PDF
(514KB)
Abstract
Background: Our understanding of post-transcriptional gene regulation has increased exponentially with the development of robust methods to define protein-RNA interactions across the transcriptome. In this review, we highlight the evolution and successful applications of crosslinking and immunoprecipitation (CLIP) methods to interrogate protein-RNA interactions in a transcriptome-wide manner.
Results: Here, we survey the vast array of in vitro and in vivo approaches used to identify protein-RNA interactions, including but not limited to electrophoretic mobility shift assays, systematic evolution of ligands by exponential enrichment (SELEX), and RIP-seq. We particularly emphasize the advancement of CLIP technologies, and detail protocol improvements and computational tools used to analyze the output data. Importantly, we discuss how profiling protein-RNA interactions can delineate biological functions including splicing regulation, alternative polyadenylation, cytoplasmic decay substrates, and miRNA targets.
Conclusions: In summary, this review summarizes the benefits of characterizing RNA-protein networks to further understand the regulation of gene expression and disease pathogenesis. Our review comments on how future CLIP technologies can be adapted to address outstanding questions related to many aspects of RNA metabolism and further advance our understanding of RNA biology.
Graphical abstract
Keywords
RNA binding proteins
/
CLIP
/
post-transcriptional regulation
/
RNA networks
Cite this article
Download citation ▾
Molly M. Hannigan, Leah L. Zagore, Donny D. Licatalosi.
Mapping transcriptome-wide protein-RNA interactions to elucidate RNA regulatory programs.
Quant. Biol., 2018, 6(3): 228-238 DOI:10.1007/s40484-018-0145-6
| [1] |
Linder, B., Fischer, U. and Gehring, N. H. (2015) mRNA metabolism and neuronal disease. FEBS Lett., 589, 1598–1606
|
| [2] |
Brais, B., Bouchard, J. P., Xie, Y. G., Rochefort, D. L., Chrétien, N., Tomé F. M., Lafrentére, R. G., Rommens, J. M., Uyama, E., Nohira, O., (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat. Genet., 18, 164–167
|
| [3] |
Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J. C., Williams, K. L., Buratti, E., (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 319, 1668–1672
|
| [4] |
Bentley, D. L. (2014) Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet., 15, 163–175
|
| [5] |
Baltz, A. G., Munschauer, M., Schwanhäusser, B., Vasile, A., Murakawa, Y., Schueler, M., Youngs, N., Penfold-Brown, D., Drew, K., Milek, M., (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell, 46, 674–690
|
| [6] |
Gerstberger, S., Hafner, M. and Tuschl, T. (2014) A census of human RNA-binding proteins. Nat. Rev. Genet., 15, 829–845
|
| [7] |
Dreyfuss, G., Kim, V. N. and Kataoka, N. (2002) Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol., 3, 195–205
|
| [8] |
Setzer, D. R. (1999) Measuring equilibrium and kinetic constants using gel retardation assays. Methods Mol. Biol., 118, 115–128
|
| [9] |
Katsamba, P. S., Park, S. and Laird-Offringa, I. A. (2002) Kinetic studies of RNA-protein interactions using surface plasmon resonance. Methods, 26, 95–104
|
| [10] |
Hook, B., Bernstein, D., Zhang, B. and Wickens, M. (2005) RNA-protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA, 11, 227–233
|
| [11] |
Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822
|
| [12] |
Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510
|
| [13] |
Tenenbaum, S. A., Carson, C. C., Lager, P. J. and Keene, J. D. (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl. Acad. Sci. USA, 97, 14085–14090
|
| [14] |
Keene, J. D., Komisarow, J. M. and Friedersdorf, M. B. (2006) RIP-chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat. Protoc., 1, 302–307
|
| [15] |
