Copy number variation related disease genes

Chaima Aouiche, Xuequn Shang, Bolin Chen

PDF(722 KB)
PDF(722 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (2) : 99-112. DOI: 10.1007/s40484-018-0137-6
REVIEW
REVIEW

Copy number variation related disease genes

Author information +
History +

Abstract

Background: One of the most important and challenging issues in biomedicine and genomics is how to identify disease related genes. Datasets from high-throughput biotechnologies have been widely used to overcome this issue from various perspectives, e.g., epigenomics, genomics, transcriptomics, proteomics, metabolomics. At the genomic level, copy number variations (CNVs) have been recognized as critical genetic variations, which contribute significantly to genomic diversity. They have been associated with both common and complex diseases, and thus have a large influence on a variety of Mendelian and somatic genetic disorders.

Results: In this review, based on a variety of complex diseases, we give an overview about the critical role of using CNVs for identifying disease related genes, and discuss on details the different high-throughput and sequencing methods applied for CNV detection. Some limitations and challenges concerning CNV are also highlighted.

Conclusions: Reliable detection of CNVs will not only allow discriminating driver mutations for various diseases, but also helps to develop personalized medicine when integrating it with other genomic features.

Graphical abstract

Keywords

CNV / disease gene / complex disease / targeted approach / genome-wide approach / whole exome sequencing

Cite this article

Download citation ▾
Chaima Aouiche, Xuequn Shang, Bolin Chen. Copy number variation related disease genes. Quant. Biol., 2018, 6(2): 99‒112 https://doi.org/10.1007/s40484-018-0137-6

References

[1]
Schadt, E. E. (2009) Molecular networks as sensors and drivers of common human diseases. Nature, 461, 218–223
CrossRef Pubmed Google scholar
[2]
Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabási, A. L. (2007) The human disease network. Proc. Natl. Acad. Sci. USA, 104, 8685–8690
CrossRef Pubmed Google scholar
[3]
Davies, R. J., Miller, R. and Coleman, N. (2005) Colorectal cancer screening: prospects for molecular stool analysis. Nat. Rev. Cancer, 5, 199–209
CrossRef Pubmed Google scholar
[4]
Beckmann, J. S., Estivill, X. and Antonarakis, S. E. (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat. Rev. Genet., 8, 639–646
CrossRef Pubmed Google scholar
[5]
Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Boehm, J. S., Dobson, J., Urashima, M., (2010) The landscape of somatic copy-number alteration across human cancers. Nature, 463, 899–905
CrossRef Pubmed Google scholar
[6]
Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A. and Kim, D. (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet., 16, 85–97
CrossRef Pubmed Google scholar
[7]
Ionita-Laza, I., Rogers, A. J., Lange, C., Raby, B. A. and Lee, C. (2009) Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics, 93, 22–26
CrossRef Pubmed Google scholar
[8]
Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., (2006) Global variation in copy number in the human genome. Nature, 444, 444–454
CrossRef Pubmed Google scholar
[9]
Freeman, J. L., Perry, G. H., Feuk, L., Redon, R., McCarroll, S. A., Altshuler, D. M., Aburatani, H., Jones, K. W., Tyler-Smith, C., Hurles, M. E., (2006) Copy number variation: new insights in genome diversity. Genome Res., 16, 949–961
CrossRef Pubmed Google scholar
[10]
Stankiewicz, P. and Lupski, J. R. (2010) Structural variation in the human genome and its role in disease. Annu. Rev. Med., 61, 437–455
CrossRef Pubmed Google scholar
[11]
Feuk, L., Carson, A. R. and Scherer, S. W. (2006) Structural variation in the human genome. Nat. Rev. Genet., 7, 85–97
CrossRef Pubmed Google scholar
[12]
Eichler, E. E., Nickerson, D. A., Altshuler, D., Bowcock, A. M., Brooks, L. D., Carter, N. P., Church, D. M., Felsenfeld, A., Guyer, M., Lee, C., (2007) Completing the map of human genetic variation. Nature, 447, 161–165
CrossRef Pubmed Google scholar
[13]
Li, W. and Olivier, M. (2013) Current analysis platforms and methods for detecting copy number variation. Physiol. Genomics, 45, 1–16
CrossRef Pubmed Google scholar
[14]
Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., Scherer, S. W. and Lee, C. (2004) Detection of large-scale variation in the human genome. Nat. Genet., 36, 949–951
CrossRef Pubmed Google scholar
[15]
Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Månér, S., Massa, H., Walker, M., Chi, M., (2004) Large-scale copy number polymorphism in the human genome. Science, 305, 525–528
CrossRef Pubmed Google scholar
[16]
Zhang, J., Feuk, L., Duggan, G. E., Khaja, R. and Scherer, S. W. (2006) Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome. Cytogenet. Genome Res., 115, 205–214
CrossRef Pubmed Google scholar
[17]
Gonzalez, E., Kulkarni, H., Bolivar, H., Mangano, A., Sanchez, R., Catano, G., Nibbs, R., Freedman, B., Marlon P. , Quinones, M., Bamshad, M., (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science, 307, 1434–1440
CrossRef Google scholar
[18]
McCarroll, S. A., Huett, A., Kuballa, P., Chilewski, S. D., Landry, A., Goyette, P., Zody, M. C., Hall, J. L., Brant, S. R., Cho, J. H., (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat. Genet., 40, 1107–1112
CrossRef Pubmed Google scholar
[19]
Craddock, N., Hurles, M. E., Cardin, N., Pearson, R. D., Plagnol, V., Robson, S., Vukcevic, D., Barnes, C., Conrad, D. F., Giannoulatou, E., (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 464, 713–720
CrossRef Pubmed Google scholar
[20]
Aitman, T. J., Dong, R., Vyse, T. J., Norsworthy, P. J., Johnson, M. D., Smith, J., Mangion, J., Roberton-Lowe, C., Marshall, A. J., Petretto, E., (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature, 439, 851–855
CrossRef Pubmed Google scholar
[21]
Cappuzzo, F., Hirsch, F. R., Rossi, E., Bartolini, S., Ceresoli, G. L., Bemis, L., Haney, J., Witta, S., Danenberg, K., Domenichini, I., (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl. Cancer Inst., 97, 643–655
CrossRef Pubmed Google scholar
[22]
Glessner, J. T., Connolly, J. J. and Hakonarson, H. (2012) Rare genomic deletions and duplications and their role in neurodevelopmental disorders. Curr. Top. Behav. Neurosci., 12, 345–360
CrossRef Pubmed Google scholar
[23]
Glessner, J. T., Wang, K., Cai, G., Korvatska, O., Kim, C. E., Wood, S., Zhang, H., Estes, A., Brune, C. W., Bradfield, J. P., (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459, 569–573
CrossRef Pubmed Google scholar
[24]
Glessner, J. T., Reilly, M. P., Kim, C. E., Takahashi, N., Albano, A., Hou, C., Bradfield, J. P., Zhang, H., Sleiman, P. M., Flory, J. H., (2010) Strong synaptic transmission impact by copy number variations in schizophrenia. Proc. Natl. Acad. Sci. USA, 107, 10584–10589
CrossRef Pubmed Google scholar
[25]
Glessner, J. T., Wang, K., Sleiman, P. M., Zhang, H., Kim, C. E., Flory, J. H., Bradfield, J. P., Imielinski, M., Frackelton, E. C., Qiu, H., (2010) Duplication of the SLIT3 locus on 5q35.1 predisposes to major depressive disorder. PLoS One, 5, e15463
CrossRef Pubmed Google scholar
[26]
Goldmuntz, E., Paluru, P., Glessner, J., Hakonarson, H., Biegel, J. A., White, P. S., Gai, X. and Shaikh, T. H. (2011) Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. Congenit. Heart Dis., 6, 592–602
CrossRef Pubmed Google scholar
[27]
Glessner, J. T., Bradfield, J. P., Wang, K., Takahashi, N., Zhang, H., Sleiman, P. M., Mentch, F. D., Kim, C. E., Hou, C., Thomas, K. A., (2010) A genome-wide study reveals copy number variants exclusive to childhood obesity cases. Am. J. Hum. Genet., 87, 661–666
CrossRef Pubmed Google scholar
[28]
Kuusisto, K. M., Akinrinade, O., Vihinen, M., Kankuri-Tammilehto, M., Laasanen, S. L. and Schleutker, J. (2013) copy number variation analysis in familial BRCA1/2-negative Finnish breast and ovarian cancer PLoS One, 8, e71802
CrossRef Pubmed Google scholar
[29]
Glessner, J. T., Smith, A. V., Panossian, S., Kim, C. E., Takahashi, N., Thomas, K. A., Wang, F., Seidler, K., Harris, T. B., Launer, L. J., (2013) Copy number variations in alternative splicing gene networks impact lifespan. PLoS One, 8, e53846
CrossRef Pubmed Google scholar
[30]
Johansson Moller, M., Chaudhary, R., Hellmén, E., Höyheim, B., Chowdhary, B. and Andersson, L. (1996) Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm. Genome, 7, 822–830
CrossRef Pubmed Google scholar
[31]
Norris, B. J. and Whan, V. A. (2008) A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res., 18, 1282–1293
CrossRef Pubmed Google scholar
[32]
Wright, D., Boije, H., Meadows, J. R. S., Bed’hom, B., Gourichon, D., Vieaud, A., Tixier-Boichard, M., Rubin, C. J., Imsland, F., Hallböök, F., (2009) Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens. PLoS Genet., 5, e1000512
CrossRef Pubmed Google scholar
[33]
Dorshorst, B., Harun-Or-Rashid, M., Bagherpoor, A. J., Rubin, C. J., Ashwell, C., Gourichon, D., Tixier-Boichard, M., Hallböök, F. and Andersson, L. (2015) A genomic duplication is associated with ectopic eomesodermin expression in the embryonic chicken comb and two duplex-comb phenotypes. PLoS Genet., 11, e1004947
CrossRef Pubmed Google scholar
[34]
Salmon Hillbertz, N. H. C., Isaksson, M., Karlsson, E. K., Hellmén, E., Pielberg, G. R., Savolainen, P., Wade, C. M., von Euler, H., Gustafson, U., Hedhammar, A., (2007) Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback dogs. Nat. Genet., 39, 1318–1320
CrossRef Pubmed Google scholar
[35]
Drögemüller, C., Distl, O. and Leeb, T. (2001) Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle. Genome Res., 11, 1699–1705
CrossRef Pubmed Google scholar
[36]
Capitan, A., Allais-Bonnet, A., Pinton, A., Marquant-Le Guienne, B., Le Bourhis, D., Grohs, C., Bouet, S., Clément, L., Salas-Cortes, L., Venot, E., (2012) A 3.7 Mb deletion encompassing ZEB2 causes a novel polled and multisystemic syndrome in the progeny of a somatic mosaic bull. PLoS One, 7, e49084
CrossRef Pubmed Google scholar
[37]
Aten, E., White, S. J., Kalf, M. E., Vossen, R. H., Thygesen, H. H., Ruivenkamp, C. A., Kriek, M., Breuning, M. H. and den Dunnen, J. T. (2008) Methods to detect CNVs in the human genome. Cytogenet. Genome Res., 123, 313–321
CrossRef Pubmed Google scholar
[38]
Kim, T. M., Yim, S. H. and Chung, Y. J. (2008) Copy number variations in the human genome: potential source for individual diversity and disease association studies. Genomics Inform., 6, 1–7
CrossRef Google scholar
[39]
Carter, N. P. (2007) Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet., 39, S16–S21
CrossRef Pubmed Google scholar
[40]
Buysse, K., Delle Chiaie, B., Van Coster, R., Loeys, B., De Paepe, A., Mortier, G., Speleman, F., Menten, B. (2009) Challenges for CNV interpretation in clinical molecular karyotyping: lessons learned from a 1,001 sample experience. Eur. J. Med. Gene., 52, 398–403
[41]
Lucito, R., Healy, J., Alexander, J., Reiner, A., Esposito, D., Chi, M., Rodgers, L., Brady, A., Sebat, J., Troge, J., (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res., 13, 2291–2305
CrossRef Pubmed Google scholar
[42]
Chiang, D. Y., Getz, G., Jaffe, D. B., O’Kelly, M. J., Zhao, X., Carter, S. L., Russ, C., Nusbaum, C., Meyerson, M. and Lander, E. S. (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods, 6, 99–103
CrossRef Pubmed Google scholar
[43]
Geiss, G. K., Bumgarner, R. E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D. L., Fell, H. P., Ferree, S., George, R. D., Grogan, T., (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol., 26, 317–325
CrossRef Pubmed Google scholar
[44]
Abel, H. J. and Duncavage, E. J. (2013) Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet., 206, 432–440
CrossRef Pubmed Google scholar
[45]
Weksberg, R., Hughes, S., Moldovan, L., Bassett, A. S., Chow, E. W. and Squire, J. A. (2005) A method for accurate detection of genomic microdeletions using real-time quantitative PCR. BMC Genomics, 6, 180
CrossRef Pubmed Google scholar
[46]
Schouten, J. P., McElgunn, C. J., Waaijer, R., Zwijnenburg, D., Diepvens, F. and Pals, G. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res., 30, e57
CrossRef Pubmed Google scholar
[47]
Armour, J. A., Sismani, C., Patsalis, P. C. and Cross, G. (2000) Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res., 28, 605–609
CrossRef Pubmed Google scholar
[48]
Kumps, C., Van Roy, N., Heyrman, L., Goossens, D., Del-Favero, J., Noguera, R., Vandesompele, J., Speleman, F. and De Preter, K. (2010) Multiplex amplicon quantification (MAQ), a fast and efficient method for the simultaneous detection of copy number alterations in neuroblastoma. BMC Genomics, 11, 298
CrossRef Pubmed Google scholar
[49]
Fernandez-Jimenez, N., Castellanos-Rubio, A., Plaza-Izurieta, L., Gutierrez, G., Irastorza, I., Castaño, L., Vitoria, J. C. and Bilbao, J. R. (2011) Accuracy in copy number calling by qPCR and PRT: a matter of DNA. PLoS One, 6, e28910
CrossRef Pubmed Google scholar
[50]
Daser, A., Thangavelu, M., Pannell, R., Forster, A., Sparrow, L., Chung, G., Dear, P. H. and Rabbitts, T. H. (2006) Interrogation of genomes by molecular copy-number counting (MCC). Nat. Methods, 3, 447–453
CrossRef Pubmed Google scholar
[51]
Ceulemans, S., van der Ven, K. and Del-Favero, J. (2012) Targeted screening and validation of copy number variations. Methods Mol. Biol., 838, 311–328
CrossRef Pubmed Google scholar
[52]
Haraksingh, R. R., Abyzov, A., Gerstein, M., Urban, A. E. and Snyder, M. (2011) Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS One, 6, e27859
CrossRef Pubmed Google scholar
[53]
Oldridge, D. A., Banerjee, S., Setlur, S. R., Sboner, A. and Demichelis, F. (2010) Optimizing copy number variation analysis using genome-wide short sequence oligonucleotide arrays. Nucleic Acids Res., 38, 3275–3286
CrossRef Pubmed Google scholar
[54]
Olshen, A. B., Venkatraman, E. S., Lucito, R. and Wigler, M. (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics, 5, 557–572
CrossRef Pubmed Google scholar
[55]
Hupé, P., Stransky, N., Thiery, J. P., Radvanyi, F. and Barillot, E. (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics, 20, 3413–3422
CrossRef Pubmed Google scholar
[56]
Rigaill, G., Hupé, P., Almeida, A., La Rosa, P., Meyniel, J. P., Decraene, C. and Barillot, E. (2008) ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays. Bioinformatics, 24, 768–774
CrossRef Pubmed Google scholar
[57]
Scharpf, R. B., Ruczinski, I., Carvalho, B., Doan, B., Chakravarti, A. and Irizarry, R. A. (2011) A multilevel model to address batch effects in copy number estimation using SNP arrays. Biostatistics, 12, 33–50
CrossRef Pubmed Google scholar
[58]
Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F., Hakonarson, H. and Bucan, M. (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res., 17, 1665–1674
CrossRef Pubmed Google scholar
[59]
Glessner, J. T., Li, J. and Hakonarson, H. (2013) ParseCNV integrative copy number variation association software with quality tracking. Nucleic Acids Res., 41, e64
CrossRef Pubmed Google scholar
[60]
Pique-Regi, R., Cáceres, A. and González, J. R. (2010) R-Gada: a fast and flexible pipeline for copy number analysis in association studies. BMC Bioinformatics, 11, 380
CrossRef Pubmed Google scholar
[61]
Alkan, C., Coe, B. P. and Eichler, E. E. (2011) Genome structural variation discovery and genotyping. Nat. Rev. Genet., 12, 363–376
CrossRef Pubmed Google scholar
[62]
Meyerson, M., Gabriel, S. and Getz, G. (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet., 11, 685–696
CrossRef Pubmed Google scholar
[63]
Zhao, M., Wang, Q., Wang, Q., Jia, P. and Zhao, Z. (2013) Computational tools for copy number variation (CNV) detection using next-generation sequencing data: fea-tures and perspectives. BMC Bioinformatics, 14 (Suppl 11), S1
[64]
Xie, C. and Tammi, M. T. (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics, 10, 80
CrossRef Pubmed Google scholar
[65]
Boeva, V., Zinovyev, A., Bleakley, K., Vert, J. P., Janoueix-Lerosey, I., Delattre, O. and Barillot, E. (2011) Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics, 27, 268–269
CrossRef Pubmed Google scholar
[66]
Abyzov, A., Urban, A. E., Snyder, M. and Gerstein, M. (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res., 21, 974–984
CrossRef Pubmed Google scholar
[67]
Chiang, D. Y., Getz, G., Jaffe, D. B., O’Kelly, M. J. T., Zhao, X., Carter, S. L., Russ, C., Nusbaum, C., Meyerson, M. and Lander, E. S. (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods, 6, 99–103
CrossRef Pubmed Google scholar
[68]
Yoon, S., Xuan, Z., Makarov, V., Ye, K. and Sebat, J. (2009) Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res., 19, 1586–1592
CrossRef Pubmed Google scholar
[69]
Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., McGrath, S. D., Wendl, M. C., Zhang, Q., Locke, D. P., (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods, 6, 677–681
CrossRef Pubmed Google scholar
[70]
Sathirapongsasuti, J. F., Lee, H., Horst, B. A., Brunner, G., Cochran, A. J., Binder, S., Quackenbush, J. and Nelson, S. F. (2011) Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics, 27, 2648–2654
CrossRef Pubmed Google scholar
[71]
Fromer, M., Moran, J. L., Chambert, K., Banks, E., Bergen, S. E., Ruderfer, D. M., Handsaker, R. E., McCarroll, S. A., O’Donovan, M. C., Owen, M. J., (2012) Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am. J. Hum. Genet., 91, 597–607
CrossRef Pubmed Google scholar
[72]
Coin, L. J., Cao, D., Ren, J., Zuo, X., Sun, L., Yang, S., Zhang, X., Cui, Y., Li, Y., Jin, X., (2012) An exome sequencing pipeline for identifying and genotyping common CNVs associated with disease with application to psoriasis. Bioinformatics, 28, i370–i374
CrossRef Pubmed Google scholar
[73]
Li, A., Liu, Z., Lezon-Geyda, K., Sarkar, S., Lannin, D., Schulz, V., Krop, I., Winer, E., Harris, L. and Tuck, D. (2011) GPHMM: an integrated hidden Markov model for identification of copy number alteration and loss of heterozygosity in complex tumor samples using whole genome SNP arrays. Nucleic Acids Res., 39, 4928–4941
CrossRef Pubmed Google scholar
[74]
Yu, Z., Liu, Y., Shen, Y., Wang, M. and Li, A. (2014) CLImAT: accurate detection of copy number alteration and loss of heterozygosity in impure and aneuploid tumor samples using whole-genome sequencing data. Bioinformatics, 30, 2576–2583
CrossRef Pubmed Google scholar
[75]
Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. and McVean, G. (2012) De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat. Genet., 44, 226–232
CrossRef Pubmed Google scholar
[76]
Nijkamp, J. F., van den Broek, M. A., Geertman, J. M., Reinders, M. J., Daran, J. M. and de Ridder, D. (2012) De novo detection of copy number variation by co-assembly. Bioinformatics, 28, 3195–3202
CrossRef Pubmed Google scholar
[77]
Beroukhim, R., Getz, G., Nghiemphu, L., Barretina, J., Hsueh, T., Linhart, D., Vivanco, I., Lee, J. C., Huang, J. H., Alexander, S., (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl. Acad. Sci. USA, 104, 20007–20012
CrossRef Pubmed Google scholar
[78]
Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R. and Getz, G. (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol., 12, R41
CrossRef Pubmed Google scholar
[79]
Sanchez-Garcia, F., Akavia, U. D., Mozes, E. and Pe’er, D. (2010) JISTIC: identification of significant targets in cancer. BMC Bioinformatics, 11, 189
CrossRef Pubmed Google scholar
[80]
Walter, V., Nobel, A.B., and Wright, F.A. (2011) DiNAMIC: A method to identify recurrent DNA copy number aberrations in tumors. Bioinformatics, 27, 678–685
[81]
Zhou, X., Liu, J., Wan, X. and Yu, W. (2014) Piecewise-constant and low-rank approximation for identification of recurrent copy number variations. Bioinformatics, 30, 1943–1949
CrossRef Pubmed Google scholar
[82]
Xi, J. and Li, A. (2016) Discovering recurrent copy number aberrations in complex patterns via non-negative sparse singular value decomposition. IEEE/ACM Trans. Comp. Biol. Bioinfo., (TCBB)., 13, 656–668
CrossRef Google scholar
[83]
Fanciulli, M., Petretto, E. and Aitman, T. J. (2010) Gene copy number variation and common human disease. Clin. Genet., 77, 201–213
CrossRef Pubmed Google scholar
[84]
Aldred, P. M., Hollox, E. J. and Armour, J. A. (2005) Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3. Hum. Mol. Genet., 14, 2045–2052
CrossRef Pubmed Google scholar
[85]
Breunis, W. B., van Mirre, E., Bruin, M., Geissler, J., de Boer, M., Peters, M., Roos, D., de Haas, M., Koene, H. R. and Kuijpers, T. W. (2008) Copy number variation of the activating FCGR2C gene predisposes to idiopathic thrombocytopenic purpura. Blood, 111, 1029–1038
CrossRef Pubmed Google scholar
[86]
Bayés, M., Magano, L. F., Rivera, N., Flores, R. and Pérez Jurado, L. A. (2003) Mutational mechanisms of Williams-Beuren syndrome deletions. Am. J. Hum. Genet., 73, 131–151
CrossRef Pubmed Google scholar
[87]
Marshall, C. R., Young, E. J., Pani, A. M., Freckmann, M. L., Lacassie, Y., Howald, C., Fitzgerald, K. K., Peippo, M., Morris, C. A., Shane, K., (2008) Infantile spasms is associated with deletion of the MAGI2 gene on chromosome 7q11.23-q21.11. Am. J. Hum. Genet., 83, 106–111
CrossRef Pubmed Google scholar
[88]
Baldini, A. (2004) DiGeorge syndrome: an update. Curr. Opin. Cardiol., 19, 201–204
CrossRef Pubmed Google scholar
[89]
Bi, W., Yan, J., Stankiewicz, P., Park, S. S., Walz, K., Boerkoel, C. F., Potocki, L., Shaffer, L. G., Devriendt, K., Nowaczyk, M. J., (2002) Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse. Genome Res., 12, 713–728
CrossRef Pubmed Google scholar
[90]
Potocki, L., Chen, K. S., Park, S. S., Osterholm, D. E., Withers, M. A., Kimonis, V., Summers, A. M., Meschino, W. S., Anyane-Yeboa, K., Kashork, C. D., (2000) Molecular mechanism for duplication 17p11.2 – the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nat. Genet., 24, 84–87
CrossRef Pubmed Google scholar
[91]
Stone, J. L., O’Donovan, M. C., Gurling, H., Kirov, G. K., Blackwood, D. H. R., Corvin, A., Craddock, N. J., Gill, M., Hultman, C. M., Lichtenstein, P., (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 455, 237–241
CrossRef Pubmed Google scholar
[92]
Stefansson, H., Rujescu, D., Cichon, S., Pietiläinen, O. P., Ingason, A., Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer–Voskamp, J. E., (2008) Large recurrent microdeletions associated with schizophrenia. Nature, 455, 232–236
CrossRef Pubmed Google scholar
[93]
de Vries, B. B., Pfundt, R., Leisink, M., Koolen, D. A., Vissers, L. E., Janssen, I. M., Reijmersdal, S., Nillesen, W. M., Huys, E. H., Leeuw, N., (2005) Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet., 77, 606–616
CrossRef Pubmed Google scholar
[94]
Friedman, J. M., Baross, Á., Delaney, A. D., Ally, A., Arbour, L., Asano, J., Bailey, D. K., Barber, S., Birch, P., Brown-John, M., (2006) Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am. J. Hum. Genet., 79, 500–513
CrossRef Pubmed Google scholar
[95]
Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., Shago, M., Moessner, R., Pinto, D., Ren, Y., (2008) Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet., 82, 477–488
CrossRef Pubmed Google scholar
[96]
Koolen, D. A., Sharp, A. J., Hurst, J. A., Firth, H. V., Knight, S. J., Goldenberg, A., Saugier-Veber, P., Pfundt, R., Vissers, L. E., Destrée, A., (2008) Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. J. Med. Genet., 45, 710–720
CrossRef Pubmed Google scholar
[97]
Sharp, A. J., Mefford, H. C., Li, K., Baker, C., Skinner, C., Stevenson, R. E., Schroer, R. J., Novara, F., De Gregori, M., Ciccone, R., (2008) A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat. Genet., 40, 322–328
CrossRef Pubmed Google scholar
[98]
Mefford, H. C., Sharp, A. J., Baker, C., Itsara, A., Jiang, Z., Buysse, K., Huang, S., Maloney, V. K., Crolla, J. A., Baralle, D., (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N. Engl. J. Med., 359, 1685–1699
CrossRef Pubmed Google scholar
[99]
Shaffer, L. G., Theisen, A., Bejjani, B. A., Ballif, B. C., Aylsworth, A. S., Lim, C., McDonald, M., Ellison, J. W., Kostiner, D., Saitta, S., (2007) The discovery of microdeletion syndromes in the post-genomic era: review of the methodology and characterization of a new 1q41q42 microdeletion syndrome. Genet. Med., 9, 607–616
CrossRef Pubmed Google scholar
[100]
Butler, M. G., Meaney, F. J., Palmer, C. G., Opitz, J. M. and Reynolds, J. F. (1986) Clinical and cytogenetic survey of 39 individuals with Prader-Labhart-Willi syndrome. Am. J. Med. Genet., 23, 793–809
CrossRef Pubmed Google scholar
[101]
Chen, K. S., Manian, P., Koeuth, T., Potocki, L., Zhao, Q., Chinault, A. C., Lee, C. C. and Lupski, J. R. (1997) Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat. Genet., 17, 154–163
CrossRef Pubmed Google scholar
[102]
Pérez Jurado, L. A., Peoples, R., Kaplan, P., Hamel, B. C. and Francke, U. (1996) Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am. J. Hum. Genet., 59, 781–792
Pubmed
[103]
Edelmann, L., Pandita, R. K., Spiteri, E., Funke, B., Goldberg, R., Palanisamy, N., Chaganti, R. S., Magenis, E., Shprintzen, R. J. and Morrow, B. E. (1999) A common molecular basis for rearrangement disorders on chromosome 22q11. Hum. Mol. Genet., 8, 1157–1167
CrossRef Pubmed Google scholar
[104]
Bassett, A. S. and Chow, E. W. C. (2008) Schizophrenia and 22q11.2 deletion syndrome. Curr. Psychiatry Rep., 10, 148–157
CrossRef Pubmed Google scholar
[105]
Walters, R., Jacquemont, S., Valsesia, A., de Smith, A.J., Martinet, D., Andersson, J., Falchi, M., Chen, F., Andrieux, J., Lobbens, S., (2010) A new highly penetrant form of obesity due to deletions on chromosome 16p11. 363 Nature. 463, 671–675
CrossRef Google scholar
[106]
Barbieri, C. E., Baca, S. C., Lawrence, M. S., Demichelis, F., Blattner, M., Theurillat, J. P., White, T. A., Stojanov, P., Van Allen, E., Stransky, N., (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet., 44, 685–689
CrossRef Pubmed Google scholar
[107]
Kerdpon, D., Sriplung, H. and Kietthubthew, S. (2001) Expression of p53 in oral squamous cell carcinoma and its association with risk habits in southern Thailand. Oral Oncol., 37, 553–557
CrossRef Pubmed Google scholar
[108]
Topcu, Z., Chiba, I., Fujieda, M., Shibata, T., Ariyoshi, N., Yamazaki, H., Sevgican, F., Muthumala, M., Kobayashi, H. and Kamataki, T. (2002) CYP2A6 gene deletion reduces oral cancer risk in betel quid chewers in Sri Lanka. Carcinogenesis, 23, 595–598
CrossRef Pubmed Google scholar
[109]
India Project Team of the International Cancer Genome Consortium. (2013) Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun, 4, 2873
Pubmed
[110]
Pickering, C. R., Zhang, J., Yoo, S. Y., Bengtsson, L., Moorthy, S., Neskey, D. M., Zhao, M., Ortega Alves, M. V., Chang, K., Drummond, J., (2013) Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov., 3, 770–781
CrossRef Pubmed Google scholar
[111]
Stransky, N., Egloff, A. M., Tward, A. D., Kostic, A. D., Cibulskis, K., Sivachenko, A., Kryukov, G. V., Lawrence, M. S., Sougnez, C., McKenna, A., (2011) The mutational landscape of head and neck squamous cell carcinoma. Science, 333, 1157–1160
CrossRef Pubmed Google scholar
[112]
Salahshourifar, I., Vincent-Chong, V. K., Kallarakkal, T. G. and Zain, R. B. (2014) Genomic DNA copy number alterations from precursor oral lesions to oral squamous cell carcinoma. Oral Oncol., 50, 404–412
CrossRef Pubmed Google scholar
[113]
Murugan, A. K., Munirajan, A. K. and Tsuchida, N. (2013) Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett., 338, 193–203
CrossRef Pubmed Google scholar
[114]
Freier, K., Schwaenen, C., Sticht, C., Flechtenmacher, C., Mühling, J., Hofele, C., Radlwimmer, B., Lichter, P. and Joos, S. (2007) Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol., 43, 60–66
CrossRef Pubmed Google scholar
[115]
Martín-Ezquerra, G., Salgado, R., Toll, A., Gilaberte, M., Baró, T., Alameda Quitllet, F., Yébenes, M., Solé, F., Garcia-Muret, M., Espinet, B., (2010) Multiple genetic copy number alterations in oral squamous cell carcinoma: study of MYC, TP53, CCDN1, EGFR and ERBB2 status in primary and metastatic tumours. Br. J. Dermatol., 163, 1028–1035
CrossRef Pubmed Google scholar
[116]
Mendes, R. A. (2012) Oncogenic pathways in the development of oral cancer. J. Carcinog. Mutagen., 3, 2
CrossRef Google scholar
[117]
Lee, J. A. and Lupski, J. R. (2006) Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron, 52, 103–121
CrossRef Pubmed Google scholar
[118]
Cook, E. H. Jr and Scherer, S. W. (2008) Copy-number variations associated with neuropsychiatric conditions. Nature, 455, 919–923
CrossRef Pubmed Google scholar
[119]
Kalatzis, V. and Antignac, C. (2002) Cystinosis: from gene to disease. Nephrol. Dial. Transplant., 17, 1883–1886
CrossRef Pubmed Google scholar
[120]
Stahl, E. A., Raychaudhuri, S., Remmers, E. F., Xie, G., Eyre, S., Thomson, B. P., Li, Y., Kurreeman, F. A., Zhernakova, A., Hinks, A., (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet., 42, 508–514
CrossRef Pubmed Google scholar
[121]
Jung, S. H., Yim, S. H., Hu, H. J., Lee, K. H., Lee, J. H., Sheen, D. H., Lim, M. K., Kim, S. Y., Park, S. W., Kim, S. H., (2014) Genome-wide copy number variation analysis identifies deletion variants associated with ankylosing spondylitis. Arthritis Rheumatol., 66, 2103–2112
CrossRef Pubmed Google scholar
[122]
Kim, J. H., Jung, S. H., Bae, J. S., Lee, H. S., Yim, S. H., Park, S. Y., Bang, S. Y., Hu, H. J., Shin, H. D., Bae, S. C., (2013) Deletion variants of RABGAP1L, 10q21.3, and C4 are associated with the risk of systemic lupus erythematosus in Korean women. Arthritis Rheum., 65, 1055–1063
CrossRef Pubmed Google scholar
[123]
Okada, Y., Wu, D., Trynka, G., Raj, T., Terao, C., Ikari, K., Kochi, Y., Ohmura, K., Suzuki, A., Yoshida, S., (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature, 506, 376–381
CrossRef Pubmed Google scholar
[124]
de Cid, R., Riveira-Munoz, E., Zeeuwen, P. L., Robarge, J., Liao, W., Dannhauser, E. N., Giardina, E., Stuart, P. E., Nair, R., Helms, C., (2009) Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet., 41, 211–215
CrossRef Pubmed Google scholar
[125]
Hüffmeier, U., Bergboer, J. G., Becker, T., Armour, J. A., Traupe, H., Estivill, X., Riveira-Munoz, E., Mössner, R., Reich, K., Kurrat, W., (2010) Replication of LCE3C-LCE3B CNV as a risk factor for psoriasis and analysis of interaction with other genetic risk factors. J. Invest. Dermatol., 130, 979–984
CrossRef Pubmed Google scholar
[126]
Xu, L., Li, Y., Zhang, X., Sun, H., Sun, D., Jia, X., Shen, C., Zhou, J., Ji, G., Liu, P., (2011) Deletion of LCE3C and LCE3B genes is associated with psoriasis in a northern Chinese population. Br. J. Dermatol., 165, 882–887
CrossRef Pubmed Google scholar
[127]
Veal, C. D., Reekie, K. E., Lorentzen, J. C., Gregersen, P. K., Padyukov, L. and Brookes, A. J. (2014) A 129-kb deletion on chromosome 12 confers substantial protection against rheumatoid arthritis, implicating the gene SLC2A3. Hum. Mutat., 35, 248–256
CrossRef Pubmed Google scholar
[128]
Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., (2003) α-synuclein locus triplication causes Parkinson’s disease. Science, 302, 841–841
CrossRef Pubmed Google scholar
[129]
Nagao, Y. (2015) Copy number variations play important roles in heredity of common diseases: a novel method to calculate heritability of a polymorphism. Sci. Rep., 5, 17156
CrossRef Pubmed Google scholar

AUTHOR’S CONTRIBUTIONS

Bolin Chen initiated this review work; Chaima Aouiche and Bolin Chen discussed the whole outline and designed the review topics; Chaima Aouiche wrote the paper; Chaima Aouiche, Xuequn Shang and Bolin Chen revised the manuscript for many times throughly. All authors have read and approved the final manuscript.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 61602386 and 61332014), the Natural Science Foundation of Shaanxi Province (No. 2017JQ6008), and the top university visiting foundation for excellent youth scholars of Northwestern Polytechnical University.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Chaima Aouiche, Xuequn Shang and Bolin Chen declare that they have no conflict of interests.
This article is a review article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(722 KB)

Accesses

Citations

Detail

Sections
Recommended

/