Pre-mRNA modifications and their role in nuclear processing

Nicole M. Martinez , Wendy V. Gilbert

Quant. Biol. ›› 2018, Vol. 6 ›› Issue (3) : 210 -227.

PDF (815KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (3) : 210 -227. DOI: 10.1007/s40484-018-0147-4
REVIEW
REVIEW

Pre-mRNA modifications and their role in nuclear processing

Author information +
History +
PDF (815KB)

Abstract

Background: Cellular non-coding RNAs are extensively modified post-transcriptionally, with more than 100 chemically distinct nucleotides identified to date. In the past five years, new sequencing based methods have revealed widespread decoration of eukaryotic messenger RNA with diverse RNA modifications whose functions in mRNA metabolism are only beginning to be known.

Results: Since most of the identified mRNA modifying enzymes are present in the nucleus, these modifications have the potential to function in nuclear pre-mRNA processing including alternative splicing. Here we review recent progress towards illuminating the role of pre-mRNA modifications in splicing and highlight key areas for future investigation in this rapidly growing field.

Conclusions: Future studies to identify which modifications are added to nascent pre-mRNA and to interrogate the direct effects of individual modifications are likely to reveal new mechanisms by which nuclear pre-mRNA processing is regulated.

Graphical abstract

Keywords

mRNA modification / pre-mRNA modification / splicing / RNA-modifying enzymes

Cite this article

Download citation ▾
Nicole M. Martinez, Wendy V. Gilbert. Pre-mRNA modifications and their role in nuclear processing. Quant. Biol., 2018, 6(3): 210-227 DOI:10.1007/s40484-018-0147-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485, 201–206

[2]

Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149, 1635–1646

[3]

Carlile, T. M., Rojas-Duran, M. F., Zinshteyn, B., Shin, H., Bartoli, K. M. and Gilbert, W. V. (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 515, 143–146

[4]

Schwartz, S., Bernstein, D. A., Mumbach, M. R., Jovanovic, M., Herbst, R. H., León-Ricardo, B. X., Engreitz, J. M., Guttman, M., Satija, R., Lander, E. S., (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell, 159, 148–162

[5]

Lovejoy, A. F., Riordan, D. P. and Brown, P. O. (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One, 9, e110799

[6]

Li, X., Zhu, P., Ma, S., Song, J., Bai, J., Sun, F. and Yi, C. (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol., 11, 592–597

[7]

Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., Suter, C. M. and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res., 40, 5023–5033

[8]

Delatte, B.Wang, F., Ngoc, L., Collignon, E., Bonvin, E., Deplus, R., Calonne, E., Hassabi, H., Putmans, P., Awe, S. (2016) Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science ,351, 282–285

[9]

Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim, M. S., Dai, Q., Di Segni, A., Salmon-Divon, M., Clark, W. C., (2016) The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature, 530, 441–446

[10]

Li, X., Xiong, X., Wang, K., Wang, L., Shu, X., Ma, S. and Yi, C. (2016) Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol., 12, 311–316

[11]

Dai, Q., Moshitch-Moshkovitz, S., Han, D., Kol, N., Amariglio, N., Rechavi, G., Dominissini, D. and He, C. (2017) Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods, 14, 695–698

[12]

Linder, B., Grozhik, A. V., Olarerin-George, A. O., Meydan, C., Mason, C. E. and Jaffrey, S. R. (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods, 12, 767–772

[13]

Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A. V., Patil, D. P., Linder, B., Pickering, B. F., Vasseur, J.-J., Chen, Q., (2017) Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature, 541, 371–375

[14]

Gilbert, W. V., Bell, T. A. & Schaening, C. (2016) Messenger RNA modifications: form, distribution, and function. Science, 352, 1408–1412

[15]

Roundtree, I. A., Evans, M. E., Pan, T. and He, C. (2017) Dynamic RNA modifications in gene expression regulation. Cell, 169, 1187–1200

[16]

Patil, D. P., Pickering, B. F. and Jaffrey, S. R. (2018) Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol., 28, 113–127

[17]

Song, J. and Yi, C. (2017) Chemical modifications to RNA: a new layer of gene expression regulation. ACS Chem. Biol., 12, 316–325

[18]

