Mapping transcriptome-wide protein-RNA interactions to elucidate RNA regulatory programs

Molly M. Hannigan, Leah L. Zagore, Donny D. Licatalosi

PDF(514 KB)
PDF(514 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (3) : 228-238. DOI: 10.1007/s40484-018-0145-6
REVIEW
REVIEW

Mapping transcriptome-wide protein-RNA interactions to elucidate RNA regulatory programs

Author information +
History +

Abstract

Background: Our understanding of post-transcriptional gene regulation has increased exponentially with the development of robust methods to define protein-RNA interactions across the transcriptome. In this review, we highlight the evolution and successful applications of crosslinking and immunoprecipitation (CLIP) methods to interrogate protein-RNA interactions in a transcriptome-wide manner.

Results: Here, we survey the vast array of in vitro and in vivo approaches used to identify protein-RNA interactions, including but not limited to electrophoretic mobility shift assays, systematic evolution of ligands by exponential enrichment (SELEX), and RIP-seq. We particularly emphasize the advancement of CLIP technologies, and detail protocol improvements and computational tools used to analyze the output data. Importantly, we discuss how profiling protein-RNA interactions can delineate biological functions including splicing regulation, alternative polyadenylation, cytoplasmic decay substrates, and miRNA targets.

Conclusions: In summary, this review summarizes the benefits of characterizing RNA-protein networks to further understand the regulation of gene expression and disease pathogenesis. Our review comments on how future CLIP technologies can be adapted to address outstanding questions related to many aspects of RNA metabolism and further advance our understanding of RNA biology.

Graphical abstract

Keywords

RNA binding proteins / CLIP / post-transcriptional regulation / RNA networks

Cite this article

Download citation ▾
Molly M. Hannigan, Leah L. Zagore, Donny D. Licatalosi. Mapping transcriptome-wide protein-RNA interactions to elucidate RNA regulatory programs. Quant. Biol., 2018, 6(3): 228‒238 https://doi.org/10.1007/s40484-018-0145-6

