Deciphering the protein-DNA code of bacterial winged helix-turn-helix transcription factors

Adam P. Joyce, James J. Havranek

PDF(4347 KB)
PDF(4347 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (1) : 68-84. DOI: 10.1007/s40484-018-0130-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Deciphering the protein-DNA code of bacterial winged helix-turn-helix transcription factors

Author information +
History +

Abstract

Background: Sequence-specific binding by transcription factors (TFs) plays a significant role in the selection and regulation of target genes. At the protein:DNA interface, amino acid side-chains construct a diverse physicochemical network of specific and non-specific interactions, and seemingly subtle changes in amino acid identity at certain positions may dramatically impact TF:DNA binding. Variation of these specificity-determining residues (SDRs) is a major mechanism of functional divergence between TFs with strong structural or sequence homology.

Methods: In this study, we employed a combination of high-throughput specificity profiling by SELEX and Spec-seq, structural modeling, and evolutionary analysis to probe the binding preferences of winged helix-turn-helix TFs belonging to the OmpR sub-family in Escherichia coli.

Results: We found that E. coli OmpR paralogs recognize tandem, variably spaced repeats composed of “GT-A” or “GCT”-containing half-sites. Some divergent sequence preferences observed within the “GT-A” mode correlate with amino acid similarity; conversely, “GCT”-based motifs were observed for a subset of paralogs with low sequence homology. Direct specificity profiling of a subset of OmpR homologues (CpxR, RstA, and OmpR) as well as predicted “SDR-swap” variants revealed that individual SDRs may impact sequence preferences locally through direct contact with DNA bases or distally via the DNA backbone.

Conclusions: Overall, our work provides evidence for a common structural “code” for sequence-specific wHTH-DNA interactions, and demonstrates that surprisingly modest residue changes can enable recognition of highly divergent sequence motifs. Further examination of SDR predictions will likely reveal additional mechanisms controlling the evolutionary divergence of this important class of transcriptional regulators.

Graphical abstract

Keywords

transcription factor / SELEX / winged helix-turn-helix / specificity determinants / two-component signaling

Cite this article

Download citation ▾
Adam P. Joyce, James J. Havranek. Deciphering the protein-DNA code of bacterial winged helix-turn-helix transcription factors. Quant. Biol., 2018, 6(1): 68‒84 https://doi.org/10.1007/s40484-018-0130-0

References

[1]
Stock, A. M., Robinson, V. L. and Goudreau, P. N. (2000) Two-component signal transduction. Annu. Rev. Biochem., 69, 183–215
CrossRef Pubmed Google scholar
[2]
Laub, M. T. and Goulian, M. (2007) Specificity in two-component signal transduction pathways. Annu. Rev. Genet., 41, 121–145
CrossRef Pubmed Google scholar
[3]
Gao, R., Tao, Y. and Stock, A. M. (2008) System-level mapping of Escherichia coli response regulator dimerization with FRET hybrids. Mol. Microbiol., 69, 1358–1372
CrossRef Pubmed Google scholar
[4]
Skerker, J. M., Perchuk, B. S., Siryaporn, A., Lubin, E. A., Ashenberg, O., Goulian, M. and Laub, M. T. (2008) Rewiring the specificity of two-component signal transduction systems. Cell, 133, 1043–1054
CrossRef Pubmed Google scholar
[5]
Galperin, M. Y. (2010) Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol., 13, 150–159
CrossRef Pubmed Google scholar
[6]
Pérez-Rueda, E., Collado-Vides, J. and Segovia, L. (2004) Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Comput. Biol. Chem., 28, 341–350
CrossRef Pubmed Google scholar
[7]
Martínez-Hackert, E. and Stock, A. M. (1997) Structural relationships in the OmpR family of winged-helix transcription factors. J. Mol. Biol., 269, 301–312
CrossRef Pubmed Google scholar
[8]
Kenney, L. J. (2002) Structure/function relationships in OmpR and other winged-helix transcription factors. Curr. Opin. Microbiol., 5, 135–141
CrossRef Pubmed Google scholar
[9]
Toro-Roman, A., Wu, T. and Stock, A. M. (2005) A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci., 14, 3077–3088
CrossRef Pubmed Google scholar
[10]
Blanco, A. G., Sola, M., Gomis-Rüth, F. X. and Coll, M. (2002) Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. Structure, 10, 701–713
CrossRef Pubmed Google scholar
[11]
Mattison, K., Oropeza, R., Byers, N. and Kenney, L. J. (2002) A phosphorylation site mutant of OmpR reveals different binding conformations at ompF and ompC. J. Mol. Biol., 315, 497–511
CrossRef Pubmed Google scholar
[12]
Flores-Valdez, M. A., Fernández-Mora, M., Ares, M. Á., Girón, J. A., Calva, E. and De la Cruz, M. Á. (2014) OmpR phosphorylation regulates ompS1 expression by differentially controlling the use of promoters. Microbiology, 160, 733–741
CrossRef Pubmed Google scholar
[13]
Head, C. G., Tardy, A. and Kenney, L. J. (1998) Relative binding affinities of OmpR and OmpR-phosphate at the ompF and ompC regulatory sites. J. Mol. Biol., 281, 857–870
CrossRef Pubmed Google scholar
[14]
Narayanan, A., Paul, L. N., Tomar, S., Patil, D. N., Kumar, P. and Yernool, D. A. (2012) Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites. PLoS One, 7, e30102
CrossRef Pubmed Google scholar
[15]
Walthers, D., Tran, V. K. and Kenney, L. J. (2003) Interdomain linkers of homologous response regulators determine their mechanism of action. J. Bacteriol., 185, 317–324
CrossRef Pubmed Google scholar
[16]
Kim, S., Broströmer, E., Xing, D., Jin, J., Chong, S., Ge, H., Wang, S., Gu, C., Yang, L., Gao, Y. Q., (2013) Probing allostery through DNA. Science, 339, 816–819
CrossRef Pubmed Google scholar
[17]
Clarke, M. B. and Sperandio, V. (2005) Transcriptional regulation of flhDC by QseBC and σ  28 (FliA) in enterohaemorrhagic Escherichia coli. Mol. Microbiol., 57, 1734–1749
CrossRef Pubmed Google scholar
[18]
Ishihama, A., Shimada, T. and Yamazaki, Y. (2016) Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res., 44, 2058–2074
CrossRef Pubmed Google scholar
[19]
Ogasawara, H., Hasegawa, A., Kanda, E., Miki, T., Yamamoto, K. and Ishihama, A. (2007) Genomic SELEX search for target promoters under the control of the PhoQP-RstBA signal relay cascade. J. Bacteriol., 189, 4791–4799
CrossRef Pubmed Google scholar
[20]
Shimada, T., Takada, H., Yamamoto, K. and Ishihama, A. (2015) Expanded roles of two-component response regulator OmpR in Escherichia coli: genomic SELEX search for novel regulation targets. Genes Cells, 20, 915–931
CrossRef Pubmed Google scholar
[21]
Ogasawara, H., Shinohara, S., Yamamoto, K. and Ishihama, A. (2012) Novel regulation targets of the metal-response BasS-BasR two-component system of Escherichia coli. Microbiology, 158, 1482–1492
CrossRef Pubmed Google scholar
[22]
Park, D. M., Akhtar, M. S., Ansari, A. Z., Landick, R. and Kiley, P. J. (2013) The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet., 9, e1003839
CrossRef Pubmed Google scholar
[23]
Yang, C., Huang, T. W., Wen, S. Y., Chang, C. Y., Tsai, S. F., Wu, W. F. and Chang, C. H. (2012) Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in Escherichia coli. PLoS One, 7, e47314
CrossRef Pubmed Google scholar
[24]
Nishino, K., Honda, T. and Yamaguchi, A. (2005) Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J. Bacteriol., 187, 1763–1772
CrossRef Pubmed Google scholar
[25]
De Wulf, P., McGuire, A. M., Liu, X. and Lin, E. C. (2002) Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J. Biol. Chem., 277, 26652–26661
CrossRef Pubmed Google scholar
[26]
Harlocker, S. L., Bergstrom, L. and Inouye, M. (1995) Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. J. Biol. Chem., 270, 26849–26856
CrossRef Pubmed Google scholar
[27]
Batchelor, E., Walthers, D., Kenney, L. J. and Goulian, M. (2005) The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC. J. Bacteriol., 187, 5723–5731
CrossRef Pubmed Google scholar
[28]
Ogasawara, H., Yamada, K., Kori, A., Yamamoto, K. and Ishihama, A. (2010) Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology, 156, 2470–2483
CrossRef Pubmed Google scholar
[29]
Feldheim, Y. S., Zusman, T., Speiser, Y. and Segal, G. (2016) The Legionella pneumophila CpxRA two-component regulatory system: new insights into CpxR’s function as a dual regulator and its connection to the effectors regulatory network. Mol. Microbiol., 99, 1059–1079
CrossRef Pubmed Google scholar
[30]
Wang, X., Gao, H., Shen, Y., Weinstock, G. M., Zhou, J. and Palzkill, T. (2008) A high-throughput percentage-of-binding strategy to measure binding energies in DNA-protein interactions: application to genome-scale site discovery. Nucleic Acids Res., 36, 4863–4871
CrossRef Pubmed Google scholar
[31]
Park, D. M. and Kiley, P. J. (2014) The influence of repressor DNA binding site architecture on transcriptional control. MBio, 5, e01684–14
CrossRef Pubmed Google scholar
[32]
Nowak-Lovato, K. L., Hickmott, A. J., Maity, T. S., Bulyk, M. L., Dunbar, J. and Hong-Geller, E. (2012) DNA binding site analysis of Burkholderia thailandensis response regulators. J. Microbiol. Methods, 90, 46–52
CrossRef Pubmed Google scholar
[33]
He, X., Wang, L. and Wang, S. (2016) Structural basis of DNA sequence recognition by the response regulator PhoP in Mycobacterium tuberculosis. Sci. Rep., 6, 24442
CrossRef Pubmed Google scholar
[34]
Li, Y.-C., Chang, C. K., Chang, C.-F., Cheng, Y.-H., Fang, P.-J., Yu, T., Chen, S.-C., Li, Y.-C., Hsiao, C.-D. and Huang, T. H. (2014) Structural dynamics of the two-component response regulator RstA in recognition of promoter DNA element. Nucleic Acids Res., 42, 8777–8788
CrossRef Pubmed Google scholar
[35]
Lou, Y. C., Weng, T. H., Li, Y. C., Kao, Y. F., Lin, W. F., Peng, H. L., Chou, S. H., Hsiao, C. D. and Chen, C. (2015) Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA. Nat. Commun., 6, 8838
CrossRef Pubmed Google scholar
[36]
Narayanan, A., Kumar, S., Evrard, A. N., Paul, L. N. and Yernool, D. A. (2014) An asymmetric heterodomain interface stabilizes a response regulator-DNA complex. Nat. Commun., 5, 3282
CrossRef Pubmed Google scholar
[37]
Rhee, J. E., Sheng, W., Morgan, L. K., Nolet, R., Liao, X. and Kenney, L. J. (2008) Amino acids important for DNA recognition by the response regulator OmpR. J. Biol. Chem., 283, 8664–8677
CrossRef Pubmed Google scholar
[38]
Dhiman, A., Rahi, A., Gopalani, M., Bajpai, S., Bhatnagar, S. and Bhatnagar, R. (2017) Role of the recognition helix of response regulator WalR from Bacillus anthracis in DNA binding and specificity. Int. J. Biol. Macromol., 96, 257–264
CrossRef Pubmed Google scholar
[39]
Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter, S. C., Punta, M., Qureshi, M., Sangrador-Vegas, A., (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res., 44, D279–D285
CrossRef Pubmed Google scholar
[40]
Itou, H. and Tanaka, I. (2001) The OmpR-family of proteins: insight into the tertiary structure and functions of two-component regulator proteins. J. Biochem., 129, 343–350
CrossRef Pubmed Google scholar
[41]
Blanco, A. G., Canals, A., Bernués, J., Solà, M. and Coll, M. (2011) The structure of a transcription activation subcomplex reveals how s70 is recruited to PhoB promoters. EMBO J., 30, 3776–3785
CrossRef Pubmed Google scholar
[42]
Sandelin, A. and Wasserman, W. W. (2004) Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinformatics. J. Mol. Biol., 338, 207–215
CrossRef Pubmed Google scholar
[43]
Sloutsky, R. and Naegle, K. M. (2016) High-resolution identification of specificity determining positions in the LacI protein family using ensembles of sub-sampled alignments. PLoS One, 11, e0162579
CrossRef Pubmed Google scholar
[44]
Liu, X., Brutlag, D. L. and Liu, J. S. (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. In Biocomputing 2001. pp. 127–138. Singapore: World Scientific Publishing Company
Pubmed
[45]
Stormo, G. D. (2013) Modeling the specificity of protein-DNA interactions. Quant. Biol., 1, 115–130
CrossