Geometric and amino acid type determinants for protein-protein interaction interfaces

Yongxiao Yang , Wei Wang , Yuan Lou , Jianxin Yin , Xinqi Gong

Quant. Biol. ›› 2018, Vol. 6 ›› Issue (2) : 163 -174.

PDF (1634KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (2) : 163 -174. DOI: 10.1007/s40484-018-0138-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Geometric and amino acid type determinants for protein-protein interaction interfaces

Author information +
History +
PDF (1634KB)

Abstract

Background: Protein-protein interactions are essential to many biological processes. The binding site information of protein-protein complexes is extremely useful to obtain their structures from biochemical experiments. Geometric description of protein structures is the precondition of protein binding site prediction and protein-protein interaction analysis. The previous description of protein surface residues is incomplete, and little attention are paid to the implication of residue types for binding site prediction.

Methods: Here, we found three new geometric features to characterize protein surface residues which are very effective for protein-protein interface residue prediction. The new features and several commonly used descriptors were employed to train millions of residue type-nonspecific or specific protein binding site predictors.

Results: The amino acid type-specific predictors are superior to the models without distinction of amino acid types. The performances of the best predictors are much better than those of the sophisticated methods developed before.

Conclusions: The results demonstrate that the geometric properties and amino acid types are very likely to determine if a protein surface residue would become an interface one when the protein binds to its partner.

Graphical abstract

Keywords

protein-protein interaction / protein-protein complex interface / geometry feature / residue type / binding site

Cite this article

Download citation ▾
Yongxiao Yang, Wei Wang, Yuan Lou, Jianxin Yin, Xinqi Gong. Geometric and amino acid type determinants for protein-protein interaction interfaces. Quant. Biol., 2018, 6(2): 163-174 DOI:10.1007/s40484-018-0138-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao, M. and Skolnick, J. (2010) Structural space of protein-protein interfaces is degenerate, close to complete, and highly connected. Proc. Natl. Acad. Sci. USA, 107, 22517–22522

[2]

Chothia, C. and Janin, J. (1975) Principles of protein-protein recognition. Nature, 256, 705–708

[3]

Jones, S. and Thornton, J. M. (1996) Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA, 93, 13–20

[4]

Keskin, O., Gursoy, A., Ma, B. and Nussinov, R. (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem. Rev., 108, 1225–1244

[5]

Koshland, D. E. (1995) The key-lock theroy and the induced fit theroy. Angew. Chem. Int. Ed., 33, 2375–2378

[6]

Teichmann, S. A. (2002) Principles of protein-protein interactions. Bioinformatics, 18, S249

[7]

Zhang, Q. C., Petrey, D., Norel, R. and Honig, B. H. (2010) Protein interface conservation across structure space. Proc. Natl. Acad. Sci. USA, 107, 10896–10901

[8]

Aumentado-Armstrong, T. T., Istrate, B. and Murgita, R. A. (2015) Algorithmic approaches to protein-protein interaction site prediction. Algorithms Mol. Biol., 10, 7

[9]

Esmaielbeiki, R., Krawczyk, K., Knapp, B., Nebel, J. C. and Deane, C. M. (2016) Progress and challenges in predicting protein interfaces. Brief. Bioinformatics, 17, 117–131

[10]

Maheshwari, S. and Brylinski, M. (2015) Predicting protein interface residues using easily accessible on-line resources. Brief. Bioinform., 16, 1025–1034

[11]

Xue, L. C., Dobbs, D., Bonvin, A. M. and Honavar, V. (2015) Computational prediction of protein interfaces: a review of data driven methods. FEBS Lett., 589, 3516–3526

[12]

Pintar, A., Carugo, O. and Pongor, S. (2002) CX, an algorithm that identifies protruding atoms in proteins. Bioinformatics, 18, 980–984

[13]

de Moraes, F. R., Neshich, I. A., Mazoni, I., Yano, I. H., Pereira, J. G., Salim, J. A., Jardine, J. G. and Neshich, G. (2014) Improving predictions of protein-protein interfaces by combining amino acid-specific classifiers based on structural and physicochemical descriptors with their weighted neighbor averages. PLoS One, 9, e87107

[14]

Qin, S. and Zhou, H. X. (2007) meta-PPISP: a meta web server for protein-protein interaction site prediction. Bioinformatics, 23, 3386–3387

[15]

Segura, J., Jones, P. F. and Fernandez-Fuentes, N. (2011) Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi diagrams. BMC Bioinformatics, 12, 352

[16]

Zhang, Q. C., Deng, L., Fisher, M., Guan, J., Honig, B. and Petrey, D. (2011) PredUs: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res., 39, W283–W287

[17]

Wang, L., Wang, Y. and Chang, Q. (2016) Feature selection methods for big data bioinformatics: a survey from the search perspective. Methods, 111, 21–31

[18]

Vreven, T., Moal, I. H., Vangone, A., Pierce, B. G., Kastritis, P. L., Torchala, M., Chaleil, R., Jimenez-Garcia, B., Bates, P. A., Fernandez-Recio, J., Bonvin, A. M. and Weng, Z. (2015) Updates to the integrated protein-protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2. J. Mol. Biol. 427, 3031–3041

[19]

Hwang, H., Vreven, T., Janin, J. and Weng, Z. (2010) Protein-protein docking benchmark version 4.0. Proteins, 78, 3111–3114

[20]

Hwang, H., Pierce, B., Mintseris, J., Janin, J. and Weng, Z. (2008) Protein-protein docking benchmark version 3.0. Proteins, 73, 705–709

[21]

Hubbard, S.J. and Thornton, M. (1993) Naccess Version 2.1.1. Department of Biochemistry and Molecular Biology, University College, London

[22]

Fischer, T. B., Holmes, J. B., Miller, I. R., Parsons, J. R., Tung, L., Hu, J. C. and Tsai, J. (2006) Assessing methods for identifying pair-wise atomic contacts across binding interfaces. J. Struct. Biol., 153, 103–112

[23]

Eisenberg, D. (1984) Three-dimensional structure of membrane and surface proteins. Annu. Rev. Biochem., 53, 595–623

[24]

Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 157, 105–132

[25]

Olsson, M. H., Søndergaard, C. R., Rostkowski, M. and Jensen, J. H. (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput., 7, 525–537

[26]

Møller, M. F. (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw., 6, 525–533

[27]

Kishore, R. and Kaur, M. T. (2012) Backpropagation algorithm: an artificial neural network approach for pattern recognition. Inter. J. Sci. & Engin.Res ., 3, 1–4

[28]

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Learning representations by back-propagating errors. Nature, 323, 533–536

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1634KB)

Supplementary files

QB-18138-OF-GXQ_suppl_1

QB-18138-OF-GXQ_suppl_2

QB-18138-OF-GXQ_suppl_3

QB-18138-OF-GXQ_suppl_4

QB-18138-OF-GXQ_suppl_5

2054

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/