers, M., Lyster, P. and Okita, R. (2013) NIH support for the emergence of quantitative and systems pharmacology. CPT Pharmacometrics Syst. Pharmacol., 2, e37
CrossRef Pubmed Google scholar
[23]
Wist, A. D., Berger, S. I. and Iyengar, R. (2009) Systems pharmacology and genome medicine: a future perspective. Genome Med., 1, 11
CrossRef Pubmed Google scholar
[24]
Wang, Z. and Deisboeck, T. S. (2014) Mathematical modeling in cancer drug discovery. Drug Discov. Today, 19, 145–150
CrossRef Pubmed Google scholar
[25]
Medina-Franco, J. L., Giulianotti, M. A., Welmaker, G. S. and Houghten, R. A. (2013) Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today, 18, 495–501
CrossRef Pubmed Google scholar
[26]
Hopkins, A. L. (2007) Network pharmacology. Nat. Biotechnol., 25, 1110–1111
CrossRef Pubmed Google scholar
[27]
Goh, K. I. and Choi, I. G. (2012) Exploring the human diseasome: the human disease network. Brief. Funct. Genomics, 11, 533–542
CrossRef Pubmed Google scholar
[28]
Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabási, A. L. (2007) The human disease network. Proc. Natl. Acad. Sci. USA, 104, 8685–8690
CrossRef Pubmed Google scholar
[29]
Zhang, W., Pei, J. and Lai, L. (2017) Computational multitarget drug design. J. Chem. Inf. Model., 57, 403–412
CrossRef Pubmed Google scholar
[30]
Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabási, A. L. and Vidal, M. (2007) Drug-target network. Nat. Biotechnol., 25, 1119–1126
CrossRef Pubmed Google scholar
[31]
Barneh, F., Jafari, M. and Mirzaie, M. (2016) Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database. Brief. Bioinformatics, 17, 1070–1080
Pubmed
[32]
Geerts, H., Spiros, A., Roberts, P. and Carr, R. (2013) Quantitative systems pharmacology as an extension of PK/PD modeling in CNS research and development. J. Pharmacokinet. Pharmacodyn., 40, 257–265
CrossRef Pubmed Google scholar
[33]
Snelder, N., Ploeger, B. A., Luttringer, O., Rigel, D. F., Fu, F., Beil, M., Stanski, D. R. and Danhof, M. (2014) Drug effects on the CVS in conscious rats: separating cardiac output into heart rate and stroke volume using PKPD modelling. Br. J. Pharmacol., 171, 5076–5092
CrossRef Pubmed Google scholar
[34]
Hansson, E. K., Amantea, M. A., Westwood, P., Milligan, P. A., Houk, B. E., French, J., Karlsson, M. O. and Friberg, L. E. (2013) PKPD Modeling of VEGF, sVEGFR-2, sVEGFR-3, and sKIT as predictors of tumor dynamics and overall survival following sunitinib treatment in GIST. CPT Pharmacometrics Syst. Pharmacol., 2, e84
CrossRef Pubmed Google scholar
[35]
Reymond, J. L. and Awale, M. (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem. Neurosci., 3, 649–657
CrossRef Pubmed Google scholar
[36]
Tian, S., Wang, J., Li, Y., Li, D., Xu, L. and Hou, T. (2015) The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 86, 2–10
CrossRef Pubmed Google scholar
[37]
May, E. R. (2014) Recent developments in molecular simulation approaches to study spherical virus capsids. Mol. Simul., 40, 878–888
CrossRef Pubmed Google scholar
[38]
Field, M. J. (2015) Technical advances in molecular simulation since the 1980s. Arch. Biochem. Biophys., 582, 3–9
CrossRef Pubmed Google scholar
[39]
Xie, L., Draizen, E. J. and Bourne, P. E. (2017) Harnessing big data for systems pharmacology. Annu. Rev. Pharmacol. Toxicol., 57, 245–262
CrossRef Pubmed Google scholar
[40]
Liu, X., Zhu, F., Ma, X. H., Shi, Z., Yang, S. Y., Wei, Y. Q. and Chen, Y. Z. (2013) Predicting targeted polypharmacology for drug repositioning and multi- target drug discovery. Curr. Med. Chem., 20, 1646–1661
CrossRef Pubmed Google scholar
[41]
Chiu, S. H. and Xie, L. (2016) Toward high-throughput predictive modeling of protein binding/unbinding kinetics. J. Chem. Inf. Model., 56, 1164–1174
CrossRef Pubmed Google scholar
[42]
Hart, T. and Xie, L. (2016) Providing data science support for systems pharmacology and its implications to drug discovery. Expert Opin. Drug Discov., 11, 241–256
CrossRef Pubmed Google scholar
[43]
Bloomingdale, P., Nguyen, V. A., Niu, J. and Mager, D. E. (2018) Boolean network modeling in systems pharmacology. J. Pharmacokinet. Pharmacodyn., 45, 159–180
CrossRef Pubmed Google scholar
[44]
Irurzun-Arana, I., Pastor, J. M., Trocóniz, I. F. and Gómez-Mantilla, J. D. (2017) Advanced Boolean modeling of biological networks applied to systems pharmacology. Bioinformatics, 33, 1040–1048
CrossRef Pubmed Google scholar
[45]
Danhof, M. (2016) Systems pharmacology—towards the modeling of network interactions. Eur. J. Pharm. Sci., 94, 4–14
CrossRef Pubmed Google scholar
[46]
Tang, Y., Tang, Q., Dong, C., Li, X., Zhang, Z. and An, F. (2015) Protein-protein interaction network and mechanism analysis of hepatitis C. Genet. Mol. Res., 14, 2069–2079
CrossRef Pubmed Google scholar
[47]
Schurdak, M. E., Pei, F., Lezon, T. R., Carlisle, D., Friedlander, R., Taylor, D. L. and Stern, A. M. (2018) A quantitative systems pharmacology approach to infer pathways involved in complex disease phenotypes. Methods Mol. Biol., 1787, 207–222
CrossRef Pubmed Google scholar
[48]
Li, Q., Li, X., Li, C., Chen, L., Song, J., Tang, Y. and Xu, X. (2011) A network-based multi-target computational estimation scheme for anticoagulant activities of compounds. PLoS One, 6, e14774
CrossRef Pubmed Google scholar
[49]
Zhang, X., Gu, J., Cao, L., Ma, Y., Su, Z., Luo, F., Wang, Z., Li, N., Yuan, G., Chen, L., (2014) Insights into the inhibition and mechanism of compounds against LPS-induced PGE2 production: a pathway network-based approach and molecular dynamics simulations. Integr. Biol., 6, 1162–1169
CrossRef Pubmed Google scholar
[50]
Gu, J., Li, Q., Chen, L., Li, Y., Hou, T., Yuan, G. and Xu, X. (2013) Platelet aggregation pathway network-based approach for evaluating compounds efficacy. Evid. Based Complement. Alternat. Med., 2013, 425707
CrossRef Pubmed Google scholar
[51]
Traynard, P., Tobalina, L., Eduati, F., Calzone, L. and Saez-Rodriguez, J. (2017) Logic modeling in quantitative systems pharmacology. CPT Pharmacometrics Syst. Pharmacol., 6, 499–511
CrossRef Pubmed Google scholar
[52]
Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 6, 13
CrossRef Pubmed Google scholar
[53]
Chassagnole, C., Jackson, R. C., Hussain, N., Bashir, L., Derow, C., Savin, J. and Fell, D. A. (2006) Using a mammalian cell cycle simulation to interpret differential kinase inhibition in anti-tumour pharmaceutical development. Biosystems, 83, 91–97
CrossRef Pubmed Google scholar
[54]
Tao, W., Li, B., Gao, S., Bai, Y., Shar, P. A., Zhang, W., Guo, Z., Sun, K., Fu, Y., Huang, C., (2015) CancerHSP: anticancer herbs database of systems pharmacology. Sci. Rep., 5, 11481
CrossRef Pubmed Google scholar
[55]
Huang, H., Wu, X., Pandey, R., Li, J., Zhao, G., Ibrahim, S. and Chen, J. Y. (2012) C2Maps: a network pharmacology database with comprehensive disease-gene-drug connectivity relationships. BMC Genomics, 13, S17
CrossRef Pubmed Google scholar
[56]
Hu, Z., Chang, Y. C., Wang, Y., Huang, C. L., Liu, Y., Tian, F., Granger, B. and Delisi, C. (2013) VisANT 4.0: integrative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Res., 41, W225–W 231
CrossRef Pubmed Google scholar
[57]
Wang, D., Gu, J., Zhu, W., Luo, F., Chen, L., Xu, X. and Lu, C. (2017) PDTCM: a systems pharmacology platform of traditional Chinese medicine for psoriasis. Ann. Med., 49, 652–660
CrossRef Pubmed Google scholar
[58]
Gu, J., Gui, Y., Chen, L., Yuan, G. and Xu, X. (2013) CVDHD: a cardiovascular disease herbal database for drug discovery and network pharmacology. J. Cheminform., 5, 51
CrossRef Pubmed Google scholar
[59]
Musante, C. J., Ramanujan, S., Schmidt, B. J., Ghobrial, O. G., Lu, J. and Heatherington, A. C. (2017) Quantitative systems pharmacology: a case for disease models. Clin. Pharmacol. Ther., 101, 24–27
CrossRef Pubmed Google scholar
[60]
Schmidt, B. J., Casey, F. P., Paterson, T. and Chan, J. R. (2013) Alternate virtual populations elucidate the type I interferon signature predictive of the response to rituximab in rheumatoid arthritis. BMC Bioinformatics, 14, 221
CrossRef Pubmed Google scholar
[61]
Ghosh, S., Matsuoka, Y., Asai, Y., Hsin, K. Y. and Kitano, H. (2013) Toward an integrated software platform for systems pharmacology. Biopharm. Drug Dispos., 34, 508–526
CrossRef Pubmed Google scholar
[62]
Spiros, A., Roberts, P. and Geerts, H. (2013) Phenotypic screening of the Prestwick library for treatment of Parkinson’s tremor symptoms using a humanized quantitative systems pharmacology platform. J Parkinsons Dis, 3, 569–580
Pubmed
[63]
Ming, J. E., Abrams, R. E., Bartlett, D. W., Tao, M., Nguyen, T., Surks, H., Kudrycki, K., Kadambi, A., Friedrich, C. M., Djebli, N., (2017) A quantitative systems pharmacology platform to investigate the impact of alirocumab and cholesterol-lowering therapies on lipid profiles and plaque characteristics. Gene Regul. Syst. Bio., 11, 1177625017710941
CrossRef Pubmed Google scholar
[64]
Zheng, C., Pei, T., Huang, C., Chen, X., Bai, Y., Xue, J., Wu, Z., Mu, J., Li, Y. and Wang, Y. (2016) A novel systems pharmacology platform to dissect action mechanisms of traditional Chinese medicines for bovine viral diarrhea disease. Eur. J. Pharm. Sci., 94, 33–45
CrossRef Pubmed Google scholar
[65]
Rieger, T. R., Allen, R. J., Bystricky, L., Chen, Y., Colopy, G. W., Cui, Y., Gonzalez, A., Liu, Y., White, R. D., Everett, R. A., (2018) Improving the generation and selection of virtual populations in quantitative systems pharmacology models. Prog. Biophys. Mol. Biol., 139, 15–22
CrossRef Pubmed Google scholar
[66]
Geerts, H., Spiros, A., Roberts, P. and Carr, R. (2017) Towards the virtual human patient. quantitative systems pharmacology in Alzheimer’s disease. Eur. J. Pharmacol., 817, 38–45
CrossRef Pubmed Google scholar
[67]
Wiśniowska, B. and Polak, S. (2016) Virtual clinical trial toward polytherapy safety assessment: combination of physiologically based pharmacokinetic/pharmacodynamic-based modeling and simulation approach with drug-drug interactions involving terfenadine as an example. J. Pharm. Sci., 105, 3415–3424
CrossRef Pubmed Google scholar
[68]
Allen, R. J., Rieger, T. R. and Musante, C. J. (2016) Efficient generation and selection of virtual populations in quantitative systems pharmacology models. CPT Pharmacometrics Syst. Pharmacol., 5, 140–146
CrossRef Pubmed Google scholar
[69]
Rostami-Hodjegan, A. (2012) Physiologically based pharmacokinetics joined with in vitro‒in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin. Pharmacol. Ther., 92, 50–61
CrossRef Pubmed Google scholar
[70]
Bloomingdale, P., Housand, C., Apgar, J. F., Millard, B. L., Mager, D. E., Burke, J. M. and Shah, D. K. (2017) Quantitative systems toxicology. Curr. Opin. Toxicol., 4, 79–87
CrossRef Pubmed Google scholar
[71]
Pichardo-Almarza, C. and Diaz-Zuccarini, V. (2017) From PK/PD to QSP: understanding the dynamic effect of cholesterol-lowering drugs on atherosclerosis progression and stratified medicine. Curr. Pharm. Des., 22, 6903–6910
CrossRef Pubmed Google scholar
[72]
Meng, X. Y., Zhang, H. X., Mezei, M. and Cui, M. (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 7, 146–157
CrossRef Pubmed Google scholar
[73]
Omer, A. and Singh, P. (2017) An integrated approach of network-based systems biology, molecular docking, and molecular dynamics approach to unravel the role of existing antiviral molecules against AIDS-associated cancer. J. Biomol. Struct. Dyn., 35, 1547–1558
CrossRef Pubmed Google scholar
[74]
Gu, J., Li, L., Wang, D., Zhu, W., Han, L., Zhao, R., Xu, X. and Lu, C. (2018) Deciphering metabonomics biomarkers-targets interactions for psoriasis vulgaris by network pharmacology. Ann. Med., 50, 323–332
CrossRef Pubmed Google scholar
[75]
Yang, M., Chen, J., Shi, X., Xu, L., Xi, Z., You, L., An, R. and Wang, X. (2015) Development of in silico models for predicting p-glycoprotein inhibitors based on a two-step approach for feature selection and its application to Chinese herbal medicine screening. Mol. Pharm., 12, 3691–3713
CrossRef Pubmed Google scholar
[76]
Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L. and Chong, J. (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 44, D1045–D1053
CrossRef Pubmed Google scholar
[77]
Liu, Z., Guo, F., Wang, Y., Li, C., Zhang, X., Li, H., Diao, L., Gu, J., Wang, W., Li, D., (2016) BATMAN-TCM: a bioinformatics analysis Tool for molecular mechanism of traditional Chinese medicine. Sci. Rep., 6, 21146
CrossRef Pubmed Google scholar
[78]
Boran, A. D. and Iyengar, R. (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel, 13, 297–309
Pubmed
[79]
Berger, S. I., Ma’ayan, A. and Iyengar, R. (2010) Systems pharmacology of arrhythmias. Sci. Signal., 3, ra30
CrossRef Pubmed Google scholar
[80]
Boland, M. R., Jacunski, A., Lorberbaum, T., Romano, J. D., Moskovitch, R. and Tatonetti, N. P. (2016) Systems biology approaches for identifying adverse drug reactions and elucidating their underlying biological mechanisms. Wiley Interdiscip. Rev. Syst. Biol. Med., 8, 104–122
CrossRef Pubmed Google scholar
[81]
Goldstein, L. H., Berlin, M., Saliba, W., Elias, M. and Berkovitch, M. (2013) Founding an adverse drug reaction (ADR) network: a method for improving doctors spontaneous ADR reporting in a general hospital. J. Clin. Pharmacol., 53, 1220–1225
CrossRef Pubmed Google scholar
[82]
Zhao, S., Nishimura, T., Chen, Y., Azeloglu, E. U., Gottesman, O., Giannarelli, C., Zafar, M. U., Benard, L., Badimon, J. J., Hajjar, R. J., (2013) Systems pharmacology of adverse event mitigation by drug combinations. Sci. Transl. Med., 5, 206ra140
CrossRef Pubmed Google scholar
[83]
Wu, Z., Cheng, F., Li, J., Li, W., Liu, G. and Tang, Y. (2017) SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning. Brief. Bioinformatics, 18, 333–347
Pubmed
[84]
Wu, Z., Lu, W., Wu, D., Luo, A., Bian, H., Li, J., Li, W., Liu, G., Huang, J., Cheng, F., (2016) In silico prediction of chemical mechanism of action via an improved network-based inference method. Br. J. Pharmacol., 173, 3372–3385
CrossRef Pubmed Google scholar
[85]
Wang, J., Guo, Z., Fu, Y., Wu, Z., Huang, C., Zheng, C., Shar, P. A., Wang, Z., Xiao, W. and Wang, Y. (2017) Weak-binding molecules are not drugs?—toward a systematic strategy for finding effective weak-binding drugs. Brief. Bioinformatics, 18, 321–332
Pubmed
[86]
