Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data

Aysegul Guvenek, Bin Tian

PDF(2735 KB)
PDF(2735 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (3) : 253-266. DOI: 10.1007/s40484-018-0148-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data

Author information +
History +

Abstract

Background: Most eukaryotic protein-coding genes exhibit alternative cleavage and polyadenylation (APA), resulting in mRNA isoforms with different 3′ untranslated regions (3′ UTRs). Studies have shown that brain cells tend to express long 3′ UTR isoforms using distal cleavage and polyadenylation sites (PASs).

Methods: Using our recently developed, comprehensive PAS database PolyA_DB, we developed an efficient method to examine APA, named Significance Analysis of Alternative Polyadenylation using RNA-seq (SAAP-RS). We applied this method to study APA in brain cells and neurogenesis.

Results: We found that neurons globally express longer 3′ UTRs than other cell types in brain, and microglia and endothelial cells express substantially shorter 3′ UTRs. We show that the 3′ UTR diversity across brain cells can be corroborated with single cell sequencing data. Further analysis of APA regulation of 3′ UTRs during differentiation of embryonic stem cells into neurons indicates that a large fraction of the APA events regulated in neurogenesis are similarly modulated in myogenesis, but to a much greater extent.

Conclusion: Together, our data delineate APA profiles in different brain cells and indicate that APA regulation in neurogenesis is largely an augmented process taking place in other types of cell differentiation.

Author summary

Most eukaryotic protein-coding genes express isoforms with different 3′ UTR lengths. Studies have shown that transcripts expressed in brain tend to have longer 3′ UTRs compared to other tissues. We have developed an efficient computational method to analyze 3′ UTR isoforms using RNA-seq data. We show that neurons have the longest 3′ UTRs among all brain cell types and 3′ UTRs are the shortest in microglia and endothelial cells. This finding is also supported by single cell sequencing data. We further show that 3′ UTRs lengthen in neurogenesis, similar to that in myogenesis. However, 3′ UTR lengthening is much potent in differentiating neurons.

Graphical abstract

Keywords

alternative polyadenylation / brain cells / RNA-seq / scRNA-seq

Cite this article

Download citation ▾
Aysegul Guvenek, Bin Tian. Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data. Quant. Biol., 2018, 6(3): 253‒266 https://doi.org/10.1007/s40484-018-0148-3