Mili, S. and Steitz, J. A. (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA, 10, 1692–1694
|
| [16] |
Dreyfuss, G., Adam, S. A. and Choi, Y. D. (1984) Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Mol. Cell. Biol., 4, 415–423
|
| [17] |
Ule, J., Jensen, K. B., Ruggiu, M., Mele, A., Ule, A. and Darnell, R. B. (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science, 302, 1212–1215
|
| [18] |
Sugimoto, Y., Vigilante, A., Darbo, E., Zirra, A., Militti, C., D’Ambrogio, A., Luscombe, N. M. and Ule, J. (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature, 519, 491–494
|
| [19] |
Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. and Tollervey, D. (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Natl. Acad. Sci. USA, 108, 10010–10015
|
| [20] |
Zarnegar, B. J., Flynn, R. A., Shen, Y., Do, B. T., Chang, H. Y. and Khavari, P. A. (2016) irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods, 13, 489–492
|
| [21] |
Singh, G., Ricci, E. P. and Moore, M. J. (2014) RIPiT-Seq: a high-throughput approach for footprinting RNA:protein complexes. Methods, 65, 320–332
|
| [22] |
McMahon, A. C., Rahman, R., Jin, H., Shen, J. L., Fieldsend, A., Luo, W. and Rosbash, M. (2016) TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell, 165, 742–753
|
| [23] |
Kargapolova, Y., Levin, M., Lackner, K. and Danckwardt, S. (2017) sCLIP—an integrated platform to study RNA-protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs. Nucleic Acids Res., 45, 6074–6086
|
| [24] |
Rosenberg, M., Blum, R., Kesner, B., Maier, V. K., Szanto, A. and Lee, J. T. (2017) Denaturing CLIP, dCLIP, pipeline identifies discrete RNA footprints on chromatin-associated proteins and reveals that CBX7 targets 3′ UTRs to regulate mRNA expression. Cell Syst., 5, 368–385
|
| [25] |
Brugiolo, M., Botti, V., Liu, N., Müller-McNicoll, M. and Neugebauer, K. M. (2017) Fractionation iCLIP detects persistent SR protein binding to conserved, retained introns in chromatin, nucleoplasm and cytoplasm. Nucleic Acids Res., 45, 10452–10465
|
| [26] |
Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W., Clark, T. A., Schweitzer, A. C., Blume, J. E., Wang, X., (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 456, 464–469
|
| [27] |
Darnell, R. B. (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip. Rev. RNA, 1, 266–286
|
| [28] |
Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M. Jr, Jungkamp, A. C., Munschauer, M., (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141, 129–141
|
| [29] |
Kishore, S., Jaskiewicz, L., Burger, L., Hausser, J., Khorshid, M. and Zavolan, M. (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods, 8, 559–564
|
| [30] |
König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909–915
|
| [31] |
Urlaub, H., Hartmuth, K. and Lührmann, R. (2002) A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods, 26, 170–181
|
| [32] |
Sugimoto, Y., König, J., Hussain, S., Zupan, B., Curk, T., Frye, M. and Ule, J. (2012) Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol., 13, R67
|
| [33] |
Marchese, D., de Groot, N. S., Lorenzo Gotor, N., Livi, C. M. and Tartaglia, G. G. (2016) Advances in the characterization of RNA-binding proteins. Wiley Interdiscip. Rev. RNA, 7, 793–810
|
| [34] |
Van Nostrand, E. L., Pratt, G. A., Shishkin, A. A., Gelboin-Burkhart, C., Fang, M. Y., Sundararaman, B., Blue, S. M., Nguyen, T. B., Surka, C., Elkins, K., (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods, 13, 508–514
|
| [35] |
Björling, E. and Uhlén, M. (2008) Antibodypedia, a portal for sharing antibody and antigen validation data. Mol. Cell. Proteomics, 7, 2028–2037
|
| [36] |
de Boer, E., Rodriguez, P., Bonte, E., Krijgsveld, J., Katsantoni, E., Heck, A., Grosveld, F. and Strouboulis, J. (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA, 100, 7480–7485
|
| [37] |
Gerace, E. and Moazed, D. (2015) Affinity purification of protein complexes using TAP tags. Methods Enzymol., 559, 37–52
|
| [38] |
Nelles, D. A., Fang, M. Y., O’Connell, M. R., Xu, J. L., Markmiller, S. J., Doudna, J. A. and Yeo, G. W. (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell, 165, 488–496
|
| [39] |
Wheeler, E. C., Van Nostrand, E. L. and Yeo, G. W. (2018) Advances and challenges in the detection of transcriptome-wide protein-RNA interactions. Wiley Interdiscip. Rev. RNA, 9, e1436
|
| [40] |
Maragkakis, M., Alexiou, P., Nakaya, T. and Mourelatos, Z. (2016) CLIPSeqTools — a novel bioinformatics CLIP-seq analysis suite. RNA, 22, 1–9
|
| [41] |
Kucukural, A., Özadam, H., Singh, G., Moore, M. J. and Cenik, C. (2013) ASPeak: an abundance sensitive peak detection algorithm for RIP-seq. Bioinformatics, 29, 2485–2486
|
| [42] |
Khorshid, M., Rodak, C. and Zavolan, M. (2011) CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res., 39, D245–D252
|
| [43] |
Chen, B., Yun, J., Kim, M. S., Mendell, J. T. and Xie, Y. (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol., 15, R18
|
| [44] |
Uren, P. J., Bahrami-Samani, E., Burns, S. C., Qiao, M., Karginov, F. V., Hodges, E., Hannon, G. J., Sanford, J. R., Penalva, L. O. and Smith, A. D. (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics, 28, 3013–3020
|
| [45] |
Wang, T., Chen, B., Kim, M., Xie, Y. and Xiao, G. (2014) A model-based approach to identify binding sites in CLIP-seq data. PLoS One, 9, e93248
|
| [46] |
Althammer, S., González-Vallinas, J., Ballaré C., Beato, M. and Eyras, E. (2011) Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics, 27, 3333–3340
|
| [47] |
Lovci, M. T., Ghanem, D., Marr, H., Arnold, J., Gee, S., Parra, M., Liang, T. Y., Stark, T. J., Gehman, L. T., Hoon, S., (2013) Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol., 20, 1434–1442
|
| [48] |
Webb, S., Hector, R. D., Kudla, G. and Granneman, S. (2014) PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol., 15, R8
|
| [49] |
Corcoran, D. L., Georgiev, S., Mukherjee, N., Gottwein, E., Skalsky, R. L., Keene, J. D. and Ohler, U. (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol., 12, R79
|
| [50] |
Bailey, T. L., Johnson, J., Grant, C. E. and Noble, W. S. (2015) The MEME Suite. Nucleic Acids Res., 43, W39–W49
|
| [51] |
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H. and Glass, C. K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell, 38, 576–589
|
| [52] |
Weyn-Vanhentenryck, S. M. and Zhang, C. (2016) mCarts: genome-wide prediction of clustered sequence motifs as binding sites for RNA-binding proteins. Methods Mol. Biol., 1421, 215–226
|
| [53] |
Kulakovskiy, I. V., Boeva, V. A., Favorov, A. V. and Makeev, V. J. (2010) Deep and wide digging for binding motifs in ChIP-seq data. Bioinformatics, 26, 2622–2623
|
| [54] |
Zhang, C. and Darnell, R. B. (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol., 29, 607–614
|
| [55] |
Bahrami-Samani, E., Penalva, L. O., Smith, A. D. and Uren, P. J. (2015) Leveraging cross-link modification events in CLIP-seq for motif discovery. Nucleic Acids Res., 43, 95–103
|
| [56] |
Ray, D., Kazan, H., Chan, E. T., Castillo, L. P., Chaudhry, S., Talukder, S., Blencowe, B. J., Morris, Q. and Hughes, T. R. (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat. Biotechnol., 27, 667–670
|
| [57] |
Lambert, N., Robertson, A., Jangi, M., McGeary, S., Sharp, P. A. and Burge, C. B. (2014) RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol. Cell, 54, 887–900
|
| [58] |
Liu, H. X., Zhang, M. and Krainer, A. R. (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev., 12, 1998–2012
|
| [59] |
Johnson, J. M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P. M., Armour, C. D., Santos, R., Schadt, E. E., Stoughton, R. and Shoemaker, D. D. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 302, 2141–2144
|
| [60] |
Ule, J., Ule, A., Spencer, J., Williams, A., Hu, J. S., Cline, M., Wang, H., Clark, T., Fraser, C., Ruggiu, M., (2005) Nova regulates brain-specific splicing to shape the synapse. Nat. Genet., 37, 844–852
|
| [61] |
Sugnet, C. W., Srinivasan, K., Clark, T. A., O’Brien, G., Cline, M. S., Wang, H., Williams, A., Kulp, D., Blume, J. E., Haussler, D., (2006) Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLoS Comput. Biol., 2, e4
|
| [62] |
Boutz, P. L., Stoilov, P., Li, Q., Lin, C. H., Chawla, G., Ostrow, K., Shiue, L., Ares, M. Jr and Black, D. L. (2007) A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev., 21, 1636–1652
|
| [63] |
Licatalosi, D. D., Yano, M., Fak, J. J., Mele, A., Grabinski, S. E., Zhang, C. and Darnell, R. B. (2012) Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev., 26, 1626–1642
|
| [64] |
Hannigan, M. M., Zagore, L. L. and Licatalosi, D. D. (2017) Ptbp2 controls an alternative splicing network required for cell communication during spermatogenesis. Cell Reports, 19, 2598–2612
|
| [65] |
Wang, E. T., Cody, N. A., Jog, S., Biancolella, M., Wang, T. T., Treacy, D. J., Luo, S., Schroth, G. P., Housman, D. E., Reddy, S., (2012) Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell, 150, 710–724
|
| [66] |
Charizanis, K., Lee, K. Y., Batra, R., Goodwin, M., Zhang, C., Yuan, Y., Shiue, L., Cline, M., Scotti, M. M., Xia, G., (2012) Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron, 75, 437–450
|
| [67] |
Änkö M. L., Müller-McNicoll, M., Brandl, H., Curk, T., Gorup, C., Henry, I., Ule, J. and Neugebauer, K. M. (2012) The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol., 13, R17
|
| [68] |
Pandit, S., Zhou, Y., Shiue, L., Coutinho-Mansfield, G., Li, H., Qiu, J., Huang, J., Yeo, G. W., Ares, M. Jr and Fu, X. D. (2013) Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol. Cell, 50, 223–235
|
| [69] |
Weyn-Vanhentenryck, S. M., Mele, A., Yan, Q., Sun, S., Farny, N., Zhang, Z., Xue, C., Herre, M., Silver, P. A., Zhang, M. Q., (2014) HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Reports, 6, 1139–1152
|
| [70] |
Damianov, A., Ying, Y., Lin, C. H., Lee, J. A., Tran, D., Vashisht, A. A., Bahrami-Samani, E., Xing, Y., Martin, K. C., Wohlschlegel, J. A., (2016) Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell, 165, 606–619
|
| [71] |
Wang, E. T., Ward, A. J., Cherone, J. M., Giudice, J., Wang, T. T., Treacy, D. J., Lambert, N. J., Freese, P., Saxena, T., Cooper, T. A., (2015) Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res., 25, 858–871
|
| [72] |
Kapeli, K., Pratt, G. A., Vu, A. Q., Hutt, K. R., Martinez, F. J., Sundararaman, B., Batra, R., Freese, P., Lambert, N. J., Huelga, S. C., (2016) Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat. Commun., 7, 12143
|
| [73] |
Rothrock, C. R., House, A. E. and Lynch, K. W. (2005) HnRNP L represses exon splicing via a regulated exonic splicing silencer. EMBO J., 24, 2792–2802
|
| [74] |
Motta-Mena, L. B., Heyd, F. and Lynch, K. W. (2010) Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol. Cell, 37, 223–234
|
| [75] |
Zhang, C., Frias, M. A., Mele, A., Ruggiu, M., Eom, T., Marney, C. B., Wang, H., Licatalosi, D. D., Fak, J. J. and Darnell, R. B. (2010) Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science, 329, 439–443
|
| [76] |
Yang, Y., Park, J. W., Bebee, T. W., Warzecha, C. C., Guo, Y., Shang, X., Xing, Y. and Carstens, R. P. (2016) Determination of a comprehensive alternative splicing regulatory network and combinatorial regulation by key factors during the epithelial-to-mesenchymal transition. Mol. Cell. Biol., 36, 1704–1719
|
| [77] |
