Pre-mRNA modifications and their role in nuclear processing

Nicole M. Martinez, Wendy V. Gilbert

PDF(815 KB)
PDF(815 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (3) : 210-227. DOI: 10.1007/s40484-018-0147-4
REVIEW

Pre-mRNA modifications and their role in nuclear processing

Author information +
History +

Abstract

Background: Cellular non-coding RNAs are extensively modified post-transcriptionally, with more than 100 chemically distinct nucleotides identified to date. In the past five years, new sequencing based methods have revealed widespread decoration of eukaryotic messenger RNA with diverse RNA modifications whose functions in mRNA metabolism are only beginning to be known.

Results: Since most of the identified mRNA modifying enzymes are present in the nucleus, these modifications have the potential to function in nuclear pre-mRNA processing including alternative splicing. Here we review recent progress towards illuminating the role of pre-mRNA modifications in splicing and highlight key areas for future investigation in this rapidly growing field.

Conclusions: Future studies to identify which modifications are added to nascent pre-mRNA and to interrogate the direct effects of individual modifications are likely to reveal new mechanisms by which nuclear pre-mRNA processing is regulated.

Graphical abstract

Keywords

mRNA modification / pre-mRNA modification / splicing / RNA-modifying enzymes

Cite this article

Download citation ▾
Nicole M. Martinez, Wendy V. Gilbert. Pre-mRNA modifications and their role in nuclear processing. Quant. Biol., 2018, 6(3): 210‒227 https://doi.org/10.1007/s40484-018-0147-4

References

[1]
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485, 201–206
CrossRef Pubmed Google scholar
[2]
Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149, 1635–1646
CrossRef Pubmed Google scholar
[3]
Carlile, T. M., Rojas-Duran, M. F., Zinshteyn, B., Shin, H., Bartoli, K. M. and Gilbert, W. V. (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 515, 143–146
CrossRef Pubmed Google scholar
[4]
Schwartz, S., Bernstein, D. A., Mumbach, M. R., Jovanovic, M., Herbst, R. H., León-Ricardo, B. X., Engreitz, J. M., Guttman, M., Satija, R., Lander, E. S., (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell, 159, 148–162
CrossRef Pubmed Google scholar
[5]
Lovejoy, A. F., Riordan, D. P. and Brown, P. O. (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One, 9, e110799
CrossRef Pubmed Google scholar
[6]
Li, X., Zhu, P., Ma, S., Song, J., Bai, J., Sun, F. and Yi, C. (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol., 11, 592–597
CrossRef Pubmed Google scholar
[7]
Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., Suter, C. M. and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res., 40, 5023–5033
CrossRef Pubmed Google scholar
[8]
Delatte, B.Wang, F., Ngoc, L., Collignon, E., Bonvin, E., Deplus, R., Calonne, E., Hassabi, H., Putmans, P., Awe, S. (2016) Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science ,351, 282–285
CrossRef Google scholar
[9]
Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim, M. S., Dai, Q., Di Segni, A., Salmon-Divon, M., Clark, W. C., (2016) The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature, 530, 441–446
CrossRef Pubmed Google scholar
[10]
Li, X., Xiong, X., Wang, K., Wang, L., Shu, X., Ma, S. and Yi, C. (2016) Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol., 12, 311–316
CrossRef Pubmed Google scholar
[11]
Dai, Q., Moshitch-Moshkovitz, S., Han, D., Kol, N., Amariglio, N., Rechavi, G., Dominissini, D. and He, C. (2017) Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods, 14, 695–698
CrossRef Pubmed Google scholar
[12]
Linder, B., Grozhik, A. V., Olarerin-George, A. O., Meydan, C., Mason, C. E. and Jaffrey, S. R. (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods, 12, 767–772
CrossRef Pubmed Google scholar
[13]
Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A. V., Patil, D. P., Linder, B., Pickering, B. F., Vasseur, J.-J., Chen, Q., (2017) Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature, 541, 371–375
CrossRef Pubmed Google scholar
[14]
Gilbert, W. V., Bell, T. A. & Schaening, C. (2016) Messenger RNA modifications: form, distribution, and function. Science, 352, 1408–1412
CrossRef Google scholar
[15]
Roundtree, I. A., Evans, M. E., Pan, T. and He, C. (2017) Dynamic RNA modifications in gene expression regulation. Cell, 169, 1187–1200
CrossRef Pubmed Google scholar
[16]
Patil, D. P., Pickering, B. F. and Jaffrey, S. R. (2018) Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol., 28, 113–127
Pubmed
[17]
Song, J. and Yi, C. (2017) Chemical modifications to RNA: a new layer of gene expression regulation. ACS Chem. Biol., 12, 316–325
CrossRef Pubmed Google scholar
[18]
Ke, S., Alemu, E. A., Mertens, C., Gantman, E. C., Fak, J. J., Mele, A., Haripal, B., Zucker-Scharff, I., Moore, M. J., Park, C. Y., (2015) A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev., 29, 2037–2053
CrossRef Pubmed Google scholar
[19]
Safra, M., Sas-Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar-Yaacov, D., Erlacher, M., Rossmanith, W., Stern-Ginossar, N. and Schwartz, S. (2017) The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature, 551, 251–255
Pubmed
[20]
Li, X., Xiong, X., Zhang, M., Wang, K., Chen, Y., Zhou, J., Mao, Y., Lv, J., Yi, D., Chen, X.-W., (2017) Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell, 68, 993–1005
CrossRef Pubmed Google scholar
[21]
Khoddami, V. and Cairns, B. R. (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol., 31, 458–464
CrossRef Pubmed Google scholar
[22]
Hussain, S., Sajini, A. A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleeson, J. G., Odom, D. T., Ule, J., (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Reports, 4, 255–261
CrossRef Pubmed Google scholar
[23]
Bhatt, D. M., Pandya-Jones, A., Tong, A.-J., Barozzi, I., Lissner, M. M., Natoli, G., Black, D. L. and Smale, S. T. (2012) Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell, 150, 279–290
CrossRef Pubmed Google scholar
[24]
Tilgner, H., Knowles, D. G., Johnson, R., Davis, C. A., Chakrabortty, S., Djebali, S., Curado, J., Snyder, M., Gingeras, T. R. and Guigó, R. (2012) Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res., 22, 1616–1625
CrossRef Pubmed Google scholar
[25]
Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol., 10, 93–95
CrossRef Pubmed Google scholar
[26]
Ping, X. L., Sun, B.-F., Wang, L., Xiao, W., Yang, X., Wang, W.-J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.-S., (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res., 24, 177–189
CrossRef Pubmed Google scholar
[27]
Ortega, A., Niksic, M., Bachi, A., Wilm, M., Sánchez, L., Hastie, N. and Valcárcel, J. (2003) Biochemical function of female-lethal (2)D/Wilms’ tumor suppressor-1-associated proteins in alternative pre-mRNA splicing. J. Biol. Chem., 278, 3040–3047
CrossRef Pubmed Google scholar
[28]
Horiuchi, K., Kawamura, T., Iwanari, H., Ohashi, R., Naito, M., Kodama, T. and Hamakubo, T. (2013) Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J. Biol. Chem., 288, 33292–33302
CrossRef Pubmed Google scholar
[29]
Slobodin, B., Han, R., Calderone, V., Vrielink, J. A. F. O., Loayza-Puch, F., Elkon, R. and Agami, R. (2017) Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell, 169, 326–337.e12
CrossRef Pubmed Google scholar
[30]
Haussmann, I. U., Bodi, Z., Sanchez-Moran, E., Mongan, N. P., Archer, N., Fray, R. G. and Soller, M. (2016) m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature, 540, 301–304
CrossRef Pubmed Google scholar
[31]
Pendleton, K. E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B. P. and Conrad, N. K. (2017) The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell, 169, 824–835.e14
CrossRef Pubmed Google scholar
[32]
Warda, A. S., Kretschmer, J., Hackert, P., Lenz, C., Urlaub, H., Höbartner, C., Sloan, K. E. and Bohnsack, M. T. (2017) Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep., 18, 2004–2014
CrossRef Pubmed Google scholar
[33]
Brown, J. A., Kinzig, C. G., DeGregorio, S. J. and Steitz, J. A. (2016) Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc. Natl. Acad. Sci. USA, 113, 14013–14018
CrossRef Pubmed Google scholar
[34]
Lafontaine, D. L. J., Bousquet-Antonelli, C., Henry, Y., Caizergues-Ferrer, M. and Tollervey, D. (1998) The box H+ ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev., 12, 527–537
CrossRef Pubmed Google scholar
[35]
Zebarjadian, Y., King, T., Fournier, M. J., Clarke, L. and Carbon, J. (1999) Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol. Cell. Biol., 19, 7461–7472
CrossRef Pubmed Google scholar
[36]
Safra, M., Nir, R., Farouq, D., Vainberg Slutskin, I. and Schwartz, S. (2017) TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res., 27, 393–406
CrossRef Pubmed Google scholar
[37]
Fernandez-Vizarra, E., Berardinelli, A., Valente, L., Tiranti, V. and Zeviani, M. (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J. Med. Genet., 44, 173–180
CrossRef Pubmed Google scholar
[38]
Thul, P. J.Åkesson,, L., Wiking, M., Mahdessian, D., Geladaki, A., Blal, H. A., Alm, T., Asplund, A., Björk, L., Breckels, L. M., (2017) A subcellular map of the human proteome. Science, 356, eaal3321
CrossRef Google scholar
[39]
Ji, X., Dadon, D. B., Abraham, B. J., Lee, T. I., Jaenisch, R., Bradner, J. E. and Young, R. A. (2015) Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proc. Natl. Acad. Sci. USA, 112, 3841–3846
Pubmed
[40]
Yang, X., Yang, Y., Sun, B.-F., Chen, Y.-S., Xu, J.-W., Lai, W.-Y., Li, A., Wang, X., Bhattarai, D. P., Xiao, W., (2017) 5-methylcytosine promotes mRNA export – NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res., 27, 606–625
CrossRef Pubmed Google scholar
[41]
Helm, M. and Motorin, Y. (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet., 18, 275–291
CrossRef Pubmed Google scholar
[42]
Stadler, C., Rexhepaj, E., Singan, V. R., Murphy, R. F., Pepperkok, R., Uhlén, M., Simpson, J. C. and Lundberg, E. (2013) Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods, 10, 315–323
CrossRef Pubmed Google scholar
[43]
Fu, L., Guerrero, C. R., Zhong, N., Amato, N. J., Liu, Y., Liu, S., Cai, Q., Ji, D., Jin, S.-G., Niedernhofer, L. J., (2014) Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc., 136, 11582–11585
CrossRef Pubmed Google scholar
[44]
Huber, S. M., van Delft, P., Mendil, L., Bachman, M., Smollett, K., Werner, F., Miska, E. A. and Balasubramanian, S. (2015) Formation and abundance of 5-hydroxymethylcytosine in RNA. ChemBioChem, 16, 752–755
CrossRef Pubmed Google scholar
[45]
Ke, S., Pandya-Jones, A., Saito, Y., Fak, J. J., Vågbø, C. B., Geula, S., Hanna, J. H., Black, D. L., Darnell, J. E. Jr and Darnell, R. B. (2017) m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev., 31, 990–1006
CrossRef Pubmed Google scholar
[46]
Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M. and Pan, T. (2015) N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature, 518, 560–564
CrossRef Pubmed Google scholar
[47]
Zhao, X., Yang, Y., Sun, B.-F., Shi, Y., Yang, X., Xiao, W., Hao, Y.-J., Ping, X.-L., Chen, Y.-S., Wang, W.-J., (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res., 24, 1403–1419
CrossRef Pubmed Google scholar
[48]
Amort, T., Rieder, D., Wille, A., Khokhlova-Cubberley, D., Riml, C., Trixl, L., Jia, X.-Y., Micura, R. and Lusser, A. (2017) Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol., 18, 1
CrossRef Pubmed Google scholar
[49]
Miller, C., Schwalb, B., Maier, K., Schulz, D., Dümcke, S., Zacher, B., Mayer, A., Sydow, J., Marcinowski, L., Dölken, L., (2011) Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol. Syst. Biol., 7, 458
CrossRef Pubmed Google scholar
[50]
Wuarin, J. and Schibler, U. (1994) Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell. Biol., 14, 7219–7225
CrossRef Pubmed Google scholar
[51]
Pandya-Jones, A., Bhatt, D. M., Lin, C.-H., Tong, A.-J., Smale, S. T. and Black, D. L. (2013) Splicing kinetics and transcript release from the chromatin compartment limit the rate of lipid A-induced gene expression. RNA, 19, 811–827
CrossRef Pubmed Google scholar
[52]
Khodor, Y. L., Rodriguez, J., Abruzzi, K. C., Tang, C.-H. A., Marr II, M. T. and Rosbash, M. (2011) Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev., 25, 2502–2512
CrossRef Pubmed Google scholar
[53]
Khodor, Y. L., Menet, J. S., Tolan, M. and Rosbash, M. (2012) Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. RNA, 18, 2174–2186
CrossRef Pubmed Google scholar
[54]
Jonkers, I., Kwak, H. and Lis, J. T. (2014) Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife, 3, e02407
CrossRef Pubmed Google scholar
[55]
Bartosovic, M., Molares, H. C., Gregorova, P., Hrossova, D., Kudla, G. and Vanacova, S. (2017) N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res., 45, 11356–11370
CrossRef Pubmed Google scholar
[56]
Zheng, G., Dahl, J. A., Niu, Y., Fedorcsak, P., Huang, C.-M., Li, C. J., Vågbø, C. B., Shi, Y., Wang, W.-L., Song, S.-H., (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell, 49, 18–29
CrossRef Pubmed Google scholar
[57]
Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., Huang, H., Nachtergaele, S., Dong, L., Hu, C., (2017) FTO Plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell, 31, 127–141
CrossRef Pubmed Google scholar
[58]
Wahl, M. C., Will, C. L. and Lührmann, R. (2009) The spliceosome: design principles of a dynamic RNP machine. Cell, 136, 701–718
CrossRef Pubmed Google scholar
[59]
Long, J. C. and Caceres, J. F. (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem. J., 417, 15–27
CrossRef Pubmed Google scholar
[60]
Martinez-Contreras, R., Cloutier, P., Shkreta, L., Fisette, J.-F., Revil, T. and Chabot, B. (2007) hnRNP proteins and splicing control. Adv. Exp. Med. Biol., 623, 123–147
CrossRef Pubmed Google scholar
[61]
Chen, M. and Manley, J. L. (2009) Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol., 10, 741–754
CrossRef Pubmed Google scholar
[62]
Fu, X. D. and Ares, M. Jr. (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet., 15, 689–701
CrossRef Pubmed Google scholar
[63]
Martinez, N. M. and Lynch, K. W. (2013) Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol. Rev., 253, 216–236
CrossRef Pubmed Google scholar
[64]
Nilsen, T. W. and Graveley, B. R. (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature, 463, 457–463
CrossRef Pubmed Google scholar
[65]
Zhao, X. and Yu, Y.-T. (2004) Pseudouridines in and near the branch site recognition region of U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing in Xenopus oocytes. RNA, 10, 681–690
CrossRef Pubmed Google scholar
[66]
Newby, M. I. and Greenbaum, N. L. (2001) A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA, 7, 833–845
CrossRef Pubmed Google scholar
[67]
Wu, G., Adachi, H., Ge, J., Stephenson, D., Query, C. C. and Yu, Y.-T. (2016) Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. EMBO J., 35, 654–667
CrossRef Pubmed Google scholar
[68]
Dönmez, G., Hartmuth, K. and Lührmann, R. (2004) Modified nucleotides at the 5′ end of human U2 snRNA are required for spliceosomal E-complex formation. RNA, 10, 1925–1933
CrossRef Pubmed Google scholar
[69]
Wu, G., Yu, A. T., Kantartzis, A. and Yu, Y. T. (2011) Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation. Wiley Interdiscip. Rev. RNA, 2, 571–581
CrossRef Pubmed Google scholar
[70]
Epstein, P., Reddy, R., Henning, D. and Busch, H. (1980) The nucleotide sequence of nuclear U6 (4.7 S) RNA. J. Biol. Chem., 255, 8901–8906.
Pubmed
[71]
Shimba, S., Bokar, J. A., Rottman, F. and Reddy, R. (1995) Accurate and efficient N-6-adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro. Nucleic Acids Res., 23, 2421–2426
CrossRef Pubmed Google scholar
[72]
Brow, D. A. and Guthrie, C. (1988) Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature, 334, 213–218
CrossRef Pubmed Google scholar
[73]
Gu, J., Patton, J. R., Shimba, S. and Reddy, R. (1996) Localization of modified nucleotides in Schizosaccharomyces pombe spliceosomal small nuclear RNAs: modified nucleotides are clustered in functionally important regions. RNA, 2, 909–918.
Pubmed
[74]
Wu, G., Xiao, M., Yang, C. and Yu, Y. T. (2011) U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J., 30, 79–89
CrossRef Pubmed Google scholar
[75]
van der Feltz, C., DeHaven, A. C. and Hoskins, A. A. (2018) Stress-induced pseudouridylation alters the structural equilibrium of yeast U2 snRNA stem II. J. Mol. Biol., 430, 524–536
CrossRef Pubmed Google scholar
[76]
Basak, A. and Query, C. C. (2014) A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast. Cell Reports, 8, 966–973
CrossRef Pubmed Google scholar
[77]
Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A. A., Kol, N., Salmon-Divon, M., Hershkovitz, V., Peer, E., Mor, N., Manor, Y. S., (2015) m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science, 347, 1002–1006
CrossRef Google scholar
[78]
Xiao, W., Adhikari, S., Dahal, U., Chen, Y.-S., Hao, Y.-J., Sun, B.-F., Sun, H.-Y., Li, A., Ping, X.-L., Lai, W.-Y., (2016) Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell, 61, 507–519
CrossRef Pubmed Google scholar
[79]
Alarcón, C. R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S. and Tavazoie, S. F. (2015) HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell, 162, 1299–1308
CrossRef Pubmed Google scholar
[80]
Norton, S., Vaquero-Garcia, J. and Barash, Y. (2017) Outlier detection for improved differential splicing quantification from RNA-Seq experiments with replicates. bioRxiv, 1–15
CrossRef Google scholar
[81]
Wu, G., Huang, C. and Yu, Y.-T. (2015) Pseudouridine in mRNA: incorporation, detection, and recoding. Methods Enzymol., 560, 187–217
CrossRef Pubmed Google scholar
[82]
Fernández, I. S., Ng, C. L., Kelley, A. C., Wu, G., Yu, Y.-T. and Ramakrishnan, V. (2013) Unusual base pairing during the decoding of a stop codon by the ribosome. Nature, 500, 107–110
CrossRef Pubmed Google scholar
[83]
Chen, C., Zhao, X., Kierzek, R. and Yu, Y.-T. (2010) A flexible RNA backbone within the polypyrimidine tract is required for U2AF65 binding and pre-mRNA splicing in vivo. Mol. Cell. Biol., 30, 4108–4119
CrossRef Pubmed Google scholar
[84]
Chen, Y., Sierzputowska-Gracz, H., Guenther, R., Everett, K. and Agris, P. F. (1993) 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA. Biochemistry, 32, 10249–10253
CrossRef Pubmed Google scholar
[85]
Kierzek, E., Malgowska, M., Lisowiec, J., Turner, D. H., Gdaniec, Z. and Kierzek, R. (2014) The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res., 42, 3492–3501
CrossRef Pubmed Google scholar
[86]
Hudson, G. A., Bloomingdale, R. J. and Znosko, B. M. (2013) Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides. RNA, 19, 1474–1482
CrossRef Pubmed Google scholar
[87]
Riml, C., Lusser, A., Ennifar, E. & Micura, R. (2017) Synthesis, thermodynamic properties, and crystal structure of RNA oligonucleotides containing 5-hydroxymethylcytosine. J. Org. Chem. 7b01171
CrossRef Google scholar
[88]
Inoue, H., Hayase, Y., Imura, A., Iwai, S., Miura, K. and Ohtsuka, E. (1987) Synthesis and hybridization studies on two complementary nona (2′-O-methyl) ribonucleotides. Nucleic Acids Res., 15, 6131–6148
CrossRef Pubmed Google scholar
[89]
Majlessi, M., Nelson, N. C. and Becker, M. M. (1998) Advantages of 2′-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res., 26, 2224–2229
CrossRef Pubmed Google scholar
[90]
Kierzek, E. and Kierzek, R. (2003) The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio- N6-alkyladenosines. Nucleic Acids Res., 31, 4472–4480
CrossRef Pubmed Google scholar
[91]
Roost, C., Lynch, S. R., Batista, P. J., Qu, K., Chang, H. Y. and Kool, E. T. (2015) Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc., 137, 2107–2115
CrossRef Pubmed Google scholar
[92]
Ge, J., Liu, H. and Yu, Y.-T. (2010) Regulation of pre-mRNA splicing in Xenopus oocytes by targeted 2′-O-methylation. RNA, 16, 1078–1085
CrossRef Pubmed Google scholar
[93]
Mercer, T. R., Clark, M. B., Andersen, S. B., Brunck, M. E., Haerty, W., Crawford, J., Taft, R. J., Nielsen, L. K., Dinger, M. E. and Mattick, J. S. (2015) Genome-wide discovery of human splicing branchpoints. Genome Res., 25, 290–303
CrossRef Pubmed Google scholar
[94]
Gould, G. M., Paggi, J. M., Guo, Y., Phizicky, D. V., Zinshteyn, B., Wang, E. T., Gilbert, W. V., Gifford, D. K. and Burge, C. B. (2016) Identification of new branch points and unconventional introns in Saccharomyces cerevisiae. RNA, 22, 1522–1534
CrossRef Pubmed Google scholar
[95]
Bitton, D. A., Rallis, C., Jeffares, D. C., Smith, G. C., Chen, Y. Y. C., Codlin, S., Marguerat, S. and Bähler, J. (2014) LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Res., 24, 1169–1179
CrossRef Pubmed Google scholar
[96]
Gillen, A. E., Yamamoto, T. M., Kline, E., Hesselberth, J. R. and Kabos, P. (2016) Improvements to the HITS-CLIP protocol eliminate widespread mispriming artifacts. BMC Genomics, 17, 338
CrossRef Pubmed Google scholar
[97]
Bresson, S. M., Hunter, O. V., Hunter, A. C. and Conrad, N. K. (2015) Canonical Poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet., 11, e1005610
CrossRef Pubmed Google scholar
[98]
Imai, Y., Matsuo, N., Ogawa, S., Tohyama, M. and Takagi, T. (1998) Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation. Brain Res. Mol. Brain Res., 53, 33–40
CrossRef Pubmed Google scholar
[99]
Stoilov, P., Rafalska, I. and Stamm, S. (2002) YTH: a new domain in nuclear proteins. Trends Biochem. Sci., 27, 495–497
CrossRef Pubmed Google scholar
[100]
Zhang, Z., Theler, D., Kaminska, K. H., Hiller, M., de la Grange, P., Pudimat, R., Rafalska, I., Heinrich, B., Bujnicki, J. M., Allain, F. H.-T., (2010) The YTH domain is a novel RNA binding domain. J. Biol. Chem., 285, 14701–14710
CrossRef Pubmed Google scholar
[101]
Hartmann, A. M., Nayler, O., Schwaiger, F. W., Obermeier, A. and Stamm, S. (1999) The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn). Mol. Biol. Cell, 10, 3909–3926
CrossRef Pubmed Google scholar
[102]
Xu, C., Wang, X., Liu, K., Roundtree, I. A., Tempel, W., Li, Y., Lu, Z., He, C. and Min, J. (2014) Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol., 10, 927–929
CrossRef Pubmed Google scholar
[103]
Rafalska, I., Zhang, Z., Benderska, N., Wolff, H., Hartmann, A. M., Brack-Werner, R. and Stamm, S. (2004) The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation. Hum. Mol. Genet., 13, 1535–1549
CrossRef Pubmed Google scholar
[104]
Ye, F., Chen, E. R. & Nilsen, T. W. (2017) Kaposi’s sarcoma-associated herpesvirus utilizes and manipulates RNA N6-adenosine methylation to promote lytic replication. J. Virol. JVI.0046617.
CrossRef Google scholar
[105]
Kan, L., Grozhik, A. V., Vedanayagam, J., Patil, D. P., Pang, N., Lim, K.-S., Huang, Y.-C., Joseph, B., Lin, C.-J., Despic, V., (2017) The m6A pathway facilitates sex determination in Drosophila. Nat. Commun., 8, 15737
CrossRef Pubmed Google scholar
[106]
Lence, T., Akhtar, J., Bayer, M., Schmid, K., Spindler, L., Ho, C. H., Kreim, N., Andrade-Navarro, M. A., Poeck, B., Helm, M., (2016) m6A modulates neuronal functions and sex determination in Drosophila. Nature, 540, 242–247
CrossRef Pubmed Google scholar
[107]
Granadino, B., Campuzano, S. and Sánchez, L. (1990) The Drosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. EMBO J., 9, 2597–2602
Pubmed
[108]
Granadino, B., Penalva, L. O. F. and Sánchez, L. (1996) The gene fl(2)d is needed for the sex-specific splicing of transformer pre-mRNA but not for double-sex pre-mRNA in Drosophila melanogaster. Mol. Gen. Genet., 253, 26–31
CrossRef Pubmed Google scholar
[109]
Penalva, L. O. F., Ruiz, M. F., Ortega, A., Granadino, B., Vicente, L., Segarra, C., Valcárcel, J. and Sánchez, L. (2000) The Drosophila fl(2)d gene, required for female-specific splicing of Sxl and tra pre-mRNAs, encodes a novel nuclear protein with a HQ-rich domain. Genetics, 155, 129–139
Pubmed
[110]
Penn, J. K. M., Graham, P., Deshpande, G., Calhoun, G., Chaouki, A. S., Salz, H. K. and Schedl, P. (2008) Functioning of the Drosophila Wilms’-tumor-1-associated protein homolog, Fl(2)d, in Sex-lethal-dependent alternative splicing. Genetics, 178, 737–748
CrossRef Pubmed Google scholar
[111]
Hilfiker, A., Amrein, H., Dübendorfer, A., Schneiter, R. and Nöthiger, R. (1995) The gene virilizer is required for female-specific splicing controlled by Sxl, the master gene for sexual development in Drosophila. Development, 121, 4017–4026
Pubmed
[112]
Horabin, J. I. and Schedl, P. (1996) Splicing of the Drosophila Sex-lethal early transcripts involves exon skipping that is independent of Sex-lethal protein. RNA, 2, 1–10
Pubmed
[113]
SchüŁtt. C., Hilfiker, A. and Nöthiger, R. (1998) virilizer regulates Sex-lethal in the germline of Drosophila melanogaster. Development, 125, 1501–1507
Pubmed
[114]
Zarnack, K., König, J., Tajnik, M., Martincorena, I., Eustermann, S., Stévant, I., Reyes, A., Anders, S., Luscombe, N. M. and Ule, J. (2013) Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell, 152, 453–466
CrossRef Pubmed Google scholar
[115]
Liu, N., Zhou, K. I., Parisien, M., Dai, Q., Diatchenko, L. and Pan, T. (2017) N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res., 45, 6051–6063
CrossRef Pubmed Google scholar
[116]
Wu, B., Su, S., Patil, D. P., Liu, H., Gan, J., Jaffrey, S. R. and Ma, J. (2018) Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat. Commun., 9, 420
CrossRef Pubmed Google scholar
[117]
Devarkar, S. C., Wang, C., Miller, M. T., Ramanathan, A., Jiang, F., Khan, A. G., Patel, S. S. and Marcotrigiano, J. (2016) Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. USA., 113, 596–601
CrossRef Pubmed Google scholar
[118]
deLorimier, E., Hinman, M. N., Copperman, J., Datta, K., Guenza, M. and Berglund, J. A. (2017) Pseudouridine modification inhibits muscleblind-like 1 (MBNL1) binding to CCUG repeats and minimally structured RNA through reduced RNA flexibility. J. Biol. Chem., 292, 4350–4357
CrossRef Pubmed Google scholar
[119]
Vaidyanathan, P. P., AlSadhan, I., Merriman, D. K., Al-Hashimi, H. M. and Herschlag, D. (2017) Pseudouridine and N6-methyladenosine modifications weaken PUF protein/RNA interactions. RNA, 23, 611–618
CrossRef Pubmed Google scholar
[120]
Windhager, L., Bonfert, T., Burger, K., Ruzsics, Z., Krebs, S., Kaufmann, S., Malterer, G., L’Hernault, A., Schilhabel, M., Schreiber, S., (2012) Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res., 22, 2031–2042
CrossRef Pubmed Google scholar
[121]
Duffy, E. E., Rutenberg-Schoenberg, M., Stark, C. D., Kitchen, R. R., Gerstein, M. B. and Simon, M. D. (2015) Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol. Cell, 59, 858–866
CrossRef Pubmed Google scholar
[122]
Fuchs, G., Voichek, Y., Rabani, M., Benjamin, S., Gilad, S., Amit, I. and Oren, M. (2015) Simultaneous measurement of genome-wide transcription elongation speeds and rates of RNA polymerase II transition into active elongation with 4sUDRB-seq. Nat. Protoc., 10, 605–618
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

We thank members of the Gilbert lab for helpful discussions. We thank Erin Borchardt and Kristen W Lynch for their reading of the manuscript and suggestions. Funding sources: Jane Coffin Childs Memorial Fund Fellowship to Nicole M. Martinez NIH (GM101316 and CA187236) and the American Cancer Society (RSG-13-396-01-RMC) to Wendy V. Gilbert.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Nicole M. Martinez and Wendy V. Gilbert declare that they have no conflict of interests.ƒThis article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(815 KB)

Accesses

Citations

Detail

Sections
Recommended

/