References

[1]
Tian, B. and Manley, J. L. (2017) Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol., 18, 18–30
CrossRef Pubmed Google scholar
[2]
Tian, B. and Graber, J. H. (2012) Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip. Rev. RNA, 3, 385–396
CrossRef Pubmed Google scholar
[3]
Shi, Y. and Manley, J. L. (2015) The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev., 29, 889–897
CrossRef Pubmed Google scholar
[4]
Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J. Y., Yehia, G. and Tian, B. (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat. Methods, 10, 133–139
CrossRef Pubmed Google scholar
[5]
Derti, A., Garrett-Engele, P., Macisaac, K. D., Stevens, R. C., Sriram, S., Chen, R., Rohl, C. A., Johnson, J. M. and Babak, T. (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res., 22, 1173–1183
CrossRef Pubmed Google scholar
[6]
Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P. and Burge, C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476
CrossRef Pubmed Google scholar
[7]
Zhang, H., Lee, J. Y. and Tian, B. (2005) Biased alternative polyadenylation in human tissues. Genome Biol., 6, R100
CrossRef Pubmed Google scholar
[8]
Miura, P., Shenker, S., Andreu-Agullo, C., Westholm, J. O. and Lai, E. C. (2013) Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res., 23, 812–825
CrossRef Pubmed Google scholar
[9]
Li, W., Park, J. Y., Zheng, D., Hoque, M., Yehia, G. and Tian, B. (2016) Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biol., 14, 6
CrossRef Pubmed Google scholar
[10]
Ji, Z., Lee, J. Y., Pan, Z., Jiang, B. and Tian, B. (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. USA, 106, 7028–7033
CrossRef Pubmed Google scholar
[11]
Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673–684
CrossRef Pubmed Google scholar
[12]
Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. and Burge, C. B. (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science, 320, 1643–1647
CrossRef Pubmed Google scholar
[13]
Fontes, M. M., Guvenek, A., Kawaguchi, R., Zheng, D., Huang, A., Ho, V. M., Chen, P. B., Liu, X., O’Dell, T. J., Coppola, G., (2017) Activity-dependent eegulation of alternative cleavage and polyadenylation during hippocampal long-term potentiation. Sci Rep, 7, 17377
CrossRef Pubmed Google scholar
[14]
Flavell, S. W., Kim, T. K., Gray, J. M., Harmin, D. A., Hemberg, M., Hong, E. J., Markenscoff-Papadimitriou, E., Bear, D. M. and Greenberg, M. E. (2008) Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron, 60, 1022–1038
CrossRef Pubmed Google scholar
[15]
Lutz, C. S. and Moreira, A. (2011) Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. Wiley Interdiscip Rev. RNA, 2, 22–31
CrossRef Pubmed Google scholar
[16]
Mayr, C. (2016) Evolution and biological roles of alternative 3′ UTRs. Trends Cell Biol., 26, 227–237
CrossRef Pubmed Google scholar
[17]
Gennarino, V. A., Alcott, C. E., Chen, C. A., Chaudhury, A., Gillentine, M. A., Rosenfeld, J. A., Parikh, S., Wheless, J. W., Roeder, E. R., Horovitz, D. D., (2015) NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. Elife, 4, 4
Pubmed
[18]
Han, K., Gennarino, V. A., Lee, Y., Pang, K., Hashimoto-Torii, K., Choufani, S., Raju, C. S., Oldham, M. C., Weksberg, R., Rakic, P., (2013) Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes Dev., 27, 485–490
CrossRef Pubmed Google scholar
[19]
An, J. J., Gharami, K., Liao, G. Y., Woo, N. H., Lau, A. G., Vanevski, F., Torre, E. R., Jones, K. R., Feng, Y., Lu, B., (2008) Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell, 134, 175–187
CrossRef Pubmed Google scholar
[20]
Lau, A. G., Irier, H. A., Gu, J., Tian, D., Ku, L., Liu, G., Xia, M., Fritsch, B., Zheng, J. Q., Dingledine, R., (2010) Distinct 3′ UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc. Natl. Acad. Sci. USA, 107, 15945–15950
CrossRef Pubmed Google scholar
[21]
Taliaferro, J. M., Vidaki, M., Oliveira, R., Olson, S., Zhan, L., Saxena, T., Wang, E. T., Graveley, B. R., Gertler, F. B., Swanson, M. S., (2016) Distal alternative last exons localize mRNAs to neural projections. Mol. Cell, 61, 821–833
CrossRef Pubmed Google scholar
[22]
Andreassi, C. and Riccio, A. (2009) To localize or not to localize: mRNA fate is in 3′ UTR ends. Trends Cell Biol., 19, 465–474