Huang, C., Zheng, C., Li, Y., Wang, Y., Lu, A. and Yang, L. (2014) Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief. Bioinform., 15, 710–733
CrossRef Pubmed Google scholar
[87]
Mitrea, C., Taghavi, Z., Bokanizad, B., Hanoudi, S., Tagett, R., Donato, M., Voichiţa, C. and Drăghici, S. (2013) Methods and approaches in the topology-based analysis of biological pathways. Front. Physiol., 4, 278
CrossRef Pubmed Google scholar
[88]
Nie, X. Z., Du, X., Zhang, R. R., He, J., Su, R., Ma, H. Q., Mu, J., Li, Y. and Liu, F. (2017) Study on regulation mechanism of Toutongning capsule through TNF signaling pathway in treatment of migraine based on systems pharmacology method. Zhongguo Zhongyao Zazhi, 42, 548–554, in Chinese
Pubmed
[89]
Gu, J., Crosier, P. S., Hall, C. J., Chen, L. and Xu, X. (2016) Inflammatory pathway network-based drug repositioning and molecular phenomics. Mol. Biosyst., 12, 2777–2784
CrossRef Pubmed Google scholar
[90]
Poltz, R. and Naumann, M. (2012) Dynamics of p53 and NF-κB regulation in response to DNA damage and identification of target proteins suitable for therapeutic intervention. BMC Syst. Biol., 6, 125
CrossRef Pubmed Google scholar
[91]
Le Novère, N. (2015) Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet., 16, 146–158
CrossRef Pubmed Google scholar
[92]
Chaouiya, C. and Remy, E. (2013) Logical modelling of regulatory networks, methods and applications. Bull. Math. Biol., 75, 891–895
CrossRef Pubmed Google scholar
[93]
Kirouac, D. C., Du, J. Y., Lahdenranta, J., Overland, R., Yarar, D., Paragas, V., Pace, E., McDonagh, C. F., Nielsen, U. B. and Onsum, M. D. (2013) Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci. Signal., 6, ra68
CrossRef Pubmed Google scholar
[94]
Shoda, L. K., Woodhead, J. L., Siler, S. Q., Watkins, P. B. and Howell, B. A. (2014) Linking physiology to toxicity using DILIsym®, a mechanistic mathematical model of drug-induced liver injury. Biopharm. Drug Dispos., 35, 33–49
CrossRef Pubmed Google scholar
[95]
Woodhead, J. L., Yang, K., Siler, S. Q., Watkins, P. B., Brouwer, K. L., Barton, H. A. and Howell, B. A. (2014) Exploring BSEP inhibition-mediated toxicity with a mechanistic model of drug-induced liver injury. Front. Pharmacol., 5, 240
CrossRef Pubmed Google scholar
[96]
Woodhead, J. L., Paech, F., Maurer, M., Engelhardt, M., Schmitt-Hoffmann, A. H., Spickermann, J., Messner, S., Wind, M., Witschi, A. T., Krähenbühl, S., (2018) Prediction of safety margin and optimization of dosing protocol for a novel antibiotic using quantitative systems pharmacology modeling. Clin. Transl. Sci., 11, 498–505
CrossRef Pubmed Google scholar
[97]
Geerts, H., Roberts, P. and Spiros, A. (2015) Assessing the synergy between cholinomimetics and memantine as augmentation therapy in cognitive impairment in schizophrenia. A virtual human patient trial using quantitative systems pharmacology. Front. Pharmacol., 6, 198
CrossRef Pubmed Google scholar
[98]
Hopkins, A. L. (2008) Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol., 4, 682–690
CrossRef Pubmed Google scholar
[99]
Allerheiligen, S. R. (2010) Next-generation model-based drug discovery and development: quantitative and systems pharmacology. Clin. Pharmacol. Ther., 88, 135–137
CrossRef Pubmed Google scholar
[100]
Agoram, B. M. and Demin, O. (2011) Integration not isolation: arguing the case for quantitative and systems pharmacology in drug discovery and development. Drug Discov. Today, 16, 1031–1036
CrossRef Pubmed Google scholar
[101]
Geerts, H. and Kennis, L. (2014) Multitarget drug discovery projects in CNS diseases: quantitative systems pharmacology as a possible path forward. Future Med. Chem., 6, 1757–1769
CrossRef Pubmed Google scholar
[102]
Fang, J., Gao, L., Ma, H., Wu, Q., Wu, T., Wu, J., Wang, Q. and Cheng, F. (2017) Quantitative and systems pharmacology 3. network-based identification of new targets for natural products enables potential uses in aging-associated disorders. Front. Pharmacol., 8, 747
CrossRef Pubmed Google scholar
[103]
Janga, S. C. and Tzakos, A. (2009) Structure and organization of drug-target networks: insights from genomic approaches for drug discovery. Mol. Biosyst., 5, 1536–1548
CrossRef Pubmed Google scholar
[104]
Arrell, D. K. and Terzic, A. (2010) Network systems biology for drug discovery. Clin. Pharmacol. Ther., 88, 120–125
CrossRef Pubmed Google scholar
[105]
Knight-Schrijver, V. R., Chelliah, V., Cucurull-Sanchez, L. and Le Novère, N. (2016) The promises of quantitative systems pharmacology modelling for drug development. Comput. Struct. Biotechnol. J., 14, 363–370.
CrossRef Pubmed Google scholar
[106]
Kim, S., Lahu, G., Lesko, L. J. and Trame, M. N. (2017) An exemplar of a systems pharmacology approach for a detailed investigation of an adverse drug event as a result of drug-drug interactions. Clin. Pharmacol. Ther., 101, S97–S97.