References

[1]
Linder, B., Fischer, U. and Gehring, N. H. (2015) mRNA metabolism and neuronal disease. FEBS Lett., 589, 1598–1606
CrossRef Pubmed Google scholar
[2]
Brais, B., Bouchard, J. P., Xie, Y. G., Rochefort, D. L., Chrétien, N., Tomé, F. M., Lafrentére, R. G., Rommens, J. M., Uyama, E., Nohira, O., (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat. Genet., 18, 164–167
CrossRef Pubmed Google scholar
[3]
Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J. C., Williams, K. L., Buratti, E., (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 319, 1668–1672
CrossRef Pubmed Google scholar
[4]
Bentley, D. L. (2014) Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet., 15, 163–175
CrossRef Pubmed Google scholar
[5]
Baltz, A. G., Munschauer, M., Schwanhäusser, B., Vasile, A., Murakawa, Y., Schueler, M., Youngs, N., Penfold-Brown, D., Drew, K., Milek, M., (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell, 46, 674–690
CrossRef Pubmed Google scholar
[6]
Gerstberger, S., Hafner, M. and Tuschl, T. (2014) A census of human RNA-binding proteins. Nat. Rev. Genet., 15, 829–845
CrossRef Pubmed Google scholar
[7]
Dreyfuss, G., Kim, V. N. and Kataoka, N. (2002) Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol., 3, 195–205
CrossRef Pubmed Google scholar
[8]
Setzer, D. R. (1999) Measuring equilibrium and kinetic constants using gel retardation assays. Methods Mol. Biol., 118, 115–128
Pubmed
[9]
Katsamba, P. S., Park, S. and Laird-Offringa, I. A. (2002) Kinetic studies of RNA-protein interactions using surface plasmon resonance. Methods, 26, 95–104
CrossRef Pubmed Google scholar
[10]
Hook, B., Bernstein, D., Zhang, B. and Wickens, M. (2005) RNA-protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA, 11, 227–233
CrossRef Pubmed Google scholar
[11]
Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822
CrossRef Pubmed Google scholar
[12]
Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510
CrossRef Pubmed Google scholar
[13]
Tenenbaum, S. A., Carson, C. C., Lager, P. J. and Keene, J. D. (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl. Acad. Sci. USA, 97, 14085–14090
CrossRef Pubmed Google scholar
[14]
Keene, J. D., Komisarow, J. M. and Friedersdorf, M. B. (2006) RIP-chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat. Protoc., 1, 302–307
CrossRef Pubmed Google scholar
[15]
Mili, S. and Steitz, J. A. (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA, 10, 1692–1694
CrossRef Pubmed Google scholar
[16]
Dreyfuss, G., Adam, S. A. and Choi, Y. D. (1984) Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Mol. Cell. Biol., 4, 415–423
CrossRef Pubmed Google scholar
[17]
Ule, J., Jensen, K. B., Ruggiu, M., Mele, A., Ule, A. and Darnell, R. B. (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science, 302, 1212–1215
CrossRef Pubmed Google scholar
[18]
Sugimoto, Y., Vigilante, A., Darbo, E., Zirra, A., Militti, C., D’Ambrogio, A., Luscombe, N. M. and Ule, J. (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature, 519, 491–494
CrossRef Pubmed Google scholar
[19]
Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. and Tollervey, D. (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Natl. Acad. Sci. USA, 108, 10010–10015
CrossRef Pubmed Google scholar
[20]
Zarnegar, B. J., Flynn, R. A., Shen, Y., Do, B. T., Chang, H. Y. and Khavari, P. A. (2016) irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods, 13, 489–492
CrossRef Pubmed Google scholar
[21]
Singh, G., Ricci, E. P. and Moore, M. J. (2014) RIPiT-Seq: a high-throughput approach for footprinting RNA:protein complexes. Methods, 65, 320–332
CrossRef Pubmed Google scholar
[22]
McMahon, A. C., Rahman, R., Jin, H., Shen, J. L., Fieldsend, A., Luo, W. and Rosbash, M. (2016) TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell, 165, 742–753
CrossRef Pubmed Google scholar
[23]
Kargapolova, Y., Levin, M., Lackner, K. and Danckwardt, S. (2017) sCLIP—an integrated platform to study RNA-protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs. Nucleic Acids Res., 45, 6074–6086
CrossRef Pubmed Google scholar
[24]
Rosenberg, M., Blum, R., Kesner, B., Maier, V. K., Szanto, A. and Lee, J. T. (2017) Denaturing CLIP, dCLIP, pipeline identifies discrete RNA footprints on chromatin-associated proteins and reveals that CBX7 targets 3′ UTRs to regulate mRNA expression. Cell Syst., 5, 368–385
CrossRef Pubmed Google scholar
[25]
Brugiolo, M., Botti, V., Liu, N., Müller-McNicoll, M. and Neugebauer, K. M. (2017) Fractionation iCLIP detects persistent SR protein binding to conserved, retained introns in chromatin, nucleoplasm and cytoplasm. Nucleic Acids Res., 45, 10452–10465
CrossRef Pubmed Google scholar
[26]
Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W., Clark, T. A., Schweitzer, A. C., Blume, J. E., Wang, X., (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 456, 464–469
CrossRef Pubmed Google scholar
[27]
Darnell, R. B. (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip. Rev. RNA, 1, 266–286
CrossRef Pubmed Google scholar
[28]
Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M. Jr, Jungkamp, A. C., Munschauer, M., (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141, 129–141
CrossRef Pubmed Google scholar
[29]
Kishore, S., Jaskiewicz, L., Burger, L., Hausser, J., Khorshid, M. and Zavolan, M. (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods, 8, 559–564
CrossRef Pubmed Google scholar
[30]
König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909–915
CrossRef Pubmed Google scholar
[31]
Urlaub, H., Hartmuth, K. and Lührmann, R. (2002) A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods, 26, 170–181
CrossRef Pubmed Google scholar
[32]
Sugimoto, Y., König, J., Hussain, S., Zupan, B., Curk, T., Frye, M. and Ule, J. (2012) Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol., 13, R67
CrossRef Pubmed Google scholar
[33]
Marchese, D., de Groot, N. S., Lorenzo Gotor, N., Livi, C. M. and Tartaglia, G. G. (2016) Advances in the characterization of RNA-binding proteins. Wiley Interdiscip. Rev. RNA, 7, 793–810
CrossRef Pubmed Google scholar
[34]
Van Nostrand, E. L., Pratt, G. A., Shishkin, A. A., Gelboin-Burkhart, C., Fang, M. Y., Sundararaman, B., Blue, S. M., Nguyen, T. B., Surka, C., Elkins, K., (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods, 13, 508–514
CrossRef Pubmed Google scholar
[35]
Björling, E. and Uhlén, M. (2008) Antibodypedia, a portal for sharing antibody and antigen validation data. Mol. Cell. Proteomics, 7, 2028–2037
CrossRef Pubmed Google scholar
[36]
de Boer, E., Rodriguez, P., Bonte, E., Krijgsveld, J., Katsantoni, E., Heck, A., Grosveld, F. and Strouboulis, J. (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA, 100, 7480–7485
CrossRef Pubmed Google scholar
[37]
Gerace, E. and Moazed, D. (2015) Affinity purification of protein complexes using TAP tags. Methods Enzymol., 559, 37–52
CrossRef Pubmed Google scholar
[38]
Nelles, D. A., Fang, M. Y., O’Connell, M. R., Xu, J. L., Markmiller, S. J., Doudna, J. A. and Yeo, G. W. (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell, 165, 488–496
CrossRef Pubmed Google scholar
[39]
Wheeler, E. C., Van Nostrand, E. L. and Yeo, G. W. (2018) Advances and challenges in the detection of transcriptome-wide protein-RNA interactions. Wiley Interdiscip. Rev. RNA, 9, e1436
CrossRef Pubmed Google scholar
[40]
Maragkakis, M., Alexiou, P., Nakaya, T. and Mourelatos, Z. (2016) CLIPSeqTools — a novel bioinformatics CLIP-seq analysis suite. RNA, 22, 1–9
CrossRef Pubmed Google scholar
[41]
Kucukural, A., Özadam, H., Singh, G., Moore, M. J. and Cenik, C. (2013) ASPeak: an abundance sensitive peak detection algorithm for RIP-seq. Bioinformatics, 29, 2485–2486
CrossRef Pubmed Google scholar
[42]
Khorshid, M., Rodak, C. and Zavolan, M. (2011) CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res., 39, D245–D252
CrossRef Pubmed Google scholar
[43]
Chen, B., Yun, J., Kim, M. S., Mendell, J. T. and Xie, Y. (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol., 15, R18
CrossRef Pubmed Google scholar
[44]
Uren, P. J., Bahrami-Samani, E., Burns, S. C., Qiao, M., Karginov, F. V., Hodges, E., Hannon, G. J., Sanford, J. R., Penalva, L. O. and Smith, A. D. (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics, 28, 3013–3020
CrossRef Pubmed Google scholar
[45]
Wang, T., Chen, B., Kim, M., Xie, Y. and Xiao, G. (2014) A model-based approach to identify binding sites in CLIP-seq data. PLoS One, 9, e93248
CrossRef Pubmed Google scholar
[46]
Althammer, S., González-Vallinas, J., Ballaré, C., Beato, M. and Eyras, E. (2011) Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics, 27, 3333–3340
CrossRef Pubmed Google scholar
[47]
Lovci, M. T., Ghanem, D., Marr, H., Arnold, J., Gee, S., Parra, M., Liang, T. Y., Stark, T. J., Gehman, L. T., Hoon, S., (2013) Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol., 20, 1434–1442
CrossRef Pubmed Google scholar
[48]
Webb, S., Hector, R. D., Kudla, G. and Granneman, S. (2014) PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol., 15, R8
CrossRef Pubmed Google scholar
[49]
Corcoran, D. L., Georgiev, S., Mukherjee, N., Gottwein, E., Skalsky, R. L., Keene, J. D. and Ohler, U. (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol., 12, R79
CrossRef Pubmed Google scholar
[50]
Bailey, T. L., Johnson, J., Grant, C. E. and Noble, W. S. (2015) The MEME Suite. Nucleic Acids Res., 43, W39–W49
CrossRef Pubmed Google scholar
[51]
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H. and Glass, C. K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell, 38, 576–589
CrossRef Pubmed Google scholar
[52]
Weyn-Vanhentenryck, S. M. and Zhang, C. (2016) mCarts: genome-wide prediction of clustered sequence motifs as binding sites for RNA-binding proteins. Methods Mol. Biol., 1421, 215–226
CrossRef Pubmed Google scholar
[53]
Kulakovskiy, I. V., Boeva, V. A., Favorov, A. V. and Makeev, V. J. (2010) Deep and wide digging for binding motifs in ChIP-seq data. Bioinformatics, 26, 2622–2623
CrossRef Pubmed Google scholar
[54]
Zhang, C. and Darnell, R. B. (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol., 29, 607–614
CrossRef Pubmed Google scholar
[55]
Bahrami-Samani, E., Penalva, L. O., Smith, A. D. and Uren, P. J. (2015) Leveraging cross-link modification events in CLIP-seq for motif discovery. Nucleic Acids Res., 43, 95–103
CrossRef Pubmed Google scholar
[56]
Ray, D., Kazan, H., Chan, E. T., Castillo, L. P., Chaudhry, S., Talukder, S., Blencowe, B. J., Morris, Q. and Hughes, T. R. (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat. Biotechnol., 27, 667–670
CrossRef Pubmed Google scholar
[57]
Lambert, N., Robertson, A., Jangi, M., McGeary, S., Sharp, P. A. and Burge, C. B. (2014) RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol. Cell, 54, 887–900
CrossRef Pubmed Google scholar
[58]
Liu, H. X., Zhang, M. and Krainer, A. R. (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev., 12, 1998–2012
CrossRef Pubmed Google scholar
[59]
Johnson, J. M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P. M., Armour, C. D., Santos, R., Schadt, E. E., Stoughton, R. and Shoemaker, D. D. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 302, 2141–2144
CrossRef Pubmed Google scholar
[60]
Ule, J., Ule, A., Spencer, J., Williams, A., Hu, J. S., Cline, M., Wang, H., Clark, T., Fraser, C., Ruggiu, M., (2005) Nova regulates brain-specific splicing to shape the synapse. Nat. Genet., 37, 844–852
CrossRef Pubmed Google scholar
[61]
Sugnet, C. W., Srinivasan, K., Clark, T. A., O’Brien, G., Cline, M. S., Wang, H., Williams, A., Kulp, D., Blume, J. E., Haussler, D., (2006) Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLoS Comput. Biol., 2, e4
CrossRef Pubmed Google scholar
[62]
Boutz, P. L., Stoilov, P., Li, Q., Lin, C. H., Chawla, G., Ostrow, K., Shiue, L., Ares, M. Jr and Black, D. L. (2007) A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev., 21, 1636–1652
CrossRef Pubmed Google scholar
[63]