CrossRef Pubmed Google scholar
[23]
Tushev, G., Glock, C., Heumuller, M., Biever, A., Jovanovic, M. and Schuman, E. M. (2018) Alternative 3′ UTRs modify the localization, regulatory potential, stability, and plasticity of mRNAs in neuronal compartments. Neuron, 98, 495–511e6
CrossRef Google scholar
[24]
Jenal, M., Elkon, R., Loayza-Puch, F., van Haaften, G., Kühn, U., Menzies, F. M., Oude Vrielink, J. A., Bos, A. J., Drost, J., Rooijers, K., (2012) The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell, 149, 538–553
CrossRef Pubmed Google scholar
[25]
Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. and Mayr, C. (2013) Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev., 27, 2380–2396
CrossRef Pubmed Google scholar
[26]
Shepard, P. J., Choi, E. A., Lu, J., Flanagan, L. A., Hertel, K. J. and Shi, Y. (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA, 17, 761–772
CrossRef Pubmed Google scholar
[27]
Zheng, D., Liu, X. and Tian, B. (2016) 3′ READS+, a sensitive and accurate method for 3′ end sequencing of polyadenylated RNA. RNA, 22, 1631–1639
CrossRef Pubmed Google scholar
[28]
Grassi, E., Mariella, E., Lembo, A., Molineris, I. and Provero, P. (2016) Roar: detecting alternative polyadenylation with standard mRNA sequencing libraries. BMC Bioinformatics, 17, 423
CrossRef Pubmed Google scholar
[29]
Katz, Y., Wang, E. T., Airoldi, E. M. and Burge, C. B. (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods, 7, 1009–1015
CrossRef Pubmed Google scholar
[30]
Huang, Z. and Teeling, E. C. (2017) ExUTR: a novel pipeline for large-scale prediction of 3′-UTR sequences from NGS data. BMC Genomics, 18, 847
CrossRef Pubmed Google scholar
[31]
Kim, M., You, B. H. and Nam, J. W. (2015) Global estimation of the 3′ untranslated region landscape using RNA sequencing. Methods, 83, 111–117
CrossRef Pubmed Google scholar
[32]
Wang, W., Wei, Z. and Li, H. (2014) A change-point model for identifying 3′ UTR switching by next-generation RNA sequencing. Bioinformatics, 30, 2162–2170
CrossRef Pubmed Google scholar
[33]
Xia, Z., Donehower, L. A., Cooper, T. A., Neilson, J. R., Wheeler, D. A., Wagner, E. J. and Li, W. (2014) Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types. Nat Commun, 5, 5274
CrossRef Pubmed Google scholar
[34]
Wang, R., Nambiar, R., Zheng, D. and Tian, B. (2018) PolyA_DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes. Nucleic Acids Res., 46, D315–D319
CrossRef Pubmed Google scholar
[35]
Anders, S., Reyes, A. and Huber, W. (2012) Detecting differential usage of exons from RNA-seq data. Genome Res., 22, 2008–2017
CrossRef Pubmed Google scholar
[36]
Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O’Keeffe, S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci., 34, 11929–11947
CrossRef Pubmed Google scholar
[37]
Gao, S., Alarcón, C., Sapkota, G., Rahman, S., Chen, P. Y., Goerner, N., Macias, M. J., Erdjument-Bromage, H., Tempst, P. and Massagué, J. (2009) Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol. Cell, 36, 457–468
CrossRef Pubmed Google scholar
[38]
Rotin, D. and Kumar, S. (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol., 10, 398–409
CrossRef Pubmed Google scholar
[39]
Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno, G., Juréus, A., Marques, S., Munguba, H., He, L., Betsholtz, C., (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347, 1138–1142
CrossRef Pubmed Google scholar
[40]
Lienert, F., Mohn, F., Tiwari, V. K., Baubec, T., Roloff, T. C., Gaidatzis, D., Stadler, M. B. and Schübeler, D. (2011) Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet., 7, e1002090
CrossRef Pubmed Google scholar
[41]
Tiwari, V. K., Stadler, M. B., Wirbelauer, C., Paro, R., Schübeler, D. and Beisel, C. (2011) A chromatin-modifying function of JNK during stem cell differentiation. Nat. Genet., 44, 94–100
CrossRef Pubmed Google scholar
[42]
Busskamp, V., Lewis, N. E., Guye, P., Ng, A. H., Shipman, S. L., Byrne, S. M., Sanjana, N. E., Murn, J., Li, Y., Li, S., (2014) Rapid neurogenesis through transcriptional activation in human stem cells. Mol. Syst. Biol., 10, 760
CrossRef Pubmed Google scholar
[43]
