Subnetwork identification and chemical modulation for neural regeneration: A study combining network guided forest and heat diffusion model

Hui Wang , Gang Wang , Li-Da Zhu , Xuan Xu , Bo Diao , Hong-Yu Zhang

Quant. Biol. ›› 2018, Vol. 6 ›› Issue (4) : 321 -333.

PDF (5214KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (4) : 321 -333. DOI: 10.1007/s40484-018-0159-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Subnetwork identification and chemical modulation for neural regeneration: A study combining network guided forest and heat diffusion model

Author information +
History +
PDF (5214KB)

Abstract

Background: The induction of neural regeneration is vital to the repair of spinal cord injury (SCI). While compared with peripheral nervous system (PNS), the regenerative capacity of the central nervous system (CNS) is extremely limited. This indicates that modulating the molecular pathways underlying PNS repair may lead to the discovery of potential treatment for CNS injury.

Methods: Based on the gene expression profiles of dorsal root ganglion (DRG) after a sciatic nerve injury, we utilized network guided forest (NGF) to rank genes in terms of their capacity of distinguishing injured DRG from sham-operated controls. Gene importance scores deriving from NGF were used as initial heat in a heat diffusion model (HotNet2) to infer the subnetworks underlying neural regeneration in the DRG. After potential regulators of the subnetworks were found through Connectivity Map (cMap), candidate compounds were experimentally evaluated for their capacity to regenerate the damaged neurons.

Results: Gene ontology analysis of the subnetworks revealed ubiquinone biosynthetic process is crucial for neural regeneration. Moreover, almost half of the genes in these subnetworks are found to be related to neural regeneration via text mining. After screening compounds that are likely to modulate gene expressions of the subnetworks, three compounds were selected for the experiment. Of them, trichostatin A, a histone deacetylase inhibitor, was validated to enhance neurite outgrowth in vivo via an optic nerve crush mouse model.

Conclusions: Our study identified subnetworks underlying neural regeneration, and validated a compound can promote neurite outgrowth by modulating these subnetworks. This work also suggests an alternative approach for drug repositioning that can be easily extended to other disease phenotypes.

Graphical abstract

Keywords

network guided forest / HotNet2 / neural regeneration / axon growth / neurotrophic factors

Cite this article

Download citation ▾
Hui Wang, Gang Wang, Li-Da Zhu, Xuan Xu, Bo Diao, Hong-Yu Zhang. Subnetwork identification and chemical modulation for neural regeneration: A study combining network guided forest and heat diffusion model. Quant. Biol., 2018, 6(4): 321-333 DOI:10.1007/s40484-018-0159-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hulsebosch, C. E. (2002) Recent advances in pathophysiology and treatment of spinal cord injury. Adv. Physiol. Educ., 26, 238–255

[2]

Smith, D. S. and Pate Skene, J. H. (1997) A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J. Neurosci., 17, 646–658

[3]

Silver, J. and Miller, J. H. (2004) Regeneration beyond the glial scar. Nat. Rev. Neurosci., 5, 146–156

[4]

McKerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J. and Braun, P. E. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 13, 805–811

[5]

Fitch, M. T. and Silver, J. (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp. Neurol., 209, 294–301

[6]

Filbin, M. T. (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci., 4, 703–713

[7]

Wang, K. C., Koprivica, V., Kim, J. A., Sivasankaran, R., Guo, Y., Neve, R. L. and He, Z. (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 417, 941–944

[8]

Schmitt, A. B., Breuer, S., Liman, J., Buss, A., Schlangen, C., Pech, K., Hol, E. M., Brook, G. A., Noth, J. and Schwaiger, F.-W. (2003) Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat. BMC Neurosci., 4, 8

[9]

Giger, R. J., Hollis, E. R. 2nd and Tuszynski, M. H. (2010) Guidance molecules in axon regeneration. Cold Spring Harb. Perspect. Biol., 2, a001867

[10]

Zuo, J., Neubauer, D., Dyess, K., Ferguson, T. A. and Muir, D. (1998) Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol., 154, 654–662

[11]

Chen, M. S., Huber, A. B., van der Haar, M. E., Frank, M., Schnell, L., Spillmann, A. A., Christ, F. and Schwab, M. E. (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 403, 434–439

[12]

Rubin, B. P., Dusart, I. and Schwab, M. E. (1994) A monoclonal antibody (IN-1) which neutralizes neurite growth inhibitory proteins in the rat CNS recognizes antigens localized in CNS myelin. J. Neurocytol., 23, 209–217

[13]

Michaelevski, I., Segal-Ruder, Y., Rozenbaum, M., Medzihradszky, K. F., Shalem, O., Coppola, G., Horn-Saban, S., Ben-Yaakov, K., Dagan, S. Y., Rishal, I., (2010) Signaling to transcription networks in the neuronal retrograde injury response. Sci. Signal., 3, ra53

[14]

Nix, P., Hisamoto, N., Matsumoto, K. and Bastiani, M. (2011) Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc. Natl. Acad. Sci. USA, 108, 10738–10743

[15]

Yiu, G. and He, Z. (2006) Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci., 7, 617–627

[16]

Horner, P. J. and Gage, F. H. (2000) Regenerating the damaged central nervous system. Nature, 407, 963–970

[17]

Mattson, M. P. (1989) Acetylcholine potentiates glutamate-induced neurodegeneration in cultured hippocampal neurons. Brain Res., 497, 402–406

[18]

Connor, B. and Dragunow, M. (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res. Rev., 27, 1–39

[19]

Kamei, N., Tanaka, N., Oishi, Y., Hamasaki, T., Nakanishi, K., Sakai, N. and Ochi, M. (2007) BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine, 32, 1272–1278

[20]

Ziegner, U. H., Kobayashi, R. H., Cunningham-Rundles, C., Español, T., Fasth, A., Huttenlocher, A., Krogstad, P., Marthinsen, L., Notarangelo, L. D., Pasic, S., (2002) Progressive neurodegeneration in patients with primary immunodeficiency disease on IVIG treatment. Clin. Immunol., 102, 19–24

[21]

Blesch, A., Lu, P. and Tuszynski, M. H. (2002) Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res. Bull., 57, 833–838

[22]

Huang, D. W., McKerracher, L., Braun, P. E. and David, S. (1999) A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron, 24, 639–647

[23]

Sicotte, M., Tsatas, O., Jeong, S. Y., Cai, C.-Q., He, Z. and David, S. (2003) Immunization with myelin or recombinant Nogo-66/MAG in alum promotes axon regeneration and sprouting after corticospinal tract lesions in the spinal cord. Mol. Cell. Neurosci., 23, 251–263

[24]

Chandran, V., Coppola, G., Nawabi, H., Omura, T., Versano, R., Huebner, E. A., Zhang, A., Costigan, M., Yekkirala, A., Barrett, L., (2016) A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron, 89, 956–970

[25]

Dutkowski, J. and Ideker, T. (2011) Protein networks as logic functions in development and cancer. PLoS Comput. Biol., 7, e1002180

[26]

Dong, X., Jiang, Z., Peng, Y. L. and Zhang, Z. (2015) Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis. Plant Physiol., 167, 1186–1203

[27]

Leiserson, M. D. M., Vandin, F., Wu, H. T., Dobson, J. R., Eldridge, J. V., Thomas, J. L., Papoutsaki, A., Kim, Y., Niu, B., McLellan, M., (2015) Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet., 47, 106–114

[28]

Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., Lerner, J., Brunet, J. P., Subramanian, A., Ross, K. N., (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929–1935

[29]

Johnson, W. E., Li, C. and Rabinovic, A. (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127

[30]

Kim, J., So, S., Lee, H. J., Park, J. C., Kim, J. J. and Lee, H. (2013) DigSee: disease gene search engine with evidence sentences (version cancer). Nucleic Acids Res., 41, W510–W517

[31]

Fleming, C. E., Saraiva, M. J. and Sousa, M. M. (2007) Transthyretin enhances nerve regeneration. J. Neurochem., 103, 831–839

[32]

Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., Goldman, D. and Weinberger, D. R. (2001) Effect of COMT Val108/158Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA, 98, 6917–6922

[33]

Chen, W., Chen, C., Xia, M., Wu, K., Chen, C., He, Q., Xue, G., Wang, W., He, Y. and Dong, Q. (2016) Interaction effects of BDNF and COMT genes on resting-state brain activity and working memory. Front. Hum. Neurosci., 10, 540

[34]

Lewin, S. L., Utley, D. S., Cheng, E. T., Verity, A. N. and Terris, D. J. (1997) Simultaneous treatment with BDNF and CNTF after peripheral nerve transection and repair enhances rate of functional recovery compared with BDNF treatment alone. Laryngoscope, 107, 992–999

[35]

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res., 44, W90–W97

[36]

Namm, A., Arend, A. and Aunapuu, M. (2013) Pax proteins in embryogenesis and their role in nervous system development. Pap. Anthropol., 22, 133–142

[37]

Burrill, J. D., Moran, L., Goulding, M. D. and Saueressig, H. (1997) PAX2 is expressed in multiple spinal cord interneurons, including a population of EN1+ interneurons that require PAX6 for their development. Development, 124, 4493–4503

[38]

Ziman, M. R., Rodger, J., Chen, P., Papadimitriou, J. M., Dunlop, S. A. and Beazley, L. D. (2001) Pax genes in development and maturation of the vertebrate visual system: implications for optic nerve regeneration. Histol. Histopathol., 16, 239–249

[39]

Raivich, G., Bohatschek, M., Da Costa, C., Iwata, O., Galiano, M., Hristova, M., Nateri, A. S., Makwana, M., Riera-Sans, L., Wolfer, D. P., (2004) The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron, 43, 57–67

[40]

Iorio, F., Bosotti, R., Scacheri, E., Belcastro, V., Mithbaokar, P., Ferriero, R., Murino, L., Tagliaferri, R., Brunetti-Pierri, N., Isacchi, A., (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. USA, 107, 14621–14626

[41]

Sakaue, Y., Sanada, M., Sasaki, T., Kashiwagi, A. and Yasuda, H. (2003) Amelioration of retarded neurite outgrowth of dorsal root ganglion neurons by overexpression of PKCδ in diabetic rats. Neuroreport, 14, 431–436

[42]

Duan, Q., Reid, S. P., Clark, N. R., Wang, Z., Fernandez, N. F., Rouillard, A. D., Readhead, B., Tritsch, S. R., Hodos, R., Hafner, M., (2016) L1000CDS2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst. Biol. Appl., 2, 16015

[43]

Sun, F., Park, K. K., Belin, S., Wang, D., Lu, T., Chen, G., Zhang, K., Yeung, C., Feng, G., Yankner, B. A., (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature, 480, 372–375

[44]

Agudelo, M., Gandhi, N., Saiyed, Z., Pichili, V., Thangavel, S., Khatavkar, P., Yndart-Arias, A. and Nair, M. (2011) Effects of alcohol on histone deacetylase 2 (HDAC2) and the neuroprotective role of trichostatin A (TSA). Alcohol. Clin. Exp. Res., 35, 1550–1556

[45]

Bolstad, B. M., Collin, F., Simpson, K. M., Irizarry, R. A. and Speed, T. P. (2004) Experimental design and low-level analysis of microarray data. Int. Rev. Neurobiol., 60, 25–58

[46]

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 45, D362–D368

[47]

Breiman, L. I., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classification and Regression Trees (CART). 1 Ed., Chapman and Hall/CRC

[48]

Chung, F. (2007) The heat kernel as the pagerank of a graph. Proc. Natl. Acad. Sci. USA, 104, 19735–19740

[49]

Vandin, F., Upfal, E. and Raphael, B. J. (2011) Algorithms for detecting significantly mutated pathways in cancer. J. Comput. Biol., 18, 507–522

[50]

Vandin, F., Clay, P., Upfal, E. and Raphael, B. J. (2012) Discovery of mutated subnetworks associated with clinical data in cancer. In Proceedings of the Pacific Symposium of Biocomputing 2012, pp. 55–66. World Scientific

[51]

Huang, W., Sherman, B. T. and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 37, 1–13

[52]

Huang, W., Sherman, B. T. and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57

[53]

Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D. and Thomas, P. D. (2017) PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res., 45, D183–D189

[54]

Templeton, J. P. and Geisert, E. E. (2012) A practical approach to optic nerve crush in the mouse. Mol. Vis., 18, 2147–2152

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (5214KB)

Supplementary files

Supplementary Material1

Supplementary Material2

Supplementary Material3

1408

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/