Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data

Aysegul Guvenek , Bin Tian

Quant. Biol. ›› 2018, Vol. 6 ›› Issue (3) : 253 -266.

PDF (2735KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (3) : 253 -266. DOI: 10.1007/s40484-018-0148-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data

Author information +
History +
PDF (2735KB)

Abstract

Background: Most eukaryotic protein-coding genes exhibit alternative cleavage and polyadenylation (APA), resulting in mRNA isoforms with different 3′ untranslated regions (3′ UTRs). Studies have shown that brain cells tend to express long 3′ UTR isoforms using distal cleavage and polyadenylation sites (PASs).

Methods: Using our recently developed, comprehensive PAS database PolyA_DB, we developed an efficient method to examine APA, named Significance Analysis of Alternative Polyadenylation using RNA-seq (SAAP-RS). We applied this method to study APA in brain cells and neurogenesis.

Results: We found that neurons globally express longer 3′ UTRs than other cell types in brain, and microglia and endothelial cells express substantially shorter 3′ UTRs. We show that the 3′ UTR diversity across brain cells can be corroborated with single cell sequencing data. Further analysis of APA regulation of 3′ UTRs during differentiation of embryonic stem cells into neurons indicates that a large fraction of the APA events regulated in neurogenesis are similarly modulated in myogenesis, but to a much greater extent.

Conclusion: Together, our data delineate APA profiles in different brain cells and indicate that APA regulation in neurogenesis is largely an augmented process taking place in other types of cell differentiation.

Graphical abstract

Keywords

alternative polyadenylation / brain cells / RNA-seq / scRNA-seq

Cite this article

Download citation ▾
Aysegul Guvenek, Bin Tian. Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data. Quant. Biol., 2018, 6(3): 253-266 DOI:10.1007/s40484-018-0148-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tian, B. and Manley, J. L. (2017) Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol., 18, 18–30

[2]

Tian, B. and Graber, J. H. (2012) Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip. Rev. RNA, 3, 385–396

[3]

Shi, Y. and Manley, J. L. (2015) The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev., 29, 889–897

[4]

Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J. Y., Yehia, G. and Tian, B. (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat. Methods, 10, 133–139

[5]

Derti, A., Garrett-Engele, P., Macisaac, K. D., Stevens, R. C., Sriram, S., Chen, R., Rohl, C. A., Johnson, J. M. and Babak, T. (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res., 22, 1173–1183

[6]

Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P. and Burge, C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476

[7]

Zhang, H., Lee, J. Y. and Tian, B. (2005) Biased alternative polyadenylation in human tissues. Genome Biol., 6, R100

[8]

Miura, P., Shenker, S., Andreu-Agullo, C., Westholm, J. O. and Lai, E. C. (2013) Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res., 23, 812–825

[9]

Li, W., Park, J. Y., Zheng, D., Hoque, M., Yehia, G. and Tian, B. (2016) Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biol., 14, 6

[10]

Ji, Z., Lee, J. Y., Pan, Z., Jiang, B. and Tian, B. (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. USA, 106, 7028–7033

[11]

Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673–684

[12]

Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. and Burge, C. B. (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science, 320, 1643–1647

[13]

Fontes, M. M., Guvenek, A., Kawaguchi, R., Zheng, D., Huang, A., Ho, V. M., Chen, P. B., Liu, X., O’Dell, T. J., Coppola, G., (2017) Activity-dependent eegulation of alternative cleavage and polyadenylation during hippocampal long-term potentiation. Sci Rep, 7, 17377

[14]

Flavell, S. W., Kim, T. K., Gray, J. M., Harmin, D. A., Hemberg, M., Hong, E. J., Markenscoff-Papadimitriou, E., Bear, D. M. and Greenberg, M. E. (2008) Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron, 60, 1022–1038

[15]

Lutz, C. S. and Moreira, A. (2011) Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. Wiley Interdiscip Rev. RNA, 2, 22–31

[16]

Mayr, C. (2016) Evolution and biological roles of alternative 3′ UTRs. Trends Cell Biol., 26, 227–237

[17]

Gennarino, V. A., Alcott, C. E., Chen, C. A., Chaudhury, A., Gillentine, M. A., Rosenfeld, J. A., Parikh, S., Wheless, J. W., Roeder, E. R., Horovitz, D. D., (2015) NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. Elife, 4, 4

[18]

Han, K., Gennarino, V. A., Lee, Y., Pang, K., Hashimoto-Torii, K., Choufani, S., Raju, C. S., Oldham, M. C., Weksberg, R., Rakic, P., (2013) Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes Dev., 27, 485–490

[19]

An, J. J., Gharami, K., Liao, G. Y., Woo, N. H., Lau, A. G., Vanevski, F., Torre, E. R., Jones, K. R., Feng, Y., Lu, B., (2008) Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell, 134, 175–187

[20]

Lau, A. G., Irier, H. A., Gu, J., Tian, D., Ku, L., Liu, G., Xia, M., Fritsch, B., Zheng, J. Q., Dingledine, R., (2010) Distinct 3′ UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc. Natl. Acad. Sci. USA, 107, 15945–15950

[21]

Taliaferro, J. M., Vidaki, M., Oliveira, R., Olson, S., Zhan, L., Saxena, T., Wang, E. T., Graveley, B. R., Gertler, F. B., Swanson, M. S., (2016) Distal alternative last exons localize mRNAs to neural projections. Mol. Cell, 61, 821–833

[22]

Andreassi, C. and Riccio, A. (2009) To localize or not to localize: mRNA fate is in 3′ UTR ends. Trends Cell Biol., 19, 465–474

[23]

Tushev, G., Glock, C., Heumuller, M., Biever, A., Jovanovic, M. and Schuman, E. M. (2018) Alternative 3′ UTRs modify the localization, regulatory potential, stability, and plasticity of mRNAs in neuronal compartments. Neuron, 98, 495–511e6

[24]

Jenal, M., Elkon, R., Loayza-Puch, F., van Haaften, G., Kühn, U., Menzies, F. M., Oude Vrielink, J. A., Bos, A. J., Drost, J., Rooijers, K., (2012) The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell, 149, 538–553

[25]

Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. and Mayr, C. (2013) Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev., 27, 2380–2396

[26]

Shepard, P. J., Choi, E. A., Lu, J., Flanagan, L. A., Hertel, K. J. and Shi, Y. (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA, 17, 761–772

[27]

Zheng, D., Liu, X. and Tian, B. (2016) 3′ READS+, a sensitive and accurate method for 3′ end sequencing of polyadenylated RNA. RNA, 22, 1631–1639

[28]

Grassi, E., Mariella, E., Lembo, A., Molineris, I. and Provero, P. (2016) Roar: detecting alternative polyadenylation with standard mRNA sequencing libraries. BMC Bioinformatics, 17, 423

[29]

Katz, Y., Wang, E. T., Airoldi, E. M. and Burge, C. B. (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods, 7, 1009–1015

[30]

Huang, Z. and Teeling, E. C. (2017) ExUTR: a novel pipeline for large-scale prediction of 3′-UTR sequences from NGS data. BMC Genomics, 18, 847

[31]

Kim, M., You, B. H. and Nam, J. W. (2015) Global estimation of the 3′ untranslated region landscape using RNA sequencing. Methods, 83, 111–117

[32]

Wang, W., Wei, Z. and Li, H. (2014) A change-point model for identifying 3′ UTR switching by next-generation RNA sequencing. Bioinformatics, 30, 2162–2170

[33]

Xia, Z., Donehower, L. A., Cooper, T. A., Neilson, J. R., Wheeler, D. A., Wagner, E. J. and Li, W. (2014) Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types. Nat Commun, 5, 5274

[34]

Wang, R., Nambiar, R., Zheng, D. and Tian, B. (2018) PolyA_DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes. Nucleic Acids Res., 46, D315–D319

[35]

Anders, S., Reyes, A. and Huber, W. (2012) Detecting differential usage of exons from RNA-seq data. Genome Res., 22, 2008–2017

[36]

Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O’Keeffe, S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci., 34, 11929–11947

[37]

Gao, S., Alarcón, C., Sapkota, G., Rahman, S., Chen, P. Y., Goerner, N., Macias, M. J., Erdjument-Bromage, H., Tempst, P. and Massagué J. (2009) Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol. Cell, 36, 457–468

[38]

Rotin, D. and Kumar, S. (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol., 10, 398–409

[39]

Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno, G., Juréus, A., Marques, S., Munguba, H., He, L., Betsholtz, C., (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347, 1138–1142

[40]

Lienert, F., Mohn, F., Tiwari, V. K., Baubec, T., Roloff, T. C., Gaidatzis, D., Stadler, M. B. and Schübeler, D. (2011) Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet., 7, e1002090

[41]

Tiwari, V. K., Stadler, M. B., Wirbelauer, C., Paro, R., Schübeler, D. and Beisel, C. (2011) A chromatin-modifying function of JNK during stem cell differentiation. Nat. Genet., 44, 94–100

[42]

Busskamp, V., Lewis, N. E., Guye, P., Ng, A. H., Shipman, S. L., Byrne, S. M., Sanjana, N. E., Murn, J., Li, Y., Li, S., (2014) Rapid neurogenesis through transcriptional activation in human stem cells. Mol. Syst. Biol., 10, 760

[43]

Blair, J. D., Hockemeyer, D., Doudna, J. A., Bateup, H. S. and Floor, S. N. (2017) Widespread translational remodeling during human neuronal differentiation. Cell Rep., 21, 2005–2016

[44]

Doynova, M. D., Markworth, J. F., Cameron-Smith, D., Vickers, M. H. and O’Sullivan, J. M. (2017) Linkages between changes in the 3D organization of the genome and transcription during myotube differentiation in vitro. Skelet Muscle, 7, 5

[45]

Hamed, M., Khilji, S., Dixon, K., Blais, A., Ioshikhes, I., Chen, J. and Li, Q. (2017) Insights into interplay between rexinoid signaling and myogenic regulatory factor-associated chromatin state in myogenic differentiation. Nucleic Acids Res., 45, 11236–11248

[46]

Newington, J. T., Rappon, T., Albers, S., Wong, D. Y., Rylett, R. J. and Cumming, R. C. (2012) Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid β and other toxins by decreasing mitochondrial respiration and reactive oxygen species production. J. Biol. Chem., 287, 37245–37258

[47]

Wigfield, S. M., Winter, S. C., Giatromanolaki, A., Taylor, J., Koukourakis, M. L. and Harris, A. L. (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br. J. Cancer, 98, 1975–1984

[48]

Ma, X., Li, C., Sun, L., Huang, D., Li, T., He, X., Wu, G., Yang, Z., Zhong, X., Song, L., (2014) Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun, 5, 5212

[49]

Chalhoub, N., Zhu, G., Zhu, X. and Baker, S. J. (2009) Cell type specificity of PI3K signaling in Pdk1- and Pten-deficient brains. Genes Dev., 23, 1619–1624

[50]

Ji, Z. and Tian, B. (2009) Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS ONE, 4, e8419

[51]

Li, W., You, B., Hoque, M., Zheng, D., Luo, W., Ji, Z., Park, J. Y., Gunderson, S. I., Kalsotra, A., Manley, J. L., (2015) Systematic profiling of poly(A)+ transcripts modulated by core 3′ end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet., 11, e1005166

[52]

Tian, B., Pan, Z. and Lee, J. Y. (2007) Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res., 17, 156–165

[53]

Nagaike, T., Logan, C., Hotta, I., Rozenblatt-Rosen, O., Meyerson, M. and Manley, J. L. (2011) Transcriptional activators enhance polyadenylation of mRNA precursors. Mol. Cell, 41, 409–418

[54]

Ji, Z., Luo, W., Li, W., Hoque, M., Pan, Z., Zhao, Y. and Tian, B. (2011) Transcriptional activity regulates alternative cleavage and polyadenylation. Mol. Syst. Biol., 7, 534

[55]

Hilgers, V., Perry, M. W., Hendrix, D., Stark, A., Levine, M. and Haley, B. (2011) Neural-specific elongation of 3′ UTRs during Drosophila development. Proc. Natl. Acad. Sci. USA, 108, 15864–15869

[56]

Oktaba, K., Zhang, W., Lotz, T. S., Jun, D. J., Lemke, S. B., Ng, S. P., Esposito, E., Levine, M. and Hilgers, V. (2015) ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell, 57, 341–348

[57]

Dai, W., Li, W., Hoque, M., Li, Z., Tian, B. and Makeyev, E. V. (2015) A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status. Nat Commun, 6, 7576

[58]

Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359

[59]

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21

[60]

Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2735KB)

Supplementary files

QB-18148-OF-TB_suppl_1

2420

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/