MRHCA: a nonparametric statistics based method for hub and co-expression module identification in large gene co-expression network

Yu Zhang , Sha Cao , Jing Zhao , Burair Alsaihati , Qin Ma , Chi Zhang

Quant. Biol. ›› 2018, Vol. 6 ›› Issue (1) : 40 -55.

PDF (2329KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (1) : 40 -55. DOI: 10.1007/s40484-018-0131-z
RESEARCH ARTICLE
RESEARCH ARTICLE

MRHCA: a nonparametric statistics based method for hub and co-expression module identification in large gene co-expression network

Author information +
History +
PDF (2329KB)

Abstract

Background: Gene co-expression and differential co-expression analysis has been increasingly used to study co-functional and co-regulatory biological mechanisms from large scale transcriptomics data sets.

Methods: In this study, we develop a nonparametric approach to identify hub genes and modules in a large co-expression network with low computational and memory cost, namely MRHCA.

Results: We have applied the method to simulated transcriptomics data sets and demonstrated MRHCA can accurately identify hub genes and estimate size of co-expression modules. With applying MRHCA and differential co-expression analysis to E. coli and TCGA cancer data, we have identified significant condition specific activated genes in E. coli and distinct gene expression regulatory mechanisms between the cancer types with high copy number variation and small somatic mutations.

Conclusion: Our analysis has demonstrated MRHCA can (i) deal with large association networks, (ii) rigorously assess statistical significance for hubs and module sizes, (iii) identify co-expression modules with low associations, (iv) detect small and significant modules, and (v) allow genes to be present in more than one modules, compared with existing methods.

Graphical abstract

Keywords

gene co-expression network / algorithm for large scale networks analysis / statistical significance of gene co-expression / Mutual Rank

Cite this article

Download citation ▾
Yu Zhang, Sha Cao, Jing Zhao, Burair Alsaihati, Qin Ma, Chi Zhang. MRHCA: a nonparametric statistics based method for hub and co-expression module identification in large gene co-expression network. Quant. Biol., 2018, 6(1): 40-55 DOI:10.1007/s40484-018-0131-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Serin, E. A., Nijveen, H., Hilhorst, H. W. and Ligterink, W. (2016) Learning from co-expression networks: possibilities and challenges. Front. Plant Sci., 7, 444

[2]

Michalak, P. (2008) Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics, 91, 243–248

[3]

Obayashi, T. and Kinoshita, K. (2009) Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res., 16, 249–260

[4]

van Dam, S., Võsa, U., van der Graaf, A., Franke, L. and de Magalhães, J. P. (2017) Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform., bbw139

[5]

Chen, J., Ma, M., Shen, N., Xi, J. J. and Tian, W. (2013) Integration of cancer gene co-expression network and metabolic network to uncover potential cancer drug targets. J. Proteome Res., 12, 2354–2364

[6]

Zhang, C., Liu, C., Cao, S. and Xu, Y. (2015) Elucidation of drivers of high-level production of lactates throughout a cancer development. J. Mol. Cell Biol., 7, 267–279

[7]

Langfelder, P. and Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559

[8]

Perkins, A. D. and Langston, M. A. (2009) Threshold selection in gene co-expression networks using spectral graph theory techniques. BMC Bioinformatics, 10, S4

[9]

Ruan, J., Dean, A. K. and Zhang, W. (2010) A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst. Biol., 4, 8

[10]

Li, B., Zhang, Y., Yu, Y., Wang, P., Wang, Y., Wang, Z. and Wang, Y. (2015) Quantitative assessment of gene expression network module-validation methods. Sci. Rep., 5, 15258

[11]

Zhang, C. S.T., Cao, S., Xu, Y. (2016) Autophagy in Cancer Cells vs. Cancer Tissues: Two Different Stories. In Targeting Autophagy in Cancer Therapy. Yang, J.-M. Ed. Swedish: Springer

[12]

Song, W. M. and Zhang, B. (2015) Multiscale embedded gene co-expression network analysis. PLoS Comput. Biol., 11, e1004574

[13]

Qin, X., Dai, W., Jiao, P., Wang, W. and Yuan, N. (2016) A multi-similarity spectral clustering method for community detection in dynamic networks. Sci. Rep., 6, 31454

[14]

Okamura, Y., Aoki, Y., Obayashi, T., Tadaka, S., Ito, S., Narise, T. and Kinoshita, K. (2015) COXPRESdb in 2015: coexpression database for animal species by DNA-microarray and RNAseq-based expression data with multiple quality assessment systems. Nucleic Acids Res., 43, D82–D86

[15]

Song, L., Langfelder, P. and Horvath, S. (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics, 13, 328

[16]

Kumari, S., Nie, J., Chen, H. S., Ma, H., Stewart, R., Li, X., Lu, M. Z., Taylor, W. M. and Wei, H. (2012) Evaluation of gene association methods for coexpression network construction and biological knowledge discovery. PLoS One, 7, e50411

[17]

Ding, Z., Zhang, X., Sun, D. and Luo, B. (2016) Overlapping community detection based on network decomposition. Sci. Rep., 6, 24115

[18]

Jaenisch, R. and Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet., 33, 245–254

[19]

Day, D. A. and Tuite, M. F. (1998) Post-transcriptional gene regulatory mechanisms in eukaryotes: an overview. J. Endocrinol., 157, 361–371

[20]

Ma, Q., Yin, Y., Schell, M. A., Zhang, H., Li, G. and Xu, Y. (2013) Computational analyses of transcriptomic data reveal the dynamic organization of the Escherichia coli chromosome under different conditions. Nucleic Acids Res., 41, 5594–5603

[21]

Faith, J. J., Driscoll, M. E., Fusaro, V. A., Cosgrove, E. J., Hayete, B., Juhn, F. S., Schneider, S. J. and Gardner, T. S. (2008) Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res., 36, D866–D870

[22]

Gleason, J. E., Corrigan, D. J., Cox, J. E., Reddi, A. R., McGinnis, L. A. and Culotta, V. C. (2011) Analysis of hypoxia and hypoxia-like states through metabolite profiling. PLoS One, 6, e24741

[23]

Sengupta, S., Park, S. H., Patel, A., Carn, J., Lee, K. and Kaplan, D. L. (2010) Hypoxia and amino acid supplementation synergistically promote the osteogenesis of human mesenchymal stem cells on silk protein scaffolds. Tissue Eng. Part A, 16, 3623–3634

[24]

Darwin, A. J. and Stewart, V. (1995) Expression of the narX, narL, narP, and narQ genes of Escherichia coli K-12: regulation of the regulators. J. Bacteriol., 177, 3865–3869

[25]

Filenko, N., Spiro, S., Browning, D. F., Squire, D., Overton, T. W., Cole, J. and Constantinidou, C. (2007) The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J. Bacteriol., 189, 4410–4417

[26]

Hasan, C. M. and Shimizu, K. (2008) Effect of temperature up-shift on fermentation and metabolic characteristics in view of gene expressions in Escherichia coli. Microb. Cell Fact., 7, 35

[27]

Vemuri, G. N., Altman, E., Sangurdekar, D. P., Khodursky, A. B. and Eiteman, M. A. (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl. Environ. Microbiol., 72, 3653–3661

[28]

Palatnik, J. F., Valle, E. M. and Carrillo, N. (1997) Oxidative stress causes ferredoxin-NADP+ reductase solubilization from the thylakoid membranes in methyl viologen-treated plants. Plant Physiol., 115, 1721–1727

[29]

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545–15550

[30]

Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, A. D., Saksena, G., Tabak, B., Lawrence, M. S., Zhang, C. Z., Wala, J., Mermel, C. H., (2013) Pan-cancer patterns of somatic copy number alteration. Nat. Genet., 45, 1134–1140

[31]

Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., Wyczalkowski, M. A., (2013) Mutational landscape and significance across 12 major cancer types. Nature, 502, 333–339

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2329KB)

Supplementary files

QB-18131-OF-ZC_suppl_1

QB-18131-OF-ZC_suppl_2

2630

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/