Dittmar, K. A., Jiang, P., Park, J. W., Amirikian, K., Wan, J., Shen, S., Xing, Y. and Carstens, R. P. (2012) Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing. Mol. Cell. Biol., 32, 1468–1482
|
| [78] |
Batra, R., Charizanis, K., Manchanda, M., Mohan, A., Li, M., Finn, D. J., Goodwin, M., Zhang, C., Sobczak, K., Thornton, C. A., (2014) Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol. Cell, 56, 311–322
|
| [79] |
Masuda, A., Takeda, J., Okuno, T., Okamoto, T., Ohkawara, B., Ito, M., Ishigaki, S., Sobue, G. and Ohno, K. (2015) Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev., 29, 1045–1057
|
| [80] |
Rot, G., Wang, Z., Huppertz, I., Modic, M., Lenče, T., Hallegger, M., Haberman, N., Curk, T., von Mering, C. and Ule, J. (2017) High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Reports, 19, 1056–1067
|
| [81] |
Hurt, J. A., Robertson, A. D. and Burge, C. B. (2013) Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res., 23, 1636–1650
|
| [82] |
Masuda, A., Andersen, H. S., Doktor, T. K., Okamoto, T., Ito, M., Andresen, B. S. and Ohno, K. (2012) CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Sci. Rep., 2, 209
|
| [83] |
Moore, M. J., Zhang, C., Gantman, E. C., Mele, A., Darnell, J. C. and Darnell, R. B. (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc., 9, 263–293
|
| [84] |
Helwak, A., Kudla, G., Dudnakova, T. and Tollervey, D. (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 153, 654–665
|
| [85] |
Majoros, W. H., Lekprasert, P., Mukherjee, N., Skalsky, R. L., Corcoran, D. L., Cullen, B. R. and Ohler, U. (2013) MicroRNA target site identification by integrating sequence and binding information. Nat. Methods, 10, 630–633
|
| [86] |
Reczko, M., Maragkakis, M., Alexiou, P., Grosse, I. and Hatzigeorgiou, A. G. (2012) Functional microRNA targets in protein coding sequences. Bioinformatics, 28, 771–776
|
| [87] |
Liu, C., Mallick, B., Long, D., Rennie, W. A., Wolenc, A., Carmack, C. S. and Ding, Y. (2013) CLIP-based prediction of mammalian microRNA binding sites. Nucleic Acids Res., 41, e138
|
| [88] |
Khorshid, M., Hausser, J., Zavolan, M. and van Nimwegen, E. (2013) A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat. Methods, 10, 253–255
|
| [89] |
Lu, Y. and Leslie, C. S. (2016) Learning to predict miRNA-mRNA interactions from AGO CLIP sequencing and CLASH data. PLoS Comput. Biol., 12, e1005026
|
| [90] |
Zhu, Y., Wang, X., Forouzmand, E., Jeong, J., Qiao, F., Sowd, G. A., Engelman, A. N., Xie, X., Hertel, K. J. and Shi, Y. (2018) Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol. Cell, 69, 62–74
|
| [91] |
Simon, M. D. (2013) Capture hybridization analysis of RNA targets (CHART). Curr. Protoc. Mol. Biol. 101, 21.25.1–21.25.16
|
| [92] |
Chu, C., Quinn, J. and Chang, H. Y. (2012) Chromatin isolation by RNA purification (ChIRP). J. Vis. Exp., 61, 3912
|
| [93] |
McHugh, C. A., Chen, C. K., Chow, A., Surka, C. F., Tran, C., McDonel, P., Pandya-Jones, A., Blanco, M., Burghard, C., Moradian, A., (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature, 521, 232–236
|
| [94] |
Castello, A., Horos, R., Strein, C., Fischer, B., Eichelbaum, K., Steinmetz, L. M., Krijgsveld, J. and Hentze, M. W. (2016) Comprehensive identification of RNA-binding proteins by RNA interactome capture. Methods Mol. Biol., 1358, 131–139
|
| [95] |
Bao, X., Guo, X., Yin, M., Tariq, M., Lai, Y., Kanwal, S., Zhou, J., Li, N., Lv, Y., Pulido-Quetglas, C., (2018) Capturing the interactome of newly transcribed RNA. Nat. Methods, 15, 213–220
|
| [96] |
Hwang, H. W., Park, C. Y., Goodarzi, H., Fak, J. J., Mele, A., Moore, M. J., Saito, Y. and Darnell, R. B. (2016) PAPERCLIP identifies microRNA targets and a role of CstF64/64tau in promoting non-canonical poly(A) site usage. Cell Reports, 15, 423–435
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature