Towards precise reconstruction of gene regulatory networks by data integration

Zhi-Ping Liu

PDF(1007 KB)
PDF(1007 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (2) : 113-128. DOI: 10.1007/s40484-018-0139-4
REVIEW
REVIEW

Towards precise reconstruction of gene regulatory networks by data integration

Author information +
History +

Abstract

Background: More and more high-throughput datasets are available from multiple levels of measuring gene regulations. The reverse engineering of gene regulatory networks from these data offers a valuable research paradigm to decipher regulatory mechanisms. So far, numerous methods have been developed for reconstructing gene regulatory networks.

Results: In this paper, we provide a review of bioinformatics methods for inferring gene regulatory network from omics data. To achieve the precision reconstruction of gene regulatory networks, an intuitive alternative is to integrate these available resources in a rational framework. We also provide computational perspectives in the endeavors of inferring gene regulatory networks from heterogeneous data. We highlight the importance of multi-omics data integration with prior knowledge in gene regulatory network inferences.

Conclusions: We provide computational perspectives of inferring gene regulatory networks from multiple omics data and present theoretical analyses of existing challenges and possible solutions. We emphasize on prior knowledge and data integration in network inferences owing to their abilities of identifying regulatory causality.

Graphical abstract

Keywords

gene regulatory network / computational inference / data integration / bioinformatics

Cite this article

Download citation ▾
Zhi-Ping Liu. Towards precise reconstruction of gene regulatory networks by data integration. Quant. Biol., 2018, 6(2): 113‒128 https://doi.org/10.1007/s40484-018-0139-4

References

[1]
Marx, V. (2013) Biology: the big challenges of big data. Nature, 498, 255–260
CrossRef Pubmed Google scholar
[2]
Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M. and Teichmann, S. A. (2004) Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol., 14, 283–291
CrossRef Pubmed Google scholar
[3]
Liu, Z. P. (2015) Reverse engineering of genome-wide gene regulatory networks from gene expression data. Curr. Genomics, 16, 3–22
CrossRef Pubmed Google scholar
[4]
Lee, T. I. and Young, R. A. (2013) Transcriptional regulation and its misregulation in disease. Cell, 152, 1237–1251
CrossRef Pubmed Google scholar
[5]
Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M. K., Chuang, R., Jaehnig, E. J., Bodenmiller, B., Licon, K., Copeland, W., Shales, M., (2010) Rewiring of genetic networks in response to DNA damage. Science, 330, 1385–1389
CrossRef Pubmed Google scholar
[6]
Johnson, D. S., Mortazavi, A., Myers, R. M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497–1502
CrossRef Pubmed Google scholar
[7]
Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680
CrossRef Pubmed Google scholar
[8]
Edgar, R., Domrachev, M. and Lash, A. E. (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 30, 207–210
CrossRef Pubmed Google scholar
[9]
Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Vilo, J., Abeygunawardena, N., Holloway, E., Kapushesky, M., Kemmeren, P., Lara, G. G., (2003) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res., 31, 68–71
CrossRef Pubmed Google scholar
[10]
Jaenisch, R. and Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet., 33, 245–254
CrossRef Pubmed Google scholar
[11]
Song, C. X., Yi, C. and He, C. (2012) Mapping recently identified nucleotide variants in the genome and transcriptome. Nat. Biotechnol., 30, 1107–1116
CrossRef Pubmed Google scholar
[12]
Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470
CrossRef Pubmed Google scholar
[13]
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
CrossRef Pubmed Google scholar
[14]
Blackham, S., Baillie, A., Al-Hababi, F., Remlinger, K., You, S., Hamatake, R. and McGarvey, M. J. (2010) Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus. J. Virol., 84, 5404–5414
CrossRef Pubmed Google scholar
[15]
Shi, L., Reid, L. H., Jones, W. D., Shippy, R., Warrington, J. A., Baker, S. C., Collins, P. J., de Longueville, F., Kawasaki, E. S., Lee, K. Y., . (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol., 24, 1151–1161
CrossRef Pubmed Google scholar
[16]
Wu, S., Liu, Z. P., Qiu, X. and Wu, H. (2014) Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations. PLoS One, 9, e95276
CrossRef Pubmed Google scholar
[17]
Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U. and Timmer, J. (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25, 1923–1929
CrossRef Pubmed Google scholar
[18]
Leinonen, R., Sugawara, H. and Shumway, M., and the International Nucleotide Sequence Database Collaboration. (2011) The sequence read archive. Nucleic Acids Res., 39, D19–D21
CrossRef Pubmed Google scholar
[19]
The Cancer Genome Atlas Research Network. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068
CrossRef Pubmed Google scholar
[20]
Hudson, T. J., Anderson, W., Artez, A., Barker, A. D., Bell, C., Bernabé, R. R., Bhan, M. K., Calvo, F., Eerola, I., Gerhard, D. S., (2010) International network of cancer genome projects. Nature, 464, 993–998
CrossRef Pubmed Google scholar
[21]
Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. and Sayers, E. W. (2013) GenBank. Nucleic Acids Res., 41, D36–D42
CrossRef Pubmed Google scholar
[22]
Maher, B. (2012) ENCODE: the human encyclopaedia. Nature, 489, 46–48
CrossRef Pubmed Google scholar
[23]
Muers, M. (2011) Functional genomics: the modENCODE guide to the genome. Nat. Rev. Genet., 12, 80
CrossRef Pubmed Google scholar
[24]
Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M. A., Beaudet, A. L., Ecker, J. R., (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol., 28, 1045–1048
CrossRef Pubmed Google scholar
[25]
Fingerman, I. M., McDaniel, L., Zhang, X., Ratzat, W., Hassan, T., Jiang, Z., Cohen, R. F. and Schuler, G. D. (2011) NCBI Epigenomics: a new public resource for exploring epigenomic data sets. Nucleic Acids Res., 39, D908–D912
CrossRef Pubmed Google scholar
[26]
Cantara, W. A., Crain, P. F., Rozenski, J., McCloskey, J. A., Harris, K. A., Zhang, X., Vendeix, F. A., Fabris, D. and Agris, P. F. (2011) The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res., 39, D195–D201
CrossRef Pubmed Google scholar
[27]
Machnicka, M. A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., Januszewski, W., Kalinowski, S., Dunin-Horkawicz, S., Rother, K. M., (2013) MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res., 41, D262–D267