[107]
Kariya, Y., Honma, M. and Suzuki, H. (2016) Mechanism analyses and mechanism-based prediction for adverse drug reactions using systems pharmacology. Nippon Yakurigaku Zasshi, 147, 89–94, in Japanese
CrossRef Pubmed Google scholar
[108]
Cao, D. S., Xiao, N., Li, Y. J., Zeng, W. B., Liang, Y. Z., Lu, A. P., Xu, Q. S. and Chen, A. F. (2015) Integrating multiple evidence sources to predict adverse drug reactions based on a systems pharmacology model. CPT Pharmacometrics Syst. Pharmacol., 4, 498–506
CrossRef Pubmed Google scholar
[109]
Berger, S. I. and Iyengar, R. (2011) Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip. Rev. Syst. Biol. Med., 3, 129–135
CrossRef Pubmed Google scholar
[110]
Nueno, V. I. (2016) Towards the integration of quantitative and systems pharmacology into drug discovery: a systems level understanding of therapeutic and toxic effects of drugs. Curr. Pharm. Des., 22, 6881–6884
CrossRef Pubmed Google scholar
[111]
Liu, H., Wang, J., Zhou, W., Wang, Y. and Yang, L. (2013) Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. J. Ethnopharmacol., 146, 773–793
CrossRef Pubmed Google scholar
[112]
Luo, F., Gu, J., Chen, L. and Xu, X. (2014) Systems pharmacology strategies for anticancer drug discovery based on natural products. Mol. Biosyst., 10, 1912–1917
CrossRef Pubmed Google scholar
[113]
Dziuba, J., Alperin, P., Racketa, J., Iloeje, U., Goswami, D., Hardy, E., Perlstein, I., Grossman, H. L. and Cohen, M. (2014) Modeling effects of SGLT-2 inhibitor dapagliflozin treatment versus standard diabetes therapy on cardiovascular and microvascular outcomes. Diabetes Obes. Metab., 16, 628–635
CrossRef Pubmed Google scholar
[114]
Peskin, B. R., Shcheprov, A. V., Boye, K. S., Bruce, S., Maggs, D. G. and Gaebler, J. A. (2011) Cardiovascular outcomes associated with a new once-weekly GLP-1 receptor agonist vs. traditional therapies for type 2 diabetes: a simulation analysis. Diabetes Obes. Metab., 13, 921–927
CrossRef Pubmed Google scholar
[115]
Gadkar, K., Kirouac, D., Parrott, N. and Ramanujan, S. (2016) Quantitative systems pharmacology: a promising approach for translational pharmacology. Drug Discov. Today. Technol., 21-22, 57–65
CrossRef Pubmed Google scholar
[116]
Cirit, M. and Stokes, C. L. (2018) Maximizing the impact of microphysiological systems with in vitro-in vivo translation. Lab Chip, 18, 1831–1837
CrossRef Pubmed Google scholar
[117]
Yuraszeck, T., Kasichayanula, S. and Benjamin, J. E. (2017) Translation and clinical development of bispecific T-cell engaging antibodies for cancer treatment. Clin. Pharmacol. Ther., 101, 634–645
CrossRef Pubmed Google scholar
[118]
Schulthess, P., Post, T. M., Yates, J. and van der Graaf, P. H. (2018) Frequency-domain response analysis for quantitative systems pharmacology models. CPT Pharmacometrics Syst. Pharmacol.,7,111–123
Pubmed
[119]
Visser, S. A., de Alwis, D. P., Kerbusch, T., Stone, J. A. and Allerheiligen, S. R. (2014) Implementation of quantitative and systems pharmacology in large pharma. CPT Pharmacometrics Syst. Pharmacol., 3, e142
CrossRef Pubmed Google scholar
[120]
Geerts, H., Roberts, P. and Spiros, A. (2013) A quantitative system pharmacology computer model for cognitive deficits in schizophrenia. CPT Pharmacometrics Syst. Pharmacol., 2, e36
CrossRef Pubmed Google scholar
[121]
Liu, J., Ogden, A., Comery, T. A., Spiros, A., Roberts, P. and Geerts, H. (2014) Prediction of efficacy of vabicaserin, a 5-HT2C agonist, for the treatment of schizophrenia using a quantitative systems pharmacology model. CPT Pharmacometrics Syst. Pharmacol., 3, e111
CrossRef Pubmed Google scholar
[122]
Geerts, H., Roberts, P., Spiros, A. and Potkin, S. (2015) Understanding responder neurobiology in schizophrenia using a quantitative systems pharmacology model: application to iloperidone. J. Psychopharmacol. (Oxford), 29, 372–382
CrossRef Pubmed Google scholar
[123]
Vega-Villa, K., Pluta, R., Lonser, R. and Woo, S. (2013) Quantitative systems pharmacology model of NO metabolome and methemoglobin following long-term infusion of sodium nitrite in humans. CPT Pharmacometrics Syst. Pharmacol., 2, e60
CrossRef Pubmed Google scholar
[124]
John, T., Kiss, T., Lever, C. and Érdi, P. (2014) Anxiolytic drugs and altered hippocampal theta rhythms: the quantitative systems pharmacological approach. Network, 25, 20–37
CrossRef Pubmed Google scholar
[125]
Johnson, T. N. and Rostami-Hodjegan, A. (2011) Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr. Anaesth., 21, 291–301
CrossRef Pubmed Google scholar
[126]
Kaddi, C. D., Niesner, B., Baek, R., Jasper, P., Pappas, J., Tolsma, J., Li, J., van Rijn, Z., Tao, M., Ortemann-Renon, C., (2018) Quantitative systems pharmacology modeling of acid sphingomyelinase deficiency and the enzyme replacement therapy olipudase alfa is an innovative tool for linking pathophysiology and pharmacology. CPT Pharmacometrics Syst. Pharmacol., 7, 442–452
CrossRef Pubmed Google scholar
[127]
Stern, A. M., Schurdak, M. E., Bahar, I., Berg, J. M. and Taylor, D. L. (2016) A perspective on implementing a quantitative systems pharmacology platform for drug discovery and the advancement of personalized medicine. J. Biomol. Screen., 21, 521–534
CrossRef Pubmed Google scholar
