BMTK: a toolkit for determining modules in biological bipartite networks

Bei Wang, Jinyu Chen, Shihua Zhang

PDF(2319 KB)
PDF(2319 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (2) : 186-192. DOI: 10.1007/s40484-018-0132-y
SOFTWARE ARTICLE
SOFTWARE ARTICLE

BMTK: a toolkit for determining modules in biological bipartite networks

Author information +
History +

Abstract

Background: Module detection is widely used to analyze and visualize biological networks. A number of methods and tools have been developed to achieve it. Meanwhile, bipartite module detection is also very useful for mining and analyzing bipartite biological networks and a few methods have been developed for it. However, there is few user-friendly toolkit for this task.

Methods: To this end, we develop an online web toolkit BMTK, which implements seven existing methods.

Results: BMTK provides a uniform operation platform and visualization function, standardizes input and output format, and improves algorithmic structure to enhance computing speed. We also apply this toolkit onto a drug-target bipartite network to demonstrate its effectiveness.

Conclusions: BMTK will be a powerful tool for detecting bipartite modules in diverse bipartite biological networks.

Availability: The web application is freely accessible at the website of Zhang lab.

Author summary

Networks are becoming important tools for representing biological systems. BMTK is designed to detect bipartite modules for resolving bipartite biological networks. BMTK provides a uniform operation platform and visualization function.

Graphical abstract

Keywords

network biology / module detection / biological bipartite networks

Cite this article

Download citation ▾
Bei Wang, Jinyu Chen, Shihua Zhang. BMTK: a toolkit for determining modules in biological bipartite networks. Quant. Biol., 2018, 6(2): 186‒192 https://doi.org/10.1007/s40484-018-0132-y

References

[1]
Carrella, D., Napolitano, F., Rispoli, R., Miglietta, M., Carissimo, A., Cutillo, L., Sirci, F., Gregoretti, F. and Di Bernardo, D. (2014) Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics, 30, 1787–1788
CrossRef Pubmed Google scholar
[2]
Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Muñiz-Rascado, L., García-Sotelo, J. S., Weiss, V., Solano-Lira, H., Martínez-Flores, I., Medina-Rivera, A., (2013) RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res., 41, D203–D213
CrossRef Pubmed Google scholar
[3]
Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91–100
CrossRef Pubmed Google scholar
[4]
Ryan, C. J., Roguev, A., Patrick, K., Xu, J., Jahari, H., Tong, Z., Beltrao, P., Shales, M., Qu, H., Collins, S. R., (2012) Hierarchical modularity and the evolution of genetic interactomes across species. Mol. Cell, 46, 691–704
CrossRef Pubmed Google scholar
[5]
Morris, J. H., Apeltsin, L., Newman, A. M., Baumbach, J., Wittkop, T., Su, G., Bader, G. D. and Ferrin, T. E. (2011) clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics, 12, 436
CrossRef Pubmed Google scholar
[6]
Dinkel, H., Chica, C., Via, A., Gould, C. M., Jensen, L. J., Gibson, T. J. and Diella, F. (2011) Phospho.ELM: a database of phosphorylation sites – update 2011. Nucleic Acids Res., 39, D261–D267
CrossRef Pubmed Google scholar
[7]
Su, G., Kuchinsky, A., Morris, J. H., States, D. J. and Meng, F. (2010) GLay: community structure analysis of biological networks. Bioinformatics, 26, 3135–3137
CrossRef Pubmed Google scholar
[8]
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef Pubmed Google scholar
[9]
Frost, A., Elgort, M. G., Brandman, O., Ives, C., Collins, S. R., Miller-Vedam, L., Weibezahn, J., Hein, M. Y., Poser, I., Mann, M., (2012) Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell, 149, 1339– 1352
CrossRef Pubmed Google scholar
[10]
Zhang, S., Jin, G., Zhang, X. S. and Chen, L. (2007) Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics, 7, 2856–2869
CrossRef Pubmed Google scholar
[11]
Li, Z., Zhang, S., Wang, R. S., Zhang, X. S. and Chen, L. (2008) Quantitative function for community detection. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 77, 036109
CrossRef Pubmed Google scholar
[12]
Zhang, S., Ning, X. M., Ding, C. and Zhang, X. S. (2010) Determining modular organization of protein interaction networks by maximizing modularity density. BMC Syst. Biol., 4, S10
CrossRef Pubmed Google scholar
[13]
Zhang, S., Tian, D., Tran, N. H., Choi, K. P. and Zhang, L. (2014) Profiling the transcription factor regulatory networks of human cell types. Nucleic Acids Res., 42, 12380–12387
CrossRef Pubmed Google scholar
[14]
Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L., Toufighi, K., Mostafavi, S., (2010) The genetic landscape of a cell. Science, 327, 425–431
CrossRef Pubmed Google scholar
[15]
Vinayagam, A., Stelzl, U., Foulle, R., Plassmann, S., Zenkner, M., Timm, J., Assmus, H. E., Andrade-Navarro, M. A. and Wanker, E. E. (2011) A directed protein interaction network for investigating intracellular signal transduction. Sci. Signal., 4, rs8
CrossRef Pubmed Google scholar
[16]
Adamcsek, B., Palla, G., Farkas, I. J., Derényi, I. and Vicsek, T. (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 22, 1021–1023
CrossRef Pubmed Google scholar
[17]
Rhrissorrakrai, K. and Gunsalus, K. C. (2011) MINE: module identification in networks. BMC Bioinformatics, 12, 4581
CrossRef Pubmed Google scholar
[18]
Kalinka, A. T. and Tomancak, P. (2011) linkcomm: an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics, 27, 2011–2012
CrossRef Pubmed Google scholar
[19]
Aldecoa, R. and Marín, I. (2014) SurpriseMe: an integrated tool for network community structure characterization using Surprise maximization. Bioinformatics, 30, 1041–1042
CrossRef Pubmed Google scholar
[20]
Szalay-Bekő, M., Palotai, R., Szappanos, B., Kovács, I. A. and Papp, B., Csermely, P. (2012) ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics, 28, 2202–2204
CrossRef Pubmed Google scholar
[21]
Barber, M. J. (2007) Modularity and community detection in bipartite networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 76, 066102
CrossRef Pubmed Google scholar
[22]
Lehmann, S., Schwartz, M. and Hansen, L. K. (2008) Biclique communities. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 78, 016108
CrossRef Pubmed Google scholar
[23]
Li, Z. P., Wang, R.-S., Zhang, S. and Zhang, X.-S. (2016) Quantitative function and algorithm for community detection in bipartite networks. Inf. Sci., 367-368, 874–889
CrossRef Google scholar
[24]
Larremore, D. B., Clauset, A. and Jacobs, A. Z. (2014) Efficiently inferring community structure in bipartite networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 90, 012805
CrossRef Pubmed Google scholar
[25]
Newman, M. E. J. (2006) Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 103, 8577–8582
CrossRef Pubmed Google scholar
[26]
Liu, X. and Murata, T. (2009) Community detection in large-scale bipartite networks. Information and Media Technologies, 1, 50–57
[27]
Rivera, C. G., Vakil, R. and Bader, J. S. (2010) NeMo: network module identification in Cytoscape. BMC Bioinformatics, 11, S61
CrossRef Pubmed Google scholar
[28]
Nepusz, T., Yu, H. and Paccanaro, A. (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 9, 471–472
CrossRef Pubmed Google scholar
[29]
Flores, C. O., Poisot, T., Valverde, S. and Weitz, J. S. (2016) BiMat: a MATLAB package to facilitate the analysis of bipartite networks. Methods Ecol. Evol., 7, 127–132
CrossRef Google scholar
[30]
Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. and Kanehisa, M. (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24, i232–i240
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at 10.1007/s40484-018-0132-y.

ACKNOWLEDGEMENTS

This work has been supported by the National Natural Science Foundation of China (Nos. 61621003, 61422309, 61379092 and 11661141019), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB13040600) and CAS Frontier Science Research Key Project for Top Young Scientist (QYZDB-SSW-SYS008).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Bei Wang, Jinyu Chen and Shihua Zhang declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2319 KB)

Accesses

Citations

Detail

Sections
Recommended

/