CrossRef Pubmed Google scholar
[28]
Bujold, D., de Lima Morais, D.A., Gauthier, C., Côté, C., Caron, M., Kwan, T., Chen, K.T., Laperle, J., Markovits, A. N., Pastinen, T., (2016) The International Human Epigenome Consortium Data Portal. Cell Syst., 3, 496–499
[29]
Ardlie, K. G., Deluca, D. S., Segre, A. V., Sullivan, T. J., Young, T. R., Gelfand, E. T., Trowbridge, C. A., Maller, J. B., Tukiainen, T., Lek, M., (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science, 348, 648–660
CrossRef Pubmed Google scholar
[30]
Matys, V., Fricke, E., Geffers, R., Gössling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas, D., Kel, A. E., Kel-Margoulis, O. V., (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res., 31, 374–378
CrossRef Pubmed Google scholar
[31]
Bryne, J. C., Valen, E., Tang, M. H., Marstrand, T., Winther, O., da Piedade, I., Krogh, A., Lenhard, B. and Sandelin, A. (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res., 36, D102–D106
CrossRef Pubmed Google scholar
[32]
Liu, Z. P., Wu, C., Miao, H. and Wu, H. (2015) RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford), 2015, bav095
CrossRef Pubmed Google scholar
[33]
Xie, C., Yuan, J., Li, H., Li, M., Zhao, G., Bu, D., Zhu, W., Wu, W., Chen, R. and Zhao, Y. (2014) NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res., 42, D98–D103
CrossRef Pubmed Google scholar
[34]
The RNAcentral Consortium. (2015) RNAcentral: an international database of ncRNA sequences. Nucleic Acids Res., 43, D123–D129
CrossRef Pubmed Google scholar
[35]
Sethupathy, P., Corda, B. and Hatzigeorgiou, A. G. (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA, 12, 192–197
CrossRef Pubmed Google scholar
[36]
Volders, P. J., Helsens, K., Wang, X., Menten, B., Martens, L., Gevaert, K., Vandesompele, J. and Mestdagh, P. (2013) LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res., 41, D246–D251
CrossRef Pubmed Google scholar
[37]
Amaral, P. P., Clark, M. B., Gascoigne, D. K., Dinger, M. E. and Mattick, J. S. (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res., 39, D146–D151
CrossRef Pubmed Google scholar
[38]
Griffiths-Jones, S., Saini, H. K., van Dongen, S. and Enright, A. J. (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res., 36, D154–D158
CrossRef Pubmed Google scholar
[39]
Glažar, P., Papavasileiou, P. and Rajewsky, N. (2014) circBase: a database for circular RNAs. RNA, 20, 1666–1670
CrossRef Pubmed Google scholar
[40]
Yang, J. H., Li, J. H., Jiang, S., Zhou, H. and Qu, L. H. (2013) ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res., 41, D177–D187
CrossRef Pubmed Google scholar
[41]
Wang, Q., Huang, J., Sun, H., Liu, J., Wang, J., Wang, Q., Qin, Q., Mei, S., Zhao, C., Yang, X., (2014) CR Cistrome: a ChIP-Seq database for chromatin regulators and histone modification linkages in human and mouse. Nucleic Acids Res., 42, D450–D458
CrossRef Pubmed Google scholar
[42]
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242
CrossRef Pubmed Google scholar
[43]
The UniProt Consortium. (2008) The universal protein resource (UniProt). Nucleic Acids Res., 36, D190–D195
CrossRef Pubmed Google scholar
[44]
von Mering, C., Jensen, L. J., Kuhn, M., Chaffron, S., Doerks, T., Krüger, B., Snel, B. and Bork, P. (2007) STRING 7—recent developments in the integration and prediction of protein interactions. Nucleic Acids Res., 35, D358–D362
CrossRef Pubmed Google scholar
[45]
Zhang, X., Zhao, X. M., He, K., Lu, L., Cao, Y., Liu, J., Hao, J. K., Liu, Z. P. and Chen, L. (2012) Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics, 28, 98–104
CrossRef Pubmed Google scholar
[46]
Zhang, B. and Horvath, S. (2005) A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 4, Article17
[47]
Meyer, P. E., Lafitte, F. and Bontempi, G. (2008) minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 9, 461
CrossRef Pubmed Google scholar
[48]
Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R. and Califano, A. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7, S7
CrossRef Pubmed Google scholar
[49]
Wilczyński, B. and Dojer, N. (2009) BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics, 25, 286–287
CrossRef Pubmed Google scholar
[50]
Scutari, M. (2010) Learning Bayesian Networks with the bnlearn R Package. J. Stat. Softw., 35, 1–22
CrossRef Pubmed Google scholar
[51]
Shmulevich, I., Dougherty, E. R., Kim, S. and Zhang, W. (2002) Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18, 261–274
CrossRef Pubmed Google scholar
[52]
Müssel, C., Hopfensitz, M. and Kestler, H. A. (2010) BoolNe—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics, 26, 1378–1380
CrossRef Pubmed Google scholar
[53]
Schaffter, T., Marbach, D. and Floreano, D. (2011) GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics, 27, 2263–2270
CrossRef Pubmed Google scholar
[54]
Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S. and Thorsson, V. (2006) The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol., 7, R36
CrossRef Pubmed Google scholar
[55]
Liu, Z. P., Zhang, W., Horimoto, K. and Chen, L. (2013) Gaussian graphical model for identifying significantly responsive regulatory networks from time course high-throughput data. IET Syst. Biol., 7, 143–152
CrossRef Pubmed Google scholar
[56]
Liu, Z. P., Wu, H., Zhu, J. and Miao, H. (2014) Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza A virus infection. BMC Bioinformatics, 15, 336
CrossRef Pubmed Google scholar
[57]
Haury, A. C., Mordelet, F., Vera-Licona, P. and Vert, J. P. (2012) TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol., 6, 145
CrossRef Pubmed Google scholar
[58]
Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. and Geurts, P. (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5, e12776
CrossRef Pubmed Google scholar
[59]
Langfelder, P. and Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559
CrossRef Pubmed Google scholar
[60]
Liu, Z. P. (2017) Quantifying gene regulatory relationships with association measures: a comparative study. Front. Genet., 8, 96
CrossRef Pubmed Google scholar
[61]
Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-Favera, R. and Califano, A. (2005) Reverse engineering of regulatory networks in human B cells. Nat. Genet., 37, 382–390
CrossRef Pubmed Google scholar
[62]
Friedman, N. (2004) Inferring cellular networks using probabilistic graphical models. Science, 303, 799–805
CrossRef Pubmed Google scholar
[63]
Zou, M. and Conzen, S. D. (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71–79
CrossRef Pubmed Google scholar
[64]
Amit, I., Garber, M., Chevrier, N., Leite, A. P., Donner, Y., Eisenhaure, T., Guttman, M., Grenier, J. K., Li, W., Zuk, O., (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science, 326, 257–263
CrossRef Pubmed Google scholar
[65]
Thomas, R. (1973) Boolean formalization of genetic control circuits. J. Theor. Biol., 42, 563–585
CrossRef Pubmed Google scholar
[66]
Akutsu, T., Miyano, S. and Kuhara, S. (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput, 99, 17–28
Pubmed
[67]
Saito, S., Aburatani, S. and Horimoto, K. (2008) Network evaluation from the consistency of the graph structure with the measured data. BMC Syst. Biol., 2, 84
CrossRef Pubmed Google scholar
[68]
Jordan, M. I. and Mitchell, T. M. (2015) Machine learning: trends, perspectives, and prospects. Science, 349, 255–260
CrossRef Pubmed Google scholar
[69]
Marbach, D., Roy, S., Ay, F., Meyer, P. E., Candeias, R., Kahveci, T., Bristow, C. A. and Kellis, M. (2012) Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res., 22, 1334–1349
CrossRef Pubmed Google scholar
[70]
Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297
CrossRef Pubmed Google scholar
[71]
Pefanis, E., Wang, J., Rothschild, G., Lim, J., Kazadi, D., Sun, J., Federation, A., Chao, J., Elliott, O., Liu, Z. P., (2015) RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell, 161, 774–789
CrossRef Pubmed Google scholar
[72]
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338
CrossRef Pubmed Google scholar
[73]
Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 8, 469–477
CrossRef Pubmed Google scholar
[74]
Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U. and Speed, T. P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4, 249–264
CrossRef Pubmed Google scholar
[75]
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186
CrossRef Pubmed Google scholar
[76]
Gibcus, J. H. and Dekker, J. (2012) The context of gene expression regulation. F1000 Biol. Rep., 4, 8
CrossRef Pubmed Google scholar
[77]
Ideker, T., Dutkowski, J. and Hood, L. (2011) Boosting signal-to-noise in complex biology: prior knowledge is power. Cell, 144, 860–863
CrossRef Pubmed Google scholar
[78]
de la Fuente, A., Bing, N., Hoeschele, I. and Mendes, P. (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics, 20, 3565–3574
CrossRef Pubmed Google scholar
[79]
Zheng, G., Xu, Y., Zhang, X., Liu, Z. P., Wang, Z., Chen, L. and Zhu, X. G. (2016) CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data. BMC Bioinformatics, 17, 535
CrossRef Pubmed Google scholar
[80]
Burchard, J., Zhang, C., Liu, A. M., Poon, R. T., Lee, N. P., Wong, K. F., Sham, P. C., Lam, B. Y., Ferguson, M. D., Tokiwa, G., (2010) microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol. Syst. Biol., 6, 402
CrossRef Pubmed Google scholar
[81]
Liu, Z. P. (2014) Systematic identification of local structure binding motifs in protein-RNA recognition. In: Proceedings of 8th International Conference on Systems Biology, pp. 74–80
[82]
Cheng, C., Yan, K. K., Hwang, W., Qian, J., Bhardwaj, N., Rozowsky, J., Lu, Z. J., Niu, W., Alves, P., Kato, M., (2011) Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. PLoS Comput. Biol., 7, e1002190
CrossRef Pubmed Google scholar
[83]
The ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef Pubmed Google scholar
[84]
Amaral, P. P., Dinger, M. E., Mercer, T. R. and Mattick, J. S. (2008) The eukaryotic genome as an RNA machine. Science, 319, 1787–1789
CrossRef Pubmed Google scholar
[85]
Spitz, F. and Furlong, E. E. (2012) Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet., 13, 613–626
CrossRef Pubmed Google scholar
[86]
Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. and Guthke, R. (2009) Gene regulatory network inference: data integration in dynamic models-a review. Biosystems, 96, 86–103
CrossRef Pubmed Google scholar
[87]
Jensen, S. T., Chen, G. and Stoeckert, C. J. Jr (2007) Bayesian variable selection and data integration for biological regulatory networks. Ann. Appl. Stat., 1, 612–633
CrossRef Google scholar
[88]
Yeung, M. K., Tegnér, J. and Collins, J. J. (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA, 99, 6163–6168
CrossRef Pubmed Google scholar
[89]
Tegner, J., Yeung, M. K., Hasty, J. and Collins, J. J. (2003) Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. USA, 100, 5944–5949
CrossRef Pubmed Google scholar
[90]
Lam, K. Y., Westrick, Z. M., Müller, C. L., Christiaen, L. and Bonneau, R. (2016) Fused regression for multi-source gene regulatory network inference. PLoS Comput. Biol., 12, e1005157
CrossRef Pubmed Google scholar
[91]
Werhli, A. V. and Husmeier, D. (2007) Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol., 6, Article15
[92]
Zhu, J., Zhang, B., Smith, E. N., Drees, B., Brem, R. B., Kruglyak, L., Bumgarner, R. E. and Schadt, E. E. (2008) Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet., 40, 854–861
CrossRef Pubmed Google scholar
[93]
Santra, T. (2014) A Bayesian framework that integrates heterogeneous data for inferring gene regulatory networks. Front. Bioeng. Biotechnol., 2, 13
CrossRef Pubmed Google scholar
[94]
De Smet, R. and Marchal, K. (2010) Advantages and limitations of current network inference methods. Nat. Rev. Microbiol., 8, 717–729
CrossRef Pubmed Google scholar
[95]
Mordelet, F. and Vert, J. P. (2008) SIRENE: supervised inference of regulatory networks. Bioinformatics, 24, i76–i82
CrossRef Pubmed Google scholar
[96]
Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L., (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 344, 1396–1401
CrossRef Pubmed Google scholar
[97]
Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., (2012) Landscape of transcription in human cells. Nature, 489, 101–108
CrossRef Pubmed Google scholar
[98]
Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. and Elowitz, M. B. (2005) Gene regulation at the single-cell level. Science, 307, 1962–1965
CrossRef Pubmed Google scholar
[99]
Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., Allison, K. R., Kellis, M., Collins, J. J. and Stolovitzky, G., (2012) Wisdom of crowds for robust gene network inference. Nat. Methods, 9, 796–804
CrossRef Pubmed Google scholar
[100]
Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A. J., Tanaka, Y., Wilkinson, A. C., Buettner, F., Macaulay, I. C., Jawaid, W., Diamanti, E., (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol., 33, 269–276
CrossRef Pubmed Google scholar
[101]
Graham, J. E. Marians, K. J.and Kowalczykowski, S. C. (2017) Independent and stochastic action of DNA polymerases in the replisome. Cell, 169, 1201–1213

ACKNOWLEDGEMENTS

Thanks are due to the three anonymous reviewers for their constructive comments. This work was partially supported by the National Natural Science Foundation of China (Nos. 61572287 and 61533011), the Shandong Provincial Key Research and Development Program (2018GSF118043), the Natural Science Foundation of Shandong Province, China (ZR2015FQ001), the Fundamental Research Funds of Shandong University (Nos. 2015QY001 and 2016JC007), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.

COMPLIANCE WITH ETHICS GUIDELINES

The author Zhi-Ping Liu declares that he has no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by the author.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1007 KB)

Accesses

Citations

Detail

Sections
Recommended

/