Licatalosi, D. D., Yano, M., Fak, J. J., Mele, A., Grabinski, S. E., Zhang, C. and Darnell, R. B. (2012) Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev., 26, 1626–1642
CrossRef Pubmed Google scholar
[64]
Hannigan, M. M., Zagore, L. L. and Licatalosi, D. D. (2017) Ptbp2 controls an alternative splicing network required for cell communication during spermatogenesis. Cell Reports, 19, 2598–2612
CrossRef Pubmed Google scholar
[65]
Wang, E. T., Cody, N. A., Jog, S., Biancolella, M., Wang, T. T., Treacy, D. J., Luo, S., Schroth, G. P., Housman, D. E., Reddy, S., (2012) Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell, 150, 710–724
CrossRef Pubmed Google scholar
[66]
Charizanis, K., Lee, K. Y., Batra, R., Goodwin, M., Zhang, C., Yuan, Y., Shiue, L., Cline, M., Scotti, M. M., Xia, G., (2012) Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron, 75, 437–450
CrossRef Pubmed Google scholar
[67]
Änkö, M. L., Müller-McNicoll, M., Brandl, H., Curk, T., Gorup, C., Henry, I., Ule, J. and Neugebauer, K. M. (2012) The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol., 13, R17
CrossRef Pubmed Google scholar
[68]
Pandit, S., Zhou, Y., Shiue, L., Coutinho-Mansfield, G., Li, H., Qiu, J., Huang, J., Yeo, G. W., Ares, M. Jr and Fu, X. D. (2013) Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol. Cell, 50, 223–235
CrossRef Pubmed Google scholar
[69]
Weyn-Vanhentenryck, S. M., Mele, A., Yan, Q., Sun, S., Farny, N., Zhang, Z., Xue, C., Herre, M., Silver, P. A., Zhang, M. Q., (2014) HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Reports, 6, 1139–1152
CrossRef Pubmed Google scholar
[70]
Damianov, A., Ying, Y., Lin, C. H., Lee, J. A., Tran, D., Vashisht, A. A., Bahrami-Samani, E., Xing, Y., Martin, K. C., Wohlschlegel, J. A., (2016) Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell, 165, 606–619
CrossRef Pubmed Google scholar
[71]
Wang, E. T., Ward, A. J., Cherone, J. M., Giudice, J., Wang, T. T., Treacy, D. J., Lambert, N. J., Freese, P., Saxena, T., Cooper, T. A., (2015) Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res., 25, 858–871
CrossRef Pubmed Google scholar
[72]
Kapeli, K., Pratt, G. A., Vu, A. Q., Hutt, K. R., Martinez, F. J., Sundararaman, B., Batra, R., Freese, P., Lambert, N. J., Huelga, S. C., (2016) Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat. Commun., 7, 12143
CrossRef Pubmed Google scholar
[73]
Rothrock, C. R., House, A. E. and Lynch, K. W. (2005) HnRNP L represses exon splicing via a regulated exonic splicing silencer. EMBO J., 24, 2792–2802
CrossRef Pubmed Google scholar
[74]
Motta-Mena, L. B., Heyd, F. and Lynch, K. W. (2010) Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol. Cell, 37, 223–234
CrossRef Pubmed Google scholar
[75]
Zhang, C., Frias, M. A., Mele, A., Ruggiu, M., Eom, T., Marney, C. B., Wang, H., Licatalosi, D. D., Fak, J. J. and Darnell, R. B. (2010) Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science, 329, 439–443
CrossRef Pubmed Google scholar
[76]
Yang, Y., Park, J. W., Bebee, T. W., Warzecha, C. C., Guo, Y., Shang, X., Xing, Y. and Carstens, R. P. (2016) Determination of a comprehensive alternative splicing regulatory network and combinatorial regulation by key factors during the epithelial-to-mesenchymal transition. Mol. Cell. Biol., 36, 1704–1719
CrossRef Pubmed Google scholar
[77]
Dittmar, K. A., Jiang, P., Park, J. W., Amirikian, K., Wan, J., Shen, S., Xing, Y. and Carstens, R. P. (2012) Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing. Mol. Cell. Biol., 32, 1468–1482
CrossRef Pubmed Google scholar
[78]
Batra, R., Charizanis, K., Manchanda, M., Mohan, A., Li, M., Finn, D. J., Goodwin, M., Zhang, C., Sobczak, K., Thornton, C. A., (2014) Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol. Cell, 56, 311–322
CrossRef Pubmed Google scholar
[79]
Masuda, A., Takeda, J., Okuno, T., Okamoto, T., Ohkawara, B., Ito, M., Ishigaki, S., Sobue, G. and Ohno, K. (2015) Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev., 29, 1045–1057
