Noise transmission during the dynamic pattern formation in fly embryos

Zhe Yang, Xiaoxuan Wu, Ning Yang, Feng Liu

PDF(2588 KB)
PDF(2588 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (1) : 15-29. DOI: 10.1007/s40484-018-0135-8
REVIEW
REVIEW

Noise transmission during the dynamic pattern formation in fly embryos

Author information +
History +

Abstract

Background: Developmental patterning is highly reproducible and accurate at the single-cell level during fly embryogenesis despite the gene expression noise and external perturbations such as the variation of the embryo length, temperature and genes. To reveal the underlying mechanism, it is very important to characterize the noise transmission during the dynamic pattern formation. Two hypotheses have been proposed. The “channel” scenario requires a highly reproducible input and an accurate interpretation by downstream genes. In contrast, the “filter” scenario proposes a noisy input and a noise filter via the cross-regulation of the downstream network. It has been under great debates which scenario the fly embryogenesis follows.

Results: The first 3-h developmental patterning of fly embryos is orchestrated by a hierarchical segmentation gene network, which rewires upon the maternal to zygotic transition. Starting from the highly reproducible maternal gradients, the positional information is refined to the single-cell precision through the highly dynamical evolved zygotic gene expression profiles. Thus the fly embryo development might strictly fit into neither the originally proposed “filter” nor “channel” scenario. The controversy that which scenario the fly embryogenesis follows could be further clarified by combining quantitative measurements and modeling.

Conclusions: Fly embryos have become one of the perfect model systems for quantitative systems biology studies. The underlying mechanism discovered from fly embryogenesis will deepen our understanding of the noise control of the gene network, facilitate searching for more efficient and safer methods for cell programming and reprogramming, and have the great potential for tissue engineering and regenerative medicine.

Graphical abstract

Keywords

pattern formation / gene regulatory network / noise / embryogenesis / Drosophila

Cite this article

Download citation ▾
Zhe Yang, Xiaoxuan Wu, Ning Yang, Feng Liu. Noise transmission during the dynamic pattern formation in fly embryos. Quant. Biol., 2018, 6(1): 15‒29 https://doi.org/10.1007/s40484-018-0135-8

References

[1]
Gregor, T., Tank, D. W., Wieschaus, E. F. and Bialek, W. (2007) Probing the limits to positional information. Cell, 130, 153–164
CrossRef Pubmed Google scholar
[2]
Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. and Tank, D. W. (2007) Stability and nuclear dynamics of the Bicoid morphogen gradient. Cell, 130, 141–152
CrossRef Pubmed Google scholar
[3]
Namba, R., Pazdera, T. M., Cerrone, R. L. and Minden, J. S. (1997) Drosophila embryonic pattern repair: how embryos respond to bicoid dosage alteration. Development, 124, 1393–1403
Pubmed
[4]
Vincent, A., Blankenship, J. T. and Wieschaus, E. (1997) Integration of the head and trunk segmentation systems controls cephalic furrow formation in Drosophila. Development, 124, 3747–3754
Pubmed
[5]
Liu, F., Morrison, A. H. and Gregor, T. (2013) Dynamic interpretation of maternal inputs by the Drosophila segmentation gene network. Proc. Natl. Acad. Sci. USA, 110, 6724–6729
CrossRef Pubmed Google scholar
[7]
Eldar, A. and Elowitz, M. B. (2010) Functional roles for noise in genetic circuits. Nature, 467, 167–173
CrossRef Pubmed Google scholar
[6]
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186
CrossRef Pubmed Google scholar
[8]
Ghodsi, Z., Hassani, H. and McGhee, K. (2015) Mathematical approaches in studying bicoid gene. Quant. Biol., 3, 182–192
CrossRef Google scholar
[9]
Gregor, T., Garcia, H. G. and Little, S. C. (2014) The embryo as a laboratory: quantifying transcription in Drosophila. Trends Genet., 30, 364–375
CrossRef Pubmed Google scholar
[10]
Rogers, K. W. and Schier, A. F. (2011) Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol., 27, 377–407
CrossRef Pubmed Google scholar
[11]
Porcher, A. and Dostatni, N. (2010) The bicoid morphogen system. Curr. Biol., 20, R249–R254
CrossRef Pubmed Google scholar
[12]
Jaeger, J. (2011) The gap gene network. Cell. Mol. Life Sci., 68, 243–274
CrossRef Pubmed Google scholar
[13]
Jaeger, J. (2009) Modelling the Drosophila embryo. Mol. Biosyst., 5, 1549–1568
CrossRef Pubmed Google scholar
[14]
Farrell, J. A. and O’Farrell, P. H. (2014) From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. Annu. Rev. Genet., 48, 269–294
CrossRef Pubmed Google scholar
[15]
Driever, W. and Nüsslein-Volhard, C. (1988) A gradient of bicoid protein in Drosophila embryos. Cell, 54, 83–93
CrossRef Pubmed Google scholar
[16]
Driever, W. and Nüsslein-Volhard, C. (1988) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell, 54, 95–104
CrossRef Pubmed Google scholar
[17]
Irish, V., Lehmann, R. and Akam, M. (1989) The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature, 338, 646–648
CrossRef Pubmed Google scholar
[18]
Dubuis, J. O., Samanta, R. and Gregor, T. (2013) Accurate measurements of dynamics and reproducibility in small genetic networks. Mol. Syst. Biol., 9, 639
CrossRef Pubmed Google scholar
[19]
Surkova, S., Myasnikova, E., Kozlov, K. N., Pisarev, A., Reinitz, J. and Samsonova, M. (2013) Quantitative imaging of gene expression in Drosophila embryos. Cold Spring Harb. Protoc., 2013, 488–497
Pubmed
[20]
Little, S. C., Tkačik, G., Kneeland, T. B., Wieschaus, E. F. and Gregor, T. (2011) The formation of the Bicoid morphogen gradient requires protein movement from anteriorly localized mRNA. PLoS Biol., 9, e1000596
CrossRef Pubmed Google scholar
[21]
Grimm, O., Coppey, M. and Wieschaus, E. (2010) Modelling the Bicoid gradient. Development, 137, 2253–2264
CrossRef Pubmed Google scholar
[22]
Berezhkovskii, A. M., Sample, C. and Shvartsman, S. Y. (2010) How long does it take to establish a morphogen gradient? Biophys. J., 99, L59–L61
CrossRef Pubmed Google scholar
[23]
Drocco, J. A., Grimm, O., Tank, D. W. and Wieschaus, E. (2011) Measurement and perturbation of morphogen lifetime: effects on gradient shape. Biophys. J., 101, 1807–1815
CrossRef Pubmed Google scholar
[24]
Liu, J., He, F. and Ma, J. (2011) Morphogen gradient formation and action: insights from studying Bicoid protein degradation. Fly (Austin), 5, 242–246
CrossRef Pubmed Google scholar
[25]
Abu-Arish, A., Porcher, A., Czerwonka, A., Dostatni, N. and Fradin, C. (2010) High mobility of bicoid captured by fluorescence correlation spectroscopy: implication for the rapid establishment of its gradient. Biophys. J., 99, L33–L35
CrossRef Pubmed Google scholar
[26]
Liu, J. and Ma, J. (2013) Uncovering a dynamic feature of the transcriptional regulatory network for anterior–posterior patterning in the Drosophila embryo. PLoS One, 8, e62641
CrossRef Pubmed Google scholar
[27]
Margolis, J. S., Borowsky, M. L., Steingrímsson, E., Shim, C. W., Lengyel, J. A. and Posakony, J. W. (1995) Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. Development, 121, 3067–3077
Pubmed
[28]
Lopes, F. J., Vieira, F. M., Holloway, D. M., Bisch, P. M. and Spirov, A. V. (2008) Spatial bistability generates hunchback expression sharpness in the Drosophila embryo. PLoS Comput. Biol., 4, e1000184
CrossRef Pubmed Google scholar
[29]
Hülskamp, M., Lukowitz, W., Beermann, A., Glaser, G. and Tautz, D. (1994) Differential regulation of target genes by different alleles of the segmentation gene hunchback in Drosophila. Genetics, 138, 125–134
Pubmed
[30]
Schröder, C., Tautz, D., Seifert, E. and Jäckle, H. (1988) Differential regulation of the two transcripts from the Drosophila gap segmentation gene hunchback. EMBO J., 7, 2881–2887
Pubmed
[31]
Perry, M. W., Bothma, J. P., Luu, R. D. and Levine, M. (2012) Precision of hunchback expression in the Drosophila embryo. Curr. Biol., 22, 2247–2252
CrossRef Pubmed Google scholar
[32]
Surkova, S., Golubkova, E., Manu, L., Panok, L., Mamon, J., Reinitz, M. and Samsonova (2013) Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants. Dev. Biol., 376, 99–112
CrossRef Pubmed Google scholar
[33]
Perry, M. W., Boettiger, A. N. and Levine, M. (2011) Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. Proc. Natl. Acad. Sci. USA, 108, 13570–13575
CrossRef Pubmed Google scholar
[34]
Lehmann, R. and Nüsslein-Volhard, C. (1987) hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev. Biol., 119, 402–417
CrossRef Pubmed Google scholar
[35]
Petkova, M. D., Tkačik, G., Bialek, W., Wieschaus, E. F. and Gregor, T. (2016) Optimal decoding of information from a genetic network. arXiv:161208084
[36]
Petkova, M. D., Little, S. C., Liu, F. and Gregor, T. (2014) Maternal origins of developmental reproducibility. Curr. Biol., 24, 1283–1288
CrossRef Pubmed Google scholar
[37]
Wolpert, L. (1969) Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol., 25, 1–47
CrossRef Pubmed Google scholar
[38]
He, F., Wen, Y., Deng, J., Lin, X., Lu, L. J., Jiao, R. and Ma, J. (2008) Probing intrinsic properties of a robust morphogen gradient in Drosophila. Dev. Cell, 15, 558–567
CrossRef Pubmed Google scholar
[39]
Houchmandzadeh, B., Wieschaus, E. and Leibler, S. (2002) Establishment of developmental precision and proportions in the early Drosophila embryo. Nature, 415, 798–802
CrossRef Pubmed Google scholar
[40]
Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K. N., Manu, E., Myasnikova, C. E., Vanario-Alonso, M., Samsonova, M, (2004) Dynamic control of positional information in the early Drosophila embryo. Nature, 430, 368–371
CrossRef Pubmed Google scholar
[41]
Manu, Surkova, S., Spirov, A. V., Gursky, V. V., Janssens, H., Kim, A. R., Radulescu, O., Vanario-Alonso, C. E., Sharp, D. H., Samsonova, M., (2009) Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biol., 7, e1000049
CrossRef Pubmed Google scholar
[42]
Green, J. B. and Sharpe, J. (2015) Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development, 142, 1203–1211
CrossRef Pubmed Google scholar
[43]
Turing, A. M. (1952) The chemical basis of morphogenesis. Philosoph. Trans. Royal Soc. London, 237,37–72
[44]
Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R., Tank, D. W. and Wieschaus, E. F. (2005) Diffusion and scaling during early embryonic pattern formation. Proc. Natl. Acad. Sci. USA, 102, 18403–18407
CrossRef Pubmed Google scholar
[45]
Grimm, O. and Wieschaus, E. (2010) The Bicoid gradient is shaped independently of nuclei. Development, 137, 2857–2862
CrossRef Pubmed Google scholar
[46]
Cheung, D., Miles, C., Kreitman, M. and Ma, J. (2011) Scaling of the Bicoid morphogen gradient by a volume-dependent production rate. Development, 138, 2741–2749
CrossRef Pubmed Google scholar
[47]
He, F., Wei, C., Wu, H., Cheung, D., Jiao, R. and Ma, J. (2015) Fundamental origins and limits for scaling a maternal morphogen gradient. Nat. Commun., 6, 6679
CrossRef Pubmed Google scholar
[48]
de Lachapelle, A. M. and Bergmann, S. (2010) Precision and scaling in morphogen gradient read-out. Mol. Syst. Biol., 6, 351
Pubmed
[49]
Bergmann, S., Sandler, O., Sberro, H., Shnider, S., Schejter, E., Shilo, B.-Z. and Barkai, N. (2007) Pre-steady-state decoding of the Bicoid morphogen gradient. PLoS Biol., 5, e46
CrossRef Pubmed Google scholar
[50]
Jaeger, J. (2010) A matter of timing and precision. Mol. Syst. Biol., 6, 427
CrossRef Pubmed Google scholar
[51]
Houchmandzadeh, B., Wieschaus, E. and Leibler, S. (2005) Precise domain specification in the developing Drosophila embryo. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 72, 061920
CrossRef Pubmed Google scholar
[52]
Howard, M. and ten Wolde, P. R. (2005) Finding the center reliably: robust patterns of developmental gene expression. Phys. Rev. Lett., 95, 208103
CrossRef Pubmed Google scholar
[53]
Cheung, D. and Ma, J. (2015) Probing the impact of temperature on molecular events in a developmental system. Sci. Rep., 5, 13124
CrossRef Pubmed Google scholar
[54]
Kuntz, S. G. and Eisen, M. B. (2014) Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species. PLoS Genet., 10, e1004293
CrossRef Pubmed Google scholar
[55]
Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H. and Ismagilov, R. F. (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature, 434, 1134–1138
CrossRef Pubmed Google scholar
[56]
Lucchetta, E. M., Vincent, M. E. and Ismagilov, R. F. (2008) A precise Bicoid gradient is nonessential during cycles 11–13 for precise patterning in the Drosophila blastoderm. PLoS One, 3, e3651
CrossRef Pubmed Google scholar
[57]
Lucchetta, E. M., Carthew, R. W. and Ismagilov, R. F. (2009) The endo-siRNA pathway is essential for robust development of the Drosophila embryo. PLoS One, 4, e7576
CrossRef Pubmed Google scholar
[58]
Crauk, O. and Dostatni, N. (2005) Bicoid determines sharp and precise target gene expression in the Drosophila embryo. Curr. Biol., 15, 1888–1898
CrossRef Pubmed Google scholar
[59]
Kugler, J.-M. and Lasko, P. (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin), 3, 15–28
CrossRef Pubmed Google scholar
[60]
Aegerter-Wilmsen, T., Aegerter, C. M. and Bisseling, T. (2005) Model for the robust establishment of precise proportions in the early Drosophila embryo. J. Theor. Biol., 234, 13–19
CrossRef Pubmed Google scholar
[61]
Garcia, H. G., Tikhonov, M., Lin, A. and Gregor, T. (2013) Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol., 23, 2140–2145
CrossRef Pubmed Google scholar
[62]
Lucas, T., Ferraro, T., Roelens, B., De Las Heras Chanes, J., Walczak, A. M., Coppey, M. and Dostatni, N. (2013) Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr. Biol., 23, 2135–2139
CrossRef Pubmed Google scholar
[63]
Xu, H., Sepúlveda, L. A., Figard, L., Sokac, A. M. and Golding, I. (2015) Combining protein and mRNA quantification to decipher transcriptional regulation. Nat. Methods, 12, 739–742
CrossRef Pubmed Google scholar
[64]
Little, S. C., Tikhonov, M. and Gregor, T. (2013) Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell, 154, 789–800
CrossRef Pubmed Google scholar
[65]
Garcia, H. G., Tikhonov, M., Lin, A. and Gregor, T. (2013) Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol., 23, 2140– 2145
CrossRef Pubmed Google scholar
[66]
Golding, I., Paulsson, J., Zawilski, S. M. and Cox, E. C. (2005) Real-time kinetics of gene activity in individual bacteria. Cell, 123, 1025–1036
CrossRef Pubmed Google scholar
[67]
Reeves, G. T., Trisnadi, N., Truong, T. V., Nahmad, M., Katz, S. and Stathopoulos, A. (2012) Dorsal-ventral gene expression in the Drosophila embryo reflects the dynamics and precision of the dorsal nuclear gradient. Dev. Cell, 22, 544–557
CrossRef Pubmed Google scholar
[68]
Giepmans, B. N., Adams, S. R., Ellisman, M. H., Tsien, R. Y(2006) The fluorescent toolbox for assessing protein location and function. Science, 312, 217–224
CrossRef Google scholar
[69]
Myasnikova, E., Samsonova, A., Kozlov, K., Samsonova, M. and Reinitz, J. (2001) Registration of the expression patterns of Drosophila segmentation genes by two independent methods. Bioinformatics, 17, 3–12
CrossRef Pubmed Google scholar
[70]
Blythe, S. A. and Wieschaus, E. F. (2016) Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. eLife, 5, 5
CrossRef Pubmed Google scholar
[71]
Fowlkes, C. C., Hendriks, C. L. L., Keränen, S. V., Weber, G. H., Rübel, O., Huang, M.-Y., Chatoor, S., DePace, A. H., Simirenko, L., Henriquez, C., (2008) A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell, 133, 364–374
CrossRef Pubmed Google scholar
[72]
Surkova, S., Kosman, D., Kozlov, K., Manu, E., Myasnikova, A. A., Samsonova, A., Spirov, C. E., Vanario-Alonso, M., Samsonova, J. and Reinitz (2008) Characterization of the Drosophila segment determination morphome. Dev. Biol., 313, 844–862
CrossRef Pubmed Google scholar
[73]
Barrangou, R. (2014) RNA events. Cas9 targeting and the CRISPR revolution. Science, 344, 707–708
CrossRef Pubmed Google scholar
[74]
Bassett, A. R. and Liu, J.-L. (2014) CRISPR/Cas9 and genome editing in Drosophila. J. Genet. Genomics, 41, 7–19
CrossRef Pubmed Google scholar
[75]
Papatsenko, D. and Levine, M. (2011) The Drosophila gap gene network is composed of two parallel toggle switches. PLoS One, 6, e21145
CrossRef Pubmed Google scholar
[76]
Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H. and Long, R. M. (1998) Localization of ASH1 mRNA particles in living yeast. Mol. Cell, 2, 437–445
CrossRef Pubmed Google scholar
[77]
Bothma, J. P., Garcia, H. G., Esposito, E., Schlissel, G., Gregor, T. and Levine, M. (2014) Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. Proc. Natl. Acad. Sci. USA, 111, 10598–10603
CrossRef Pubmed Google scholar
[78]
Keller, P. J. (2013) Imaging morphogenesis: technological advances and biological insights. Science, 340, 1234168
CrossRef Pubmed Google scholar
[79]
Stegmaier, J., Amat, F., Lemon, W. C., McDole, K., Wan, Y., Teodoro, G., Mikut, R. and Keller, P. J. (2016) Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell, 36, 225–240
CrossRef Pubmed Google scholar
[80]
Ji, N., Milkie, D. E. and Betzig, E. (2010) Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods, 7, 141–147
CrossRef Pubmed Google scholar
[81]
Huang, A., Amourda, C., Zhang, S., Tolwinski, N. S., and Saunders, T. E. (2017) Decoding temporal interpretation of the morphogen Bicoid in the early Drosophila embryo. eLife, 6, e26258
[82]
Perry, M. W., Boettiger, A. N., Bothma, J. P. and Levine, M. (2010) Shadow enhancers foster robustness of Drosophila gastrulation. Curr. Biol., 20, 1562–1567
CrossRef Pubmed Google scholar
[83]
El-Sherif, E. and Levine, M. (2016) Shadow enhancers mediate dynamic shifts of gap gene expression in the Drosophila embryo. Curr. Biol., 26, 1164–1169
CrossRef Pubmed Google scholar
[84]
Lagha, M., Bothma, J. P., Esposito, E., Ng, S., Stefanik, L., Tsui, C., Johnston, J., Chen, K., Gilmour, D. S., Zeitlinger, J., (2013) Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell, 153, 976–987
CrossRef Pubmed Google scholar
[85]
Liu, J. and Ma, J. (2011) Fates-shifted is an F-box protein that targets Bicoid for degradation and regulates developmental fate determination in Drosophila embryos. Nat. Cell Biol., 13, 22–29
CrossRef Pubmed Google scholar
[86]
Liu, J., Xiao, Y., Zhang, T. and Ma, J. (2016) Time to move on: modeling transcription dynamics during an embryonic transition away from maternal control. Fly (Austin), 10, 101–107
CrossRef Pubmed Google scholar
[87]
Liu, J. and Ma, J. (2015) Modulation of temporal dynamics of gene transcription by activator potency in the Drosophila embryo. Development, 142, 3781–3790
CrossRef Pubmed Google scholar
[88]
Phillips, R. (2015) Theory in biology: Figure 1 or Figure 7? Trends Cell Biol., 25, 723–729
CrossRef Pubmed Google scholar
[89]
Estrada, J., Wong, F., DePace, A. and Gunawardena, J. (2016) Information integration and energy expenditure in gene regulation. Cell, 166, 234–244
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

The authors are grateful for the two reviewers for helpful suggestions. We apologize to our colleagues whose work could not be cited due to the page limits. This project is supported by the National Natural Science Foundation of China (No.31670852) and 100-talent plan of Peking University. The Drosophila lab used in this project is supported by Peking-Tsinghua Center for Life Sciences.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Zhe Yang, Xiaoxuan Wu, Ning Yang and Feng Liu declare that they have no conflict of interests.ƒThis article is a review article and all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2588 KB)

Accesses

Citations

Detail

Sections
Recommended

/