Ke, S., Alemu, E. A., Mertens, C., Gantman, E. C., Fak, J. J., Mele, A., Haripal, B., Zucker-Scharff, I., Moore, M. J., Park, C. Y., (2015) A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev., 29, 2037–2053

[19]

Safra, M., Sas-Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar-Yaacov, D., Erlacher, M., Rossmanith, W., Stern-Ginossar, N. and Schwartz, S. (2017) The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature, 551, 251–255

[20]

Li, X., Xiong, X., Zhang, M., Wang, K., Chen, Y., Zhou, J., Mao, Y., Lv, J., Yi, D., Chen, X.-W., (2017) Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell, 68, 993–1005

[21]

Khoddami, V. and Cairns, B. R. (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol., 31, 458–464

[22]

Hussain, S., Sajini, A. A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleeson, J. G., Odom, D. T., Ule, J., (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Reports, 4, 255–261

[23]

Bhatt, D. M., Pandya-Jones, A., Tong, A.-J., Barozzi, I., Lissner, M. M., Natoli, G., Black, D. L. and Smale, S. T. (2012) Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell, 150, 279–290

[24]

Tilgner, H., Knowles, D. G., Johnson, R., Davis, C. A., Chakrabortty, S., Djebali, S., Curado, J., Snyder, M., Gingeras, T. R. and Guigó R. (2012) Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res., 22, 1616–1625

[25]

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol., 10, 93–95

[26]

Ping, X. L., Sun, B.-F., Wang, L., Xiao, W., Yang, X., Wang, W.-J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.-S., (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res., 24, 177–189

[27]

Ortega, A., Niksic, M., Bachi, A., Wilm, M., Sánchez, L., Hastie, N. and Valcárcel, J. (2003) Biochemical function of female-lethal (2)D/Wilms’ tumor suppressor-1-associated proteins in alternative pre-mRNA splicing. J. Biol. Chem., 278, 3040–3047

[28]

Horiuchi, K., Kawamura, T., Iwanari, H., Ohashi, R., Naito, M., Kodama, T. and Hamakubo, T. (2013) Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J. Biol. Chem., 288, 33292–33302

[29]

Slobodin, B., Han, R., Calderone, V., Vrielink, J. A. F. O., Loayza-Puch, F., Elkon, R. and Agami, R. (2017) Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell, 169, 326–337.e12

[30]

Haussmann, I. U., Bodi, Z., Sanchez-Moran, E., Mongan, N. P., Archer, N., Fray, R. G. and Soller, M. (2016) m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature, 540, 301–304

[31]

Pendleton, K. E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B. P. and Conrad, N. K. (2017) The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell, 169, 824–835.e14

[32]

Warda, A. S., Kretschmer, J., Hackert, P., Lenz, C., Urlaub, H., Höbartner, C., Sloan, K. E. and Bohnsack, M. T. (2017) Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep., 18, 2004–2014

[33]

Brown, J. A., Kinzig, C. G., DeGregorio, S. J. and Steitz, J. A. (2016) Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc. Natl. Acad. Sci. USA, 113, 14013–14018

[34]

Lafontaine, D. L. J., Bousquet-Antonelli, C., Henry, Y., Caizergues-Ferrer, M. and Tollervey, D. (1998) The box H+ ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev., 12, 527–537

[35]

Zebarjadian, Y., King, T., Fournier, M. J., Clarke, L. and Carbon, J. (1999) Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol. Cell. Biol., 19, 7461–7472

[36]

Safra, M., Nir, R., Farouq, D., Vainberg Slutskin, I. and Schwartz, S. (2017) TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res., 27, 393–406

[37]

Fernandez-Vizarra, E., Berardinelli, A., Valente, L., Tiranti, V. and Zeviani, M. (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J. Med. Genet., 44, 173–180

[38]

Thul, P. J.Åkesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Blal, H. A., Alm, T., Asplund, A., Björk, L., Breckels, L. M., (2017) A subcellular map of the human proteome. Science, 356, eaal3321

[39]

Ji, X., Dadon, D. B., Abraham, B. J., Lee, T. I., Jaenisch, R., Bradner, J. E. and Young, R. A. (2015) Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proc. Natl. Acad. Sci. USA, 112, 3841–3846

[40]

Yang, X., Yang, Y., Sun, B.-F., Chen, Y.-S., Xu, J.-W., Lai, W.-Y., Li, A., Wang, X., Bhattarai, D. P., Xiao, W., (2017) 5-methylcytosine promotes mRNA export – NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res., 27, 606–625

