A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data

Minzhe Zhang , Qiwei Li , Yang Xie

Quant. Biol. ›› 2018, Vol. 6 ›› Issue (3) : 275 -286.

PDF (1765KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (3) : 275 -286. DOI: 10.1007/s40484-018-0149-2
METHODOLOGY ARTICLE
METHODOLOGY ARTICLE

A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data

Author information +
History +
PDF (1765KB)

Abstract

Background: The recently emerged technology of methylated RNA immunoprecipitation sequencing (MeRIP-seq) sheds light on the study of RNA epigenetics. This new bioinformatics question calls for effective and robust peaking calling algorithms to detect mRNA methylation sites from MeRIP-seq data.

Methods: We propose a Bayesian hierarchical model to detect methylation sites from MeRIP-seq data. Our modeling approach includes several important characteristics. First, it models the zero-inflated and over-dispersed counts by deploying a zero-inflated negative binomial model. Second, it incorporates a hidden Markov model (HMM) to account for the spatial dependency of neighboring read enrichment. Third, our Bayesian inference allows the proposed model to borrow strength in parameter estimation, which greatly improves the model stability when dealing with MeRIP-seq data with a small number of replicates. We use Markov chain Monte Carlo (MCMC) algorithms to simultaneously infer the model parameters in a de novo fashion. The R Shiny demo is available at the authors' website and the R/C++ code is available at https://github.com/liqiwei2000/BaySeqPeak.

Results: In simulation studies, the proposed method outperformed the competing methods exomePeak and MeTPeak, especially when an excess of zeros were present in the data. In real MeRIP-seq data analysis, the proposed method identified methylation sites that were more consistent with biological knowledge, and had better spatial resolution compared to the other methods.

Conclusions: In this study, we develop a Bayesian hierarchical model to identify methylation peaks in MeRIP-seq data. The proposed method has a competitive edge over existing methods in terms of accuracy, robustness and spatial resolution.

Graphical abstract

Keywords

MeRIP-seq data / RNA epigenomics / Bayesian inference / hidden Markov model / zero-inflated negative binomial

Cite this article

Download citation ▾
Minzhe Zhang, Qiwei Li, Yang Xie. A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data. Quant. Biol., 2018, 6(3): 275-286 DOI:10.1007/s40484-018-0149-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Suzuki, M. M. and Bird, A. (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet., 9, 465–476

[2]

Shi, Y. (2007) Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet., 8, 829–833

[3]

Motorin, Y. and Helm, M. (2011) RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA, 2, 611–631

[4]

Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., (2012)Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206

[5]

Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149, 1635–1646

[6]

Machnicka, M. A., Milanowska, K., Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., Januszewski, W., Kalinowski, S., Dunin-Horkawicz, S., Rother, K. M., (2013) MODOMICS: a database of RNA modification pathways€–€2013 update. Nucleic Acids Res., 41, D262–D267

[7]

Desrosiers, R., Friderici, K. and Rottman, F. (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA, 71, 3971–3975

[8]

Adams, J. M. and Cory, S. (1975) Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 255, 28–33

[9]

Aloni, Y., Dhar, R. and Khoury, G. (1979) Methylation of nuclear simian virus 40 RNAs. J. Virol., 32, 52–60

[10]

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol., 10, 93–95

[11]

Ping, X.-L., Sun, B. F., Wang, L., Xiao, W., Yang, X., Wang, W. J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y. S., (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res., 24, 177–189

[12]

Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y. G., (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol., 7, 885–887

[13]

Yue, Y., Liu, J. and He, C. (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev., 29, 1343–1355

[14]

Meyer, K. D., and Jaffrey, S. R. (2014) The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Bio., 15, 313–326

[15]

Cao, G., Li, H-B., Yin, Z., Flavell, R. A. (2016) Recent advances in dynamic m6A RNA modification. Open Biol ., 6,160003

[16]

Meng, J., Cui, X., Rao, M. K., Chen, Y. and Huang, Y. (2013) Exome-based analysis for RNA epigenome sequencing data. Bioinformatics, 29, 1565–1567

[17]

Przyborowski, J. and Wilenski, H. (1940) Homogeneity of results in testing samples from Poisson series: with an application to testing clover seed for dodder. Biometrika, 31, 313–323

[18]

Cui, X., Meng, J., Rao, M. K., Chen Y. and Huang Y. (2015) HEPeak: an HMM-based exome peak-finding package for RNA epigenome sequencing data.  BMC genomics16(Suppl 4), S2

[19]

Cui, X., Meng, J., Zhang, S., Chen, Y. and Huang, Y. (2016) A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data. Bioinformatics, 32, i378–i385

[20]

Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal., 1, 515–534

[21]

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509–1517

[22]

Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinform., 11, 94

[23]

Anders, S., and Huber W. (2010) Differential expression analysis for sequence count data. Genome Boil., 11, R106

[24]

Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140

[25]

Witten, D., Tibshirani, R., Gu, S., Fire, A. and Lui, W. -O. (2010) Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol., 8, 58

[26]

Witten, D. M. (2011) Classification and clustering of sequencing data using a Poisson model. Ann. Appl. Stat., 5, 2493–2518

[27]

Li, J., Witten, D. M., Johnstone, I. M. and Tibshirani, R. (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13, 523–538

[28]

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5, 621–628

[29]

Morris, C. N. (1983) Parametric empirical Bayes inference: theory and applications. J. Am. Stat. Assoc., 78, 47–55

[30]

Gelman, A. (2008) Objections to Bayesian statistics. Bayesian Anal., 3, 445–449

[31]

Li, Q., Guindani, M., Reich, B. J., Bondell, H. D. and Vannucci, M. (2017) A Bayesian mixture model for clustering and selection of feature occurrence rates under mean constraints. Statistical Analysis and Data Mining: The ASA Data Science Journal, 10, 393–409

[32]

Guha, S., Li, Y. and Neuberg, D. (2008) Bayesian hidden Markov modeling of array CGH data. J. Am. Stat. Assoc., 103, 485–497

[33]

Newton, M. A., Noueiry, A., Sarkar, D. and Ahlquist, P. (2004) Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics, 5, 155–176

[34]

Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences. Stat. Sci., 7, 457–472

[35]

Hess, M. E., Hess, S., Meyer, K. D., Verhagen, L. A., Koch, L., Brönneke, H. S., Dietrich, M. O., Jordan, S. D., Saletore, Y., Elemento, O., (2013) The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat. Neurosci., 16, 1042–1048

[36]

[37]

Meng, J., Lu, Z., Liu, H., Zhang, L., Zhang, S., Chen, Y., Rao, M. K. and Huang, Y. (2014) A protocol for RNA methylation differential analysis with MeRIP-seq data and exomePeak R/Bioconductor package. Methods, 69, 274–281

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1765KB)

2787

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/