CrossRef Pubmed Google scholar
[80]
Rot, G., Wang, Z., Huppertz, I., Modic, M., Lenče, T., Hallegger, M., Haberman, N., Curk, T., von Mering, C. and Ule, J. (2017) High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Reports, 19, 1056–1067
CrossRef Pubmed Google scholar
[81]
Hurt, J. A., Robertson, A. D. and Burge, C. B. (2013) Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res., 23, 1636–1650
CrossRef Pubmed Google scholar
[82]
Masuda, A., Andersen, H. S., Doktor, T. K., Okamoto, T., Ito, M., Andresen, B. S. and Ohno, K. (2012) CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Sci. Rep., 2, 209
CrossRef Pubmed Google scholar
[83]
Moore, M. J., Zhang, C., Gantman, E. C., Mele, A., Darnell, J. C. and Darnell, R. B. (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc., 9, 263–293
CrossRef Pubmed Google scholar
[84]
Helwak, A., Kudla, G., Dudnakova, T. and Tollervey, D. (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 153, 654–665
CrossRef Pubmed Google scholar
[85]
Majoros, W. H., Lekprasert, P., Mukherjee, N., Skalsky, R. L., Corcoran, D. L., Cullen, B. R. and Ohler, U. (2013) MicroRNA target site identification by integrating sequence and binding information. Nat. Methods, 10, 630–633
CrossRef Pubmed Google scholar
[86]
Reczko, M., Maragkakis, M., Alexiou, P., Grosse, I. and Hatzigeorgiou, A. G. (2012) Functional microRNA targets in protein coding sequences. Bioinformatics, 28, 771–776
CrossRef Pubmed Google scholar
[87]
Liu, C., Mallick, B., Long, D., Rennie, W. A., Wolenc, A., Carmack, C. S. and Ding, Y. (2013) CLIP-based prediction of mammalian microRNA binding sites. Nucleic Acids Res., 41, e138
CrossRef Pubmed Google scholar
[88]
Khorshid, M., Hausser, J., Zavolan, M. and van Nimwegen, E. (2013) A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat. Methods, 10, 253–255
CrossRef Pubmed Google scholar
[89]
Lu, Y. and Leslie, C. S. (2016) Learning to predict miRNA-mRNA interactions from AGO CLIP sequencing and CLASH data. PLoS Comput. Biol., 12, e1005026
CrossRef Pubmed Google scholar
[90]
Zhu, Y., Wang, X., Forouzmand, E., Jeong, J., Qiao, F., Sowd, G. A., Engelman, A. N., Xie, X., Hertel, K. J. and Shi, Y. (2018) Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol. Cell, 69, 62–74
CrossRef Pubmed Google scholar
[91]
Simon, M. D. (2013) Capture hybridization analysis of RNA targets (CHART). Curr. Protoc. Mol. Biol. 101, 21.25.1–21.25.16
[92]
Chu, C., Quinn, J. and Chang, H. Y. (2012) Chromatin isolation by RNA purification (ChIRP). J. Vis. Exp., 61, 3912
Pubmed
[93]
McHugh, C. A., Chen, C. K., Chow, A., Surka, C. F., Tran, C., McDonel, P., Pandya-Jones, A., Blanco, M., Burghard, C., Moradian, A., (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature, 521, 232–236
CrossRef Pubmed Google scholar
[94]
Castello, A., Horos, R., Strein, C., Fischer, B., Eichelbaum, K., Steinmetz, L. M., Krijgsveld, J. and Hentze, M. W. (2016) Comprehensive identification of RNA-binding proteins by RNA interactome capture. Methods Mol. Biol., 1358, 131–139
CrossRef Pubmed Google scholar
[95]
Bao, X., Guo, X., Yin, M., Tariq, M., Lai, Y., Kanwal, S., Zhou, J., Li, N., Lv, Y., Pulido-Quetglas, C., (2018) Capturing the interactome of newly transcribed RNA. Nat. Methods, 15, 213–220
CrossRef Pubmed Google scholar
[96]
Hwang, H. W., Park, C. Y., Goodarzi, H., Fak, J. J., Mele, A., Moore, M. J., Saito, Y. and Darnell, R. B. (2016) PAPERCLIP identifies microRNA targets and a role of CstF64/64tau in promoting non-canonical poly(A) site usage. Cell Reports, 15, 423–435
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work was supported by funds from the National Institutes of Health to LLZ (T32 GM08056) and DDL (R01 GM107331), USA.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Molly M. Hannigan, Leah L. Zagore and Donny D. Licatalosi declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

218 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(514 KB)

Accesses

Citations

Detail

Sections
Recommended

/