[41]

Helm, M. and Motorin, Y. (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet., 18, 275–291

[42]

Stadler, C., Rexhepaj, E., Singan, V. R., Murphy, R. F., Pepperkok, R., Uhlén, M., Simpson, J. C. and Lundberg, E. (2013) Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods, 10, 315–323

[43]

Fu, L., Guerrero, C. R., Zhong, N., Amato, N. J., Liu, Y., Liu, S., Cai, Q., Ji, D., Jin, S.-G., Niedernhofer, L. J., (2014) Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc., 136, 11582–11585

[44]

Huber, S. M., van Delft, P., Mendil, L., Bachman, M., Smollett, K., Werner, F., Miska, E. A. and Balasubramanian, S. (2015) Formation and abundance of 5-hydroxymethylcytosine in RNA. ChemBioChem, 16, 752–755

[45]

Ke, S., Pandya-Jones, A., Saito, Y., Fak, J. J., Vågbø C. B., Geula, S., Hanna, J. H., Black, D. L., Darnell, J. E. Jr and Darnell, R. B. (2017) m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev., 31, 990–1006

[46]

Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M. and Pan, T. (2015) N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature, 518, 560–564

[47]

Zhao, X., Yang, Y., Sun, B.-F., Shi, Y., Yang, X., Xiao, W., Hao, Y.-J., Ping, X.-L., Chen, Y.-S., Wang, W.-J., (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res., 24, 1403–1419

[48]

Amort, T., Rieder, D., Wille, A., Khokhlova-Cubberley, D., Riml, C., Trixl, L., Jia, X.-Y., Micura, R. and Lusser, A. (2017) Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol., 18, 1

[49]

Miller, C., Schwalb, B., Maier, K., Schulz, D., Dümcke, S., Zacher, B., Mayer, A., Sydow, J., Marcinowski, L., Dölken, L., (2011) Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol. Syst. Biol., 7, 458

[50]

Wuarin, J. and Schibler, U. (1994) Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell. Biol., 14, 7219–7225

[51]

Pandya-Jones, A., Bhatt, D. M., Lin, C.-H., Tong, A.-J., Smale, S. T. and Black, D. L. (2013) Splicing kinetics and transcript release from the chromatin compartment limit the rate of lipid A-induced gene expression. RNA, 19, 811–827

[52]

Khodor, Y. L., Rodriguez, J., Abruzzi, K. C., Tang, C.-H. A., Marr II, M. T. and Rosbash, M. (2011) Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev., 25, 2502–2512

[53]

Khodor, Y. L., Menet, J. S., Tolan, M. and Rosbash, M. (2012) Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. RNA, 18, 2174–2186

[54]

Jonkers, I., Kwak, H. and Lis, J. T. (2014) Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife, 3, e02407

[55]

Bartosovic, M., Molares, H. C., Gregorova, P., Hrossova, D., Kudla, G. and Vanacova, S. (2017) N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res., 45, 11356–11370

[56]

Zheng, G., Dahl, J. A., Niu, Y., Fedorcsak, P., Huang, C.-M., Li, C. J., Vågbø C. B., Shi, Y., Wang, W.-L., Song, S.-H., (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell, 49, 18–29

[57]

Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., Huang, H., Nachtergaele, S., Dong, L., Hu, C., (2017) FTO Plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell, 31, 127–141

[58]

Wahl, M. C., Will, C. L. and Lührmann, R. (2009) The spliceosome: design principles of a dynamic RNP machine. Cell, 136, 701–718

[59]

Long, J. C. and Caceres, J. F. (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem. J., 417, 15–27

[60]

Martinez-Contreras, R., Cloutier, P., Shkreta, L., Fisette, J.-F., Revil, T. and Chabot, B. (2007) hnRNP proteins and splicing control. Adv. Exp. Med. Biol., 623, 123–147

[61]

Chen, M. and Manley, J. L. (2009) Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol., 10, 741–754

[62]

Fu, X. D. and Ares, M. Jr. (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet., 15, 689–701

[63]

Martinez, N. M. and Lynch, K. W. (2013) Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol. Rev., 253, 216–236

[64]

Nilsen, T. W. and Graveley, B. R. (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature, 463, 457–463

[65]

Zhao, X. and Yu, Y.-T. (2004) Pseudouridines in and near the branch site recognition region of U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing in Xenopus oocytes. RNA, 10, 681–690

[66]

Newby, M. I. and Greenbaum, N. L. (2001) A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA, 7, 833–845

[67]

Wu, G., Adachi, H., Ge, J., Stephenson, D., Query, C. C. and Yu, Y.-T. (2016) Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. EMBO J., 35, 654–667

[68]

Dönmez, G., Hartmuth, K. and Lührmann, R. (2004) Modified nucleotides at the 5′ end of human U2 snRNA are required for spliceosomal E-complex formation. RNA, 10, 1925–1933

[69]

Wu, G., Yu, A. T., Kantartzis, A. and Yu, Y. T. (2011) Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation. Wiley Interdiscip. Rev. RNA, 2, 571–581

[70]

Epstein, P., Reddy, R., Henning, D. and Busch, H. (1980) The nucleotide sequence of nuclear U6 (4.7 S) RNA. J. Biol. Chem., 255, 8901–8906.

[71]

Shimba, S., Bokar, J. A., Rottman, F. and Reddy, R. (1995) Accurate and efficient N-6-adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro. Nucleic Acids Res., 23, 2421–2426

[72]

Brow, D. A. and Guthrie, C. (1988) Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature, 334, 213–218

[73]

Gu, J., Patton, J. R., Shimba, S. and Reddy, R. (1996) Localization of modified nucleotides in Schizosaccharomyces pombe spliceosomal small nuclear RNAs: modified nucleotides are clustered in functionally important regions. RNA, 2, 909–918.

[74]

Wu, G., Xiao, M., Yang, C. and Yu, Y. T. (2011) U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J., 30, 79–89

[75]

van der Feltz, C., DeHaven, A. C. and Hoskins, A. A. (2018) Stress-induced pseudouridylation alters the structural equilibrium of yeast U2 snRNA stem II. J. Mol. Biol., 430, 524–536

[76]

Basak, A. and Query, C. C. (2014) A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast. Cell Reports, 8, 966–973

[77]

Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A. A., Kol, N., Salmon-Divon, M., Hershkovitz, V., Peer, E., Mor, N., Manor, Y. S., (2015) m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science, 347, 1002–1006

[78]

Xiao, W., Adhikari, S., Dahal, U., Chen, Y.-S., Hao, Y.-J., Sun, B.-F., Sun, H.-Y., Li, A., Ping, X.-L., Lai, W.-Y., (2016) Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell, 61, 507–519

[79]

Alarcón, C. R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S. and Tavazoie, S. F. (2015) HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell, 162, 1299–1308

[80]

Norton, S., Vaquero-Garcia, J. and Barash, Y. (2017) Outlier detection for improved differential splicing quantification from RNA-Seq experiments with replicates. bioRxiv, 1–15

[81]

Wu, G., Huang, C. and Yu, Y.-T. (2015) Pseudouridine in mRNA: incorporation, detection, and recoding. Methods Enzymol., 560, 187–217

[82]

Fernández, I. S., Ng, C. L., Kelley, A. C., Wu, G., Yu, Y.-T. and Ramakrishnan, V. (2013) Unusual base pairing during the decoding of a stop codon by the ribosome. Nature, 500, 107–110

[83]

Chen, C., Zhao, X., Kierzek, R. and Yu, Y.-T. (2010) A flexible RNA backbone within the polypyrimidine tract is required for U2AF65 binding and pre-mRNA splicing in vivo. Mol. Cell. Biol., 30, 4108–4119

[84]

Chen, Y., Sierzputowska-Gracz, H., Guenther, R., Everett, K. and Agris, P. F. (1993) 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA. Biochemistry, 32, 10249–10253

[85]

Kierzek, E., Malgowska, M., Lisowiec, J., Turner, D. H., Gdaniec, Z. and Kierzek, R. (2014) The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res., 42, 3492–3501

[86]

Hudson, G. A., Bloomingdale, R. J. and Znosko, B. M. (2013) Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides. RNA, 19, 1474–1482

[87]

Riml, C., Lusser, A., Ennifar, E. & Micura, R. (2017) Synthesis, thermodynamic properties, and crystal structure of RNA oligonucleotides containing 5-hydroxymethylcytosine. J. Org. Chem. 7b01171

[88]

Inoue, H., Hayase, Y., Imura, A., Iwai, S., Miura, K. and Ohtsuka, E. (1987) Synthesis and hybridization studies on two complementary nona (2′-O-methyl) ribonucleotides. Nucleic Acids Res., 15, 6131–6148

[89]

Majlessi, M., Nelson, N. C. and Becker, M. M. (1998) Advantages of 2′-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res., 26, 2224–2229

[90]

Kierzek, E. and Kierzek, R. (2003) The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio- N6-alkyladenosines. Nucleic Acids Res., 31, 4472–4480

[91]

Roost, C., Lynch, S. R., Batista, P. J., Qu, K., Chang, H. Y. and Kool, E. T. (2015) Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc., 137, 2107–2115

[92]

Ge, J., Liu, H. and Yu, Y.-T. (2010) Regulation of pre-mRNA splicing in Xenopus oocytes by targeted 2′-O-methylation. RNA, 16, 1078–1085

[93]

Mercer, T. R., Clark, M. B., Andersen, S. B., Brunck, M. E., Haerty, W., Crawford, J., Taft, R. J., Nielsen, L. K., Dinger, M. E. and Mattick, J. S. (2015) Genome-wide discovery of human splicing branchpoints. Genome Res., 25, 290–303

[94]

Gould, G. M., Paggi, J. M., Guo, Y., Phizicky, D. V., Zinshteyn, B., Wang, E. T., Gilbert, W. V., Gifford, D. K. and Burge, C. B. (2016) Identification of new branch points and unconventional introns in Saccharomyces cerevisiae. RNA, 22, 1522–1534

[95]

Bitton, D. A., Rallis, C., Jeffares, D. C., Smith, G. C., Chen, Y. Y. C., Codlin, S., Marguerat, S. and Bähler, J. (2014) LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Res., 24, 1169–1179

[96]

Gillen, A. E., Yamamoto, T. M., Kline, E., Hesselberth, J. R. and Kabos, P. (2016) Improvements to the HITS-CLIP protocol eliminate widespread mispriming artifacts. BMC Genomics, 17, 338

[97]

Bresson, S. M., Hunter, O. V., Hunter, A. C. and Conrad, N. K. (2015) Canonical Poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet., 11, e1005610

[98]

Imai, Y., Matsuo, N., Ogawa, S., Tohyama, M. and Takagi, T. (1998) Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation. Brain Res. Mol. Brain Res., 53, 33–40

[99]

Stoilov, P., Rafalska, I. and Stamm, S. (2002) YTH: a new domain in nuclear proteins. Trends Biochem. Sci., 27, 495–497

[100]

Zhang, Z., Theler, D., Kaminska, K. H., Hiller, M., de la Grange, P., Pudimat, R., Rafalska, I., Heinrich, B., Bujnicki, J. M., Allain, F. H.-T., (2010) The YTH domain is a novel RNA binding domain. J. Biol. Chem., 285, 14701–14710

[101]

Hartmann, A. M., Nayler, O., Schwaiger, F. W., Obermeier, A. and Stamm, S. (1999) The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn). Mol. Biol. Cell, 10, 3909–3926

[102]

Xu, C., Wang, X., Liu, K., Roundtree, I. A., Tempel, W., Li, Y., Lu, Z., He, C. and Min, J. (2014) Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol., 10, 927–929

[103]

Rafalska, I., Zhang, Z., Benderska, N., Wolff, H., Hartmann, A. M., Brack-Werner, R. and Stamm, S. (2004) The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation. Hum. Mol. Genet., 13, 1535–1549

[104]

Ye, F., Chen, E. R. & Nilsen, T. W. (2017) Kaposi’s sarcoma-associated herpesvirus utilizes and manipulates RNA N6-adenosine methylation to promote lytic replication. J. Virol. JVI.0046617.

