BMTK: a toolkit for determining modules in biological bipartite networks
Bei Wang, Jinyu Chen, Shihua Zhang
BMTK: a toolkit for determining modules in biological bipartite networks
Background: Module detection is widely used to analyze and visualize biological networks. A number of methods and tools have been developed to achieve it. Meanwhile, bipartite module detection is also very useful for mining and analyzing bipartite biological networks and a few methods have been developed for it. However, there is few user-friendly toolkit for this task.
Methods: To this end, we develop an online web toolkit BMTK, which implements seven existing methods.
Results: BMTK provides a uniform operation platform and visualization function, standardizes input and output format, and improves algorithmic structure to enhance computing speed. We also apply this toolkit onto a drug-target bipartite network to demonstrate its effectiveness.
Conclusions: BMTK will be a powerful tool for detecting bipartite modules in diverse bipartite biological networks.
Availability: The web application is freely accessible at the website of Zhang lab.
Networks are becoming important tools for representing biological systems. BMTK is designed to detect bipartite modules for resolving bipartite biological networks. BMTK provides a uniform operation platform and visualization function.
network biology / module detection / biological bipartite networks
[1] |
Carrella, D., Napolitano, F., Rispoli, R., Miglietta, M., Carissimo, A., Cutillo, L., Sirci, F., Gregoretti, F. and Di Bernardo, D. (2014) Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics, 30, 1787–1788
CrossRef
Pubmed
Google scholar
|
[2] |
Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Muñiz-Rascado, L., García-Sotelo, J. S., Weiss, V., Solano-Lira, H., Martínez-Flores, I., Medina-Rivera, A.,
CrossRef
Pubmed
Google scholar
|
[3] |
Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R.,
CrossRef
Pubmed
Google scholar
|
[4] |
Ryan, C. J., Roguev, A., Patrick, K., Xu, J., Jahari, H., Tong, Z., Beltrao, P., Shales, M., Qu, H., Collins, S. R.,
CrossRef
Pubmed
Google scholar
|
[5] |
Morris, J. H., Apeltsin, L., Newman, A. M., Baumbach, J., Wittkop, T., Su, G., Bader, G. D. and Ferrin, T. E. (2011) clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics, 12, 436
CrossRef
Pubmed
Google scholar
|
[6] |
Dinkel, H., Chica, C., Via, A., Gould, C. M., Jensen, L. J., Gibson, T. J. and Diella, F. (2011) Phospho.ELM: a database of phosphorylation sites – update 2011. Nucleic Acids Res., 39, D261–D267
CrossRef
Pubmed
Google scholar
|
[7] |
Su, G., Kuchinsky, A., Morris, J. H., States, D. J. and Meng, F. (2010) GLay: community structure analysis of biological networks. Bioinformatics, 26, 3135–3137
CrossRef
Pubmed
Google scholar
|
[8] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef
Pubmed
Google scholar
|
[9] |
Frost, A., Elgort, M. G., Brandman, O., Ives, C., Collins, S. R., Miller-Vedam, L., Weibezahn, J., Hein, M. Y., Poser, I., Mann, M.,
CrossRef
Pubmed
Google scholar
|
[10] |
Zhang, S., Jin, G., Zhang, X. S. and Chen, L. (2007) Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics, 7, 2856–2869
CrossRef
Pubmed
Google scholar
|
[11] |
Li, Z., Zhang, S., Wang, R. S., Zhang, X. S. and Chen, L. (2008) Quantitative function for community detection. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 77, 036109
CrossRef
Pubmed
Google scholar
|
[12] |
Zhang, S., Ning, X. M., Ding, C. and Zhang, X. S. (2010) Determining modular organization of protein interaction networks by maximizing modularity density. BMC Syst. Biol., 4, S10
CrossRef
Pubmed
Google scholar
|
[13] |
Zhang, S., Tian, D., Tran, N. H., Choi, K. P. and Zhang, L. (2014) Profiling the transcription factor regulatory networks of human cell types. Nucleic Acids Res., 42, 12380–12387
CrossRef
Pubmed
Google scholar
|
[14] |
Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L., Toufighi, K., Mostafavi, S.,
CrossRef
Pubmed
Google scholar
|
[15] |
Vinayagam, A., Stelzl, U., Foulle, R., Plassmann, S., Zenkner, M., Timm, J., Assmus, H. E., Andrade-Navarro, M. A. and Wanker, E. E. (2011) A directed protein interaction network for investigating intracellular signal transduction. Sci. Signal., 4, rs8
CrossRef
Pubmed
Google scholar
|
[16] |
Adamcsek, B., Palla, G., Farkas, I. J., Derényi, I. and Vicsek, T. (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 22, 1021–1023
CrossRef
Pubmed
Google scholar
|
[17] |
Rhrissorrakrai, K. and Gunsalus, K. C. (2011) MINE: module identification in networks. BMC Bioinformatics, 12, 4581
CrossRef
Pubmed
Google scholar
|
[18] |
Kalinka, A. T. and Tomancak, P. (2011) linkcomm: an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics, 27, 2011–2012
CrossRef
Pubmed
Google scholar
|
[19] |
Aldecoa, R. and Marín, I. (2014) SurpriseMe: an integrated tool for network community structure characterization using Surprise maximization. Bioinformatics, 30, 1041–1042
CrossRef
Pubmed
Google scholar
|
[20] |
Szalay-Bekő, M., Palotai, R., Szappanos, B., Kovács, I. A. and Papp, B., Csermely, P. (2012) ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics, 28, 2202–2204
CrossRef
Pubmed
Google scholar
|
[21] |
Barber, M. J. (2007) Modularity and community detection in bipartite networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 76, 066102
CrossRef
Pubmed
Google scholar
|
[22] |
Lehmann, S., Schwartz, M. and Hansen, L. K. (2008) Biclique communities. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 78, 016108
CrossRef
Pubmed
Google scholar
|
[23] |
Li, Z. P., Wang, R.-S., Zhang, S. and Zhang, X.-S. (2016) Quantitative function and algorithm for community detection in bipartite networks. Inf. Sci., 367-368, 874–889
CrossRef
Google scholar
|
[24] |
Larremore, D. B., Clauset, A. and Jacobs, A. Z. (2014) Efficiently inferring community structure in bipartite networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 90, 012805
CrossRef
Pubmed
Google scholar
|
[25] |
Newman, M. E. J. (2006) Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 103, 8577–8582
CrossRef
Pubmed
Google scholar
|
[26] |
Liu, X. and Murata, T. (2009) Community detection in large-scale bipartite networks. Information and Media Technologies, 1, 50–57
|
[27] |
Rivera, C. G., Vakil, R. and Bader, J. S. (2010) NeMo: network module identification in Cytoscape. BMC Bioinformatics, 11, S61
CrossRef
Pubmed
Google scholar
|
[28] |
Nepusz, T., Yu, H. and Paccanaro, A. (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 9, 471–472
CrossRef
Pubmed
Google scholar
|
[29] |
Flores, C. O., Poisot, T., Valverde, S. and Weitz, J. S. (2016) BiMat: a MATLAB package to facilitate the analysis of bipartite networks. Methods Ecol. Evol., 7, 127–132
CrossRef
Google scholar
|
[30] |
Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. and Kanehisa, M. (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24, i232–i240
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |