BMTK: a toolkit for determining modules in biological bipartite networks

Bei Wang , Jinyu Chen , Shihua Zhang

Quant. Biol. ›› 2018, Vol. 6 ›› Issue (2) : 186 -192.

PDF (2319KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (2) : 186 -192. DOI: 10.1007/s40484-018-0132-y
SOFTWARE ARTICLE
SOFTWARE ARTICLE

BMTK: a toolkit for determining modules in biological bipartite networks

Author information +
History +
PDF (2319KB)

Abstract

Background: Module detection is widely used to analyze and visualize biological networks. A number of methods and tools have been developed to achieve it. Meanwhile, bipartite module detection is also very useful for mining and analyzing bipartite biological networks and a few methods have been developed for it. However, there is few user-friendly toolkit for this task.

Methods: To this end, we develop an online web toolkit BMTK, which implements seven existing methods.

Results: BMTK provides a uniform operation platform and visualization function, standardizes input and output format, and improves algorithmic structure to enhance computing speed. We also apply this toolkit onto a drug-target bipartite network to demonstrate its effectiveness.

Conclusions: BMTK will be a powerful tool for detecting bipartite modules in diverse bipartite biological networks.

Availability: The web application is freely accessible at the website of Zhang lab.

Graphical abstract

Keywords

network biology / module detection / biological bipartite networks

Cite this article

Download citation ▾
Bei Wang, Jinyu Chen, Shihua Zhang. BMTK: a toolkit for determining modules in biological bipartite networks. Quant. Biol., 2018, 6(2): 186-192 DOI:10.1007/s40484-018-0132-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carrella, D., Napolitano, F., Rispoli, R., Miglietta, M., Carissimo, A., Cutillo, L., Sirci, F., Gregoretti, F. and Di Bernardo, D. (2014) Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics, 30, 1787–1788

[2]

Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Muñiz-Rascado, L., García-Sotelo, J. S., Weiss, V., Solano-Lira, H., Martínez-Flores, I., Medina-Rivera, A., (2013) RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res., 41, D203–D213

[3]

Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91–100

[4]

Ryan, C. J., Roguev, A., Patrick, K., Xu, J., Jahari, H., Tong, Z., Beltrao, P., Shales, M., Qu, H., Collins, S. R., (2012) Hierarchical modularity and the evolution of genetic interactomes across species. Mol. Cell, 46, 691–704

[5]

Morris, J. H., Apeltsin, L., Newman, A. M., Baumbach, J., Wittkop, T., Su, G., Bader, G. D. and Ferrin, T. E. (2011) clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics, 12, 436

[6]

Dinkel, H., Chica, C., Via, A., Gould, C. M., Jensen, L. J., Gibson, T. J. and Diella, F. (2011) Phospho.ELM: a database of phosphorylation sites – update 2011. Nucleic Acids Res., 39, D261–D267

[7]

Su, G., Kuchinsky, A., Morris, J. H., States, D. J. and Meng, F. (2010) GLay: community structure analysis of biological networks. Bioinformatics, 26, 3135–3137

[8]

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504

[9]

Frost, A., Elgort, M. G., Brandman, O., Ives, C., Collins, S. R., Miller-Vedam, L., Weibezahn, J., Hein, M. Y., Poser, I., Mann, M., (2012) Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell, 149, 1339– 1352

[10]

Zhang, S., Jin, G., Zhang, X. S. and Chen, L. (2007) Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics, 7, 2856–2869

[11]

Li, Z., Zhang, S., Wang, R. S., Zhang, X. S. and Chen, L. (2008) Quantitative function for community detection. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 77, 036109

[12]

Zhang, S., Ning, X. M., Ding, C. and Zhang, X. S. (2010) Determining modular organization of protein interaction networks by maximizing modularity density. BMC Syst. Biol., 4, S10

[13]

Zhang, S., Tian, D., Tran, N. H., Choi, K. P. and Zhang, L. (2014) Profiling the transcription factor regulatory networks of human cell types. Nucleic Acids Res., 42, 12380–12387

[14]

Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L., Toufighi, K., Mostafavi, S., (2010) The genetic landscape of a cell. Science, 327, 425–431

[15]

Vinayagam, A., Stelzl, U., Foulle, R., Plassmann, S., Zenkner, M., Timm, J., Assmus, H. E., Andrade-Navarro, M. A. and Wanker, E. E. (2011) A directed protein interaction network for investigating intracellular signal transduction. Sci. Signal., 4, rs8

[16]

Adamcsek, B., Palla, G., Farkas, I. J., Derényi, I. and Vicsek, T. (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 22, 1021–1023

[17]

Rhrissorrakrai, K. and Gunsalus, K. C. (2011) MINE: module identification in networks. BMC Bioinformatics, 12, 4581

[18]

Kalinka, A. T. and Tomancak, P. (2011) linkcomm: an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics, 27, 2011–2012

[19]

Aldecoa, R. and Marín, I. (2014) SurpriseMe: an integrated tool for network community structure characterization using Surprise maximization. Bioinformatics, 30, 1041–1042

[20]

Szalay-Bekő M., Palotai, R., Szappanos, B., Kovács, I. A. and Papp, B., Csermely, P. (2012) ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics, 28, 2202–2204

[21]

Barber, M. J. (2007) Modularity and community detection in bipartite networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 76, 066102

[22]

Lehmann, S., Schwartz, M. and Hansen, L. K. (2008) Biclique communities. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 78, 016108

[23]

Li, Z. P., Wang, R.-S., Zhang, S. and Zhang, X.-S. (2016) Quantitative function and algorithm for community detection in bipartite networks. Inf. Sci., 367-368, 874–889

[24]

Larremore, D. B., Clauset, A. and Jacobs, A. Z. (2014) Efficiently inferring community structure in bipartite networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 90, 012805

[25]

Newman, M. E. J. (2006) Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 103, 8577–8582

[26]

Liu, X. and Murata, T. (2009) Community detection in large-scale bipartite networks. Information and Media Technologies, 1, 50–57

[27]

Rivera, C. G., Vakil, R. and Bader, J. S. (2010) NeMo: network module identification in Cytoscape. BMC Bioinformatics, 11, S61

[28]

Nepusz, T., Yu, H. and Paccanaro, A. (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 9, 471–472

[29]

Flores, C. O., Poisot, T., Valverde, S. and Weitz, J. S. (2016) BiMat: a MATLAB package to facilitate the analysis of bipartite networks. Methods Ecol. Evol., 7, 127–132

[30]

Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. and Kanehisa, M. (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24, i232–i240

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2319KB)

Supplementary files

QB-18132-OF-ZSH_suppl_1

1919

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/