[105]

Kan, L., Grozhik, A. V., Vedanayagam, J., Patil, D. P., Pang, N., Lim, K.-S., Huang, Y.-C., Joseph, B., Lin, C.-J., Despic, V., (2017) The m6A pathway facilitates sex determination in Drosophila. Nat. Commun., 8, 15737

[106]

Lence, T., Akhtar, J., Bayer, M., Schmid, K., Spindler, L., Ho, C. H., Kreim, N., Andrade-Navarro, M. A., Poeck, B., Helm, M., (2016) m6A modulates neuronal functions and sex determination in Drosophila. Nature, 540, 242–247

[107]

Granadino, B., Campuzano, S. and Sánchez, L. (1990) The Drosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. EMBO J., 9, 2597–2602

[108]

Granadino, B., Penalva, L. O. F. and Sánchez, L. (1996) The gene fl(2)d is needed for the sex-specific splicing of transformer pre-mRNA but not for double-sex pre-mRNA in Drosophila melanogaster. Mol. Gen. Genet., 253, 26–31

[109]

Penalva, L. O. F., Ruiz, M. F., Ortega, A., Granadino, B., Vicente, L., Segarra, C., Valcárcel, J. and Sánchez, L. (2000) The Drosophila fl(2)d gene, required for female-specific splicing of Sxl and tra pre-mRNAs, encodes a novel nuclear protein with a HQ-rich domain. Genetics, 155, 129–139

[110]

Penn, J. K. M., Graham, P., Deshpande, G., Calhoun, G., Chaouki, A. S., Salz, H. K. and Schedl, P. (2008) Functioning of the Drosophila Wilms’-tumor-1-associated protein homolog, Fl(2)d, in Sex-lethal-dependent alternative splicing. Genetics, 178, 737–748

[111]

Hilfiker, A., Amrein, H., Dübendorfer, A., Schneiter, R. and Nöthiger, R. (1995) The gene virilizer is required for female-specific splicing controlled by Sxl, the master gene for sexual development in Drosophila. Development, 121, 4017–4026

[112]

Horabin, J. I. and Schedl, P. (1996) Splicing of the Drosophila Sex-lethal early transcripts involves exon skipping that is independent of Sex-lethal protein. RNA, 2, 1–10

[113]

SchüŁtt. C., Hilfiker, A. and Nöthiger, R. (1998) virilizer regulates Sex-lethal in the germline of Drosophila melanogaster. Development, 125, 1501–1507

[114]

Zarnack, K., König, J., Tajnik, M., Martincorena, I., Eustermann, S., Stévant, I., Reyes, A., Anders, S., Luscombe, N. M. and Ule, J. (2013) Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell, 152, 453–466

[115]

Liu, N., Zhou, K. I., Parisien, M., Dai, Q., Diatchenko, L. and Pan, T. (2017) N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res., 45, 6051–6063

[116]

Wu, B., Su, S., Patil, D. P., Liu, H., Gan, J., Jaffrey, S. R. and Ma, J. (2018) Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat. Commun., 9, 420

[117]

Devarkar, S. C., Wang, C., Miller, M. T., Ramanathan, A., Jiang, F., Khan, A. G., Patel, S. S. and Marcotrigiano, J. (2016) Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. USA., 113, 596–601

[118]

deLorimier, E., Hinman, M. N., Copperman, J., Datta, K., Guenza, M. and Berglund, J. A. (2017) Pseudouridine modification inhibits muscleblind-like 1 (MBNL1) binding to CCUG repeats and minimally structured RNA through reduced RNA flexibility. J. Biol. Chem., 292, 4350–4357

[119]

Vaidyanathan, P. P., AlSadhan, I., Merriman, D. K., Al-Hashimi, H. M. and Herschlag, D. (2017) Pseudouridine and N6-methyladenosine modifications weaken PUF protein/RNA interactions. RNA, 23, 611–618

[120]

Windhager, L., Bonfert, T., Burger, K., Ruzsics, Z., Krebs, S., Kaufmann, S., Malterer, G., L’Hernault, A., Schilhabel, M., Schreiber, S., (2012) Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res., 22, 2031–2042

[121]

Duffy, E. E., Rutenberg-Schoenberg, M., Stark, C. D., Kitchen, R. R., Gerstein, M. B. and Simon, M. D. (2015) Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol. Cell, 59, 858–866

[122]

Fuchs, G., Voichek, Y., Rabani, M., Benjamin, S., Gilad, S., Amit, I. and Oren, M. (2015) Simultaneous measurement of genome-wide transcription elongation speeds and rates of RNA polymerase II transition into active elongation with 4sUDRB-seq. Nat. Protoc., 10, 605–618

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (815KB)

2640

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/