[128]
Geerts, H., Spiros, A., Roberts, P. and Alphs, L. (2018) A quantitative systems pharmacology study on optimal scenarios for switching to paliperidone palmitate once-monthly. Schizophr. Res., 197, 261–268
CrossRef Pubmed Google scholar
[129]
Yin, A., Yamada, A., Stam, W. B., van Hasselt, J. G. C. and van der Graaf, P. H. (2018) Quantitative systems pharmacology analysis of drug combination and scaling to humans: the interaction between noradrenaline and vasopressin in vasoconstriction. Br. J. Pharmacol., 175, 3394–3406
CrossRef Pubmed Google scholar
[130]
Chen, Y., Sun, Y., Li, W., Wei, H., Long, T., Li, H., Xu, Q. and Liu, W. (2018) Systems pharmacology dissection of the anti-stroke mechanism for the Chinese traditional medicine Xing-Nao-Jing. J. Pharmacol. Sci., 136, 16–25
CrossRef Pubmed Google scholar
[131]
Li, J., Zhao, P., Li, Y., Tian, Y. and Wang, Y. (2015) Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci. Rep., 5, 15290
CrossRef Pubmed Google scholar
[132]
Zhao, P., Yang, L., Li, J., Li, Y., Tian, Y. and Li, S. (2016) Combining systems pharmacology, transcriptomics, proteomics, and metabolomics to dissect the therapeutic mechanism of Chinese herbal Bufei Jianpi formula for application to COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 11, 553–566
Pubmed
[133]
Zhao, P., Li, J., Yang, L., Li, Y., Tian, Y. and Li, S. (2018) Integration of transcriptomics, proteomics, metabolomics and systems pharmacology data to reveal the therapeutic mechanism underlying Chinese herbal Bufei Yishen formula for the treatment of chronic obstructive pulmonary disease. Mol. Med. Rep., 17, 5247–5257
CrossRef Pubmed Google scholar
[134]
Zhang, W., Tao, Q., Guo, Z., Fu, Y., Chen, X., Shar, P. A., Shahen, M., Zhu, J., Xue, J., Bai, Y., (2016) Systems pharmacology dissection of the integrated treatment for cardiovascular and gastrointestinal disorders by traditional Chinese medicine. Sci. Rep., 6, 32400
CrossRef Pubmed Google scholar
[135]
Sun, M., Chang, W. T., Van Wijk, E., He, M., Koval, S., Lin, M. K., Van Wijk, R., Hankemeier, T., van der Greef, J. and Wang, M. (2017) Characterization of the therapeutic properties of Chinese herbal materials by measuring delayed luminescence and dendritic cell-based immunomodulatory response. J. Photochem. Photobiol. B, 168, 1–11
CrossRef Pubmed Google scholar
[136]
Wang, J., Li, Y., Yang, Y., Chen, X., Du, J., Zheng, Q., Liang, Z. and Wang, Y. (2017) A new strategy for deleting animal drugs from traditional Chinese medicines based on modified yimusake formula. Sci. Rep., 7, 1504
CrossRef Pubmed Google scholar
[137]
Ai, H., Wu, X., Qi, M., Zhang, L., Hu, H., Zhao, Q., Zhao, J. and Liu, H. (2018) Study on the mechanisms of active compounds in traditional Chinese medicine for the treatment of influenza virus by virtual screening. Interdiscip. Sci., 10, 320–328
CrossRef Pubmed Google scholar
[138]
Jiang, Q. Y., Zheng, M. S., Yang, X. J. and Sun, X. S. (2016) Analysis of molecular networks and targets mining of Chinese herbal medicines on anti-aging. BMC Complement. Altern. Med., 16, 520
CrossRef Pubmed Google scholar
[139]
Liu, J., Liu, J., Shen, F., Qin, Z., Jiang, M., Zhu, J., Wang, Z., Zhou, J., Fu, Y., Chen, X., (2018) Systems pharmacology analysis of synergy of TCM: an example using saffron formula. Sci. Rep., 8, 380
CrossRef Pubmed Google scholar
[140]
Fan, W. T. and Wang, Q. (2018) Mechanism of Acori Tatarinowii Rhizoma-Curcumae Radix treating depression based on network pharmacology. Zhongguo Zhongyao Zazhi, 43, 2607–2611, in Chinese
Pubmed
[141]
Wang, J., Zhang, L., Liu, B., Wang, Q., Chen, Y., Wang, Z., Zhou, J., Xiao, W., Zheng, C. and Wang, Y. (2018) Systematic investigation of the Erigeron breviscapus mechanism for treating cerebrovascular disease. J. Ethnopharmacol., 224, 429–440
CrossRef Pubmed Google scholar
[142]
Li, Y., Han, C., Wang, J., Xiao, W., Wang, Z., Zhang, J., Yang, Y., Zhang, S. and Ai, C. (2014) Investigation into the mechanism of Eucommia ulmoides Oliv. based on a systems pharmacology approach. J. Ethnopharmacol., 151, 452–460
CrossRef Pubmed Google scholar
[143]
Liu, X., Wu, J., Zhang, D., Wang, K., Duan, X. and Zhang, X. (2018) A network pharmacology approach to uncover the multiple mechanisms of Hedyotis diffusa Willd. on colorectal cancer. Evid. Based Complement. Alternat. Med., 2018, 6517034
CrossRef Pubmed Google scholar
[144]
Li, Y., Wang, J., Xiao, Y., Wang, Y., Chen, S., Yang, Y., Lu, A. and Zhang, S. (2015) A systems pharmacology approach to investigate the mechanisms of action of semen strychni and Tripterygium wilfordii Hook F for treatment of rheumatoid arthritis. J. Ethnopharmacol., 175, 301–314
CrossRef Pubmed Google scholar
[145]
Li, Y. Y., Zheng, G. and Liu, L. (2018) Bioinformatics based therapeutic effects of Sinomenium Acutum. Chin. J. Integr. Med., 10.1007/s11655-018-2796-6
Pubmed
[146]
Yi, F., Sun, L., Xu, L. J., Peng, Y., Liu, H. B., He, C. N. and Xiao, P. G. (2017) In silico approach for anti-thrombosis drug discovery: P2Y1R structure-based TCMs screening. Front. Pharmacol., 7, 531
CrossRef Pubmed Google scholar
[147]
Liu, J., Pei, M., Zheng, C., Li, Y., Wang, Y., Lu, A. and Yang, L. (2013) A systems-pharmacology analysis of herbal medicines used in health improvement treatment: predicting potential new drugs and targets. Evid. Based Complement. Alternat. Med., 2013, 938764
CrossRef Pubmed Google scholar
[148]
Zhao, L., Wu, Y. F., Gao, Y., Xiang, H., Qin, X. M. and Tian, J. S. (2017) Intervention mechanism of psychological sub-health by Baihe Dihuang Tang based on network pharmacology. Acta Pharma. Sinica (Yao Xue Xue Bao ), 52, 99–105, in Chinese
Pubmed
[149]
Zhao, P., Li, J., Li, Y., Tian, Y., Wang, Y. and Zheng, C. (2015) Systems pharmacology-based approach for dissecting the active ingredients and potential targets of the Chinese herbal Bufei Jianpi formula for the treatment of COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 10, 2633–2656
Pubmed
[150]
Shi, S. H., Cai, Y. P., Cai, X. J., Zheng, X. Y., Cao, D. S., Ye, F. Q. and Xiang, Z. (2014) A network pharmacology approach to understanding the mechanisms of action of traditional medicine: Bushenhuoxue formula for treatment of chronic kidney disease. PLoS One, 9, e89123
CrossRef Pubmed Google scholar
[151]
Cai, H., Luo, Y., Yan, X., Ding, P., Huang, Y., Fang, S., Zhang, R., Chen, Y., Guo, Z., Fang, J., (2018) The mechanisms of Bushen-Yizhi formula as a therapeutic agent against alzheimer’s disease. Sci. Rep., 8, 3104
CrossRef Pubmed Google scholar
[152]
Huang, J., Tang, H., Cao, S., He, Y., Feng, Y., Wang, K. and Zheng, Q. (2017) Molecular targets and associated potential pathways of danlu capsules in hyperplasia of mammary glands based on systems pharmacology. Evid. Based Complement. Alternat. Med., 2017, 1930598
CrossRef Pubmed Google scholar
[153]
Luo, Y., Wang, Q. and Zhang, Y. (2016) A systems pharmacology approach to decipher the mechanism of danggui-shaoyao-san decoction for the treatment of neurodegenerative diseases. J. Ethnopharmacol., 178, 66–81
CrossRef Pubmed Google scholar
[154]
Zheng, C. S., Fu, C. L., Pan, C. B., Bao, H. J., Chen, X. Q., Ye, H. Z., Ye, J. X., Wu, G. W., Li, X. H., Xu, H. F., (2015) Deciphering the underlying mechanisms of Diesun Miaofang in traumatic injury from a systems pharmacology perspective. Mol. Med. Rep., 12, 1769–1776
CrossRef Pubmed Google scholar
[155]
Xu, H., Zhang, Y., Lei, Y., Gao, X., Zhai, H., Lin, N., Tang, S., Liang, R., Ma, Y., Li, D., (2014) A systems biology-based approach to uncovering the molecular mechanisms underlying the effects of dragon’s blood tablet in colitis, involving the integration of chemical analysis, ADME prediction, and network pharmacology. PLoS One, 9, e101432
CrossRef Pubmed Google scholar
[156]
Li, H., Zhao, L., Zhang, B., Jiang, Y., Wang, X., Guo, Y., Liu, H., Li, S. and Tong, X. (2014) A network pharmacology approach to determine active compounds and action mechanisms of Ge-Gen-Qin-Lian decoction for treatment of type 2 diabetes. Evid. Based Complement. Alternat. Med., 2014, 495840
CrossRef Pubmed Google scholar
[157]
Liang, X., Li, H. and Li, S. (2014) A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang pill as a case study. Mol. Biosyst., 10, 1014–1022
CrossRef Pubmed Google scholar
[158]
Yao, Y., Zhang, X., Wang, Z., Zheng, C., Li, P., Huang, C., Tao, W., Xiao, W., Wang, Y., Huang, L., (2013) Deciphering the combination principles of traditional Chinese medicine from a systems pharmacology perspective based on Ma-huang decoction. J. Ethnopharmacol., 150, 619–638
CrossRef Pubmed Google scholar
[159]
Tang, F., Tang, Q., Tian, Y., Fan, Q., Huang, Y. and Tan, X. (2015) Network pharmacology-based prediction of the active ingredients and potential targets of Mahuang Fuzi Xixin decoction for application to allergic rhinitis. J. Ethnopharmacol., 176, 402–412
CrossRef Pubmed Google scholar
[160]
Huang, T., Ning, Z., Hu, D., Zhang, M., Zhao, L., Lin, C., Zhong, L. L. D., Yang, Z., Xu, H. and Bian, Z. (2018) Uncovering the mechanisms of Chinese herbal medicine (MaZiRenWan) for functional constipation by focused network pharmacology approach. Front. Pharmacol., 9, 270
CrossRef Pubmed Google scholar
[161]
Wang, X., Yu, S., Jia, Q., Chen, L., Zhong, J., Pan, Y., Shen, P., Shen, Y., Wang, S., Wei, Z., (2017) NiaoDuQing granules relieve chronic kidney disease symptoms by decreasing renal fibrosis and anemia. Oncotarget, 8, 55920–55937
CrossRef Pubmed Google scholar
[162]
Ke, Z. P., Zhang, X. Z., Ding, Y., Cao, L., Li, N., Ding, G., Wang, Z. Z. and Xiao, W. (2015) Study on effective substance basis and molecular mechanism of Qigui Tongfeng tablet using network pharmacology method. Zhongguo Zhongyao Zazhi, 40, 2837–2842, in Chinese
Pubmed
[163]
Tao, W., Xu, X., Wang, X., Li, B., Wang, Y., Li, Y. and Yang, L. (2013) Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J. Ethnopharmacol., 145, 1–10
CrossRef Pubmed Google scholar
[164]
Yang, H., Zhang, W., Huang, C., Zhou, W., Yao, Y., Wang, Z., Li, Y., Xiao, W. and Wang, Y. (2014) A novel systems pharmacology model for herbal medicine injection: a case using reduning injection. BMC Complement. Altern. Med., 14, 430
CrossRef Pubmed Google scholar
[165]
Luo, F., Gu, J., Zhang, X., Chen, L., Cao, L., Li, N., Wang, Z., Xiao, W. and Xu, X. (2015) Multiscale modeling of drug-induced effects of ReDuNing injection on human disease: from drug molecules to clinical symptoms of disease. Sci. Rep., 5, 10064
CrossRef Pubmed Google scholar
[166]
Liu, J., Sun, K., Zheng, C., Chen, X., Zhang, W., Wang, Z., Shar, P. A., Xiao, W. and Wang, Y. (2015) Pathway as a pharmacological target for herbal medicines: an investigation from reduning injection. PLoS One, 10, e0123109
CrossRef Pubmed Google scholar
[167]
Wu, L., Wang, Y., Nie, J., Fan, X. and Cheng, Y. (2013) A network pharmacology approach to evaluating the efficacy of Chinese medicine using genome-wide transcriptional expression data. Evid. Based Complement. Alternat. Med., 2013, 915343
CrossRef Pubmed Google scholar
[168]
Shen, X., Zhao, Z., Luo, X., Wang, H., Hu, B. and Guo, Z. (2016) Systems pharmacology based study of the molecular mechanism of SiNiSan formula for application in nervous and mental diseases. Evid. Based Complement. Alternat. Med., 2016, 9146378
CrossRef Pubmed Google scholar
[169]
Wang, H. H., Zhang, B. X., Ye, X. T., He, S. B., Zhang, Y. L. and Wang, Y. (2015) Study on mechanism for anti-depression efficacy of Sini San through auxiliary mechanism elucidation system for Chinese medicine. Zhongguo Zhongyao Zazhi, 40, 3723–3728, in Chinese
Pubmed
[170]
Zheng, C. S., Xu, X. J., Ye, H. Z., Wu, G. W., Li, X. H., Xu, H. F. and Liu, X. X. (2013) Network pharmacology-based prediction of the multi-target capabilities of the compounds in Taohong Siwu decoction, and their application in osteoarthritis. Exp. Ther. Med., 6, 125–132
CrossRef Pubmed Google scholar
[171]
Wang, T., Wu, Z., Sun, L., Li, W., Liu, G. and Tang, Y. (2018) A computational systems pharmacology approach to investigate molecular mechanisms of herbal formula Tian-Ma-Gou-Teng-Yin for treatment of alzheimer’s disease. Front. Pharmacol., 9, 668
CrossRef Pubmed Google scholar
[172]
Li, Y., Zhang, J., Zhang, L., Chen, X., Pan, Y., Chen, S. S., Zhang, S., Wang, Z., Xiao, W., Yang, L., (2015) Systems pharmacology to decipher the combinational anti-migraine effects of Tianshu formula. J. Ethnopharmacol., 174, 45–56
CrossRef Pubmed Google scholar
[173]
Gao, Y., Gao, L., Gao, X. X., Zhou, Y. Z., Qin, X. M. and Tian, J. S. (2015) An exploration in the action targets for antidepressant bioactive components of Xiaoyaosan based on network pharmacology. Acta Pharma. Sinica (Yao Xue Xue Bao), 50, 1589–1595, in Chinese
Pubmed
[174]
Liu, J., Pei, T., Mu, J., Zheng, C., Chen, X., Huang, C., Fu, Y., Liang, Z. and Wang, Y. (2016) Systems pharmacology uncovers the multiple mechanisms of Xijiao Dihuang decoction for the treatment of viral hemorrhagic fever. Evid. Based Complement. Alternat. Med., 2016, 9025036
CrossRef Pubmed Google scholar
[175]
Pang, H. Q., Yue, S. J., Tang, Y. P., Chen, Y. Y., Tan, Y. J., Cao, Y. J., Shi, X. Q., Zhou, G. S., Kang, A., Huang, S. L., (2018) Integrated metabolomics and network pharmacology approach to explain possible action mechanisms of Xin-Sheng-Hua granule for treating Anemia. Front. Pharmacol., 9, 165
CrossRef Pubmed Google scholar
[176]
Chen, L., Cao, Y., Zhang, H., Lv, D., Zhao, Y., Liu, Y., Ye, G. and Chai, Y. (2018) Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. J. Ethnopharmacol., 219, 359–368
CrossRef Pubmed Google scholar
[177]
Huang, J., Cheung, F., Tan, H. Y., Hong, M., Wang, N., Yang, J., Feng, Y. and Zheng, Q. (2017) Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology. Mol. Med. Rep., 16, 4583–4592
CrossRef Pubmed Google scholar
[178]
An, L. and Feng, F. (2015) Network pharmacology-based antioxidant effect study of Zhi-Zi-Da-Huang decoction for alcoholic liver disease. Evid. Based Complement. Alternat. Med., 2015, 492470
CrossRef Pubmed Google scholar
[179]
Li, F., Lv, Y. N., Tan, Y. S., Shen, K., Zhai, K. F., Chen, H. L., Kou, J. P. and Yu, B. Y. (2015) An integrated pathway interaction network for the combination of four effective compounds from ShengMai preparations in the treatment of cardio-cerebral ischemic diseases. Acta Pharmacol. Sin., 36, 1337–1348
CrossRef Pubmed Google scholar
[180]
Li, B., Tao, W., Zheng, C., Shar, P. A., Huang, C., Fu, Y. and Wang, Y. (2014) Systems pharmacology-based approach for dissecting the addition and subtraction theory of traditional Chinese medicine: an example using Xiao-Chaihu-Decoction and Da-Chaihu-Decoction. Comput. Biol. Med., 53, 19–29
CrossRef Pubmed Google scholar
[181]
Zhou, W. and Wang, Y. (2014) A network-based analysis of the types of coronary artery disease from traditional Chinese medicine perspective: potential for therapeutics and drug discovery. J. Ethnopharmacol., 151, 66–77
CrossRef Pubmed Google scholar
[182]
Wang, J., Liu, R., Liu, B., Yang, Y., Xie, J. and Zhu, N. (2017) Systems pharmacology-based strategy to screen new adjuvant for hepatitis B vaccine from traditional Chinese medicine ophiocordyceps sinensis. Sci. Rep., 7, 44788
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work was supported by the start-up support for scientific research of Xinglin Young Scholar in Guangzhou University of Chinese Medicine (A1-AFD018161Z04).

COMPLIANCE WITH ETHICAL GUIDELINES

Fuda Xie and Jiangyong Gu declare that they have no conflict of interests.ƒThis article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(341 KB)

Accesses

Citations

Detail

Sections
Recommended

/