Blair, J. D., Hockemeyer, D., Doudna, J. A., Bateup, H. S. and Floor, S. N. (2017) Widespread translational remodeling during human neuronal differentiation. Cell Rep., 21, 2005–2016
CrossRef Pubmed Google scholar
[44]
Doynova, M. D., Markworth, J. F., Cameron-Smith, D., Vickers, M. H. and O’Sullivan, J. M. (2017) Linkages between changes in the 3D organization of the genome and transcription during myotube differentiation in vitro. Skelet Muscle, 7, 5
CrossRef Pubmed Google scholar
[45]
Hamed, M., Khilji, S., Dixon, K., Blais, A., Ioshikhes, I., Chen, J. and Li, Q. (2017) Insights into interplay between rexinoid signaling and myogenic regulatory factor-associated chromatin state in myogenic differentiation. Nucleic Acids Res., 45, 11236–11248
CrossRef Pubmed Google scholar
[46]
Newington, J. T., Rappon, T., Albers, S., Wong, D. Y., Rylett, R. J. and Cumming, R. C. (2012) Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid β and other toxins by decreasing mitochondrial respiration and reactive oxygen species production. J. Biol. Chem., 287, 37245–37258
CrossRef Pubmed Google scholar
[47]
Wigfield, S. M., Winter, S. C., Giatromanolaki, A., Taylor, J., Koukourakis, M. L. and Harris, A. L. (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br. J. Cancer, 98, 1975–1984
CrossRef Pubmed Google scholar
[48]
Ma, X., Li, C., Sun, L., Huang, D., Li, T., He, X., Wu, G., Yang, Z., Zhong, X., Song, L., (2014) Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun, 5, 5212
CrossRef Pubmed Google scholar
[49]
Chalhoub, N., Zhu, G., Zhu, X. and Baker, S. J. (2009) Cell type specificity of PI3K signaling in Pdk1- and Pten-deficient brains. Genes Dev., 23, 1619–1624
CrossRef Pubmed Google scholar
[50]
Ji, Z. and Tian, B. (2009) Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS ONE, 4, e8419
CrossRef Pubmed Google scholar
[51]
Li, W., You, B., Hoque, M., Zheng, D., Luo, W., Ji, Z., Park, J. Y., Gunderson, S. I., Kalsotra, A., Manley, J. L., (2015) Systematic profiling of poly(A)+ transcripts modulated by core 3′ end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet., 11, e1005166
CrossRef Pubmed Google scholar
[52]
Tian, B., Pan, Z. and Lee, J. Y. (2007) Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res., 17, 156–165
CrossRef Pubmed Google scholar
[53]
Nagaike, T., Logan, C., Hotta, I., Rozenblatt-Rosen, O., Meyerson, M. and Manley, J. L. (2011) Transcriptional activators enhance polyadenylation of mRNA precursors. Mol. Cell, 41, 409–418
CrossRef Pubmed Google scholar
[54]
Ji, Z., Luo, W., Li, W., Hoque, M., Pan, Z., Zhao, Y. and Tian, B. (2011) Transcriptional activity regulates alternative cleavage and polyadenylation. Mol. Syst. Biol., 7, 534
CrossRef Pubmed Google scholar
[55]
Hilgers, V., Perry, M. W., Hendrix, D., Stark, A., Levine, M. and Haley, B. (2011) Neural-specific elongation of 3′ UTRs during Drosophila development. Proc. Natl. Acad. Sci. USA, 108, 15864–15869
CrossRef Pubmed Google scholar
[56]
Oktaba, K., Zhang, W., Lotz, T. S., Jun, D. J., Lemke, S. B., Ng, S. P., Esposito, E., Levine, M. and Hilgers, V. (2015) ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell, 57, 341–348
CrossRef Pubmed Google scholar
[57]
Dai, W., Li, W., Hoque, M., Li, Z., Tian, B. and Makeyev, E. V. (2015) A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status. Nat Commun, 6, 7576
CrossRef Pubmed Google scholar
[58]
Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359
CrossRef Pubmed Google scholar
[59]
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21
CrossRef Pubmed Google scholar
[60]
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/ 10.1007/s40484-018-0148-3.

AUTHOR CONTRIBUTIONS

Aysegul Guvenek and Bin Tian conceived of and designed the experiments. Aysegul Guvenek analyzed the data. Aysegul Guvenek and Bin Tian wrote the paper.

ACKNOWLEDGMENTS

We thank members of Bin Tian lab for helpful discussions. This work was supported by grants from NIH (Nos. R01 GM084089 and R21 NS097992) and a grant from the Rutgers Brain Health Institute.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Aysegul Guvenek and Bin Tian declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2735 KB)

Accesses

Citations

Detail

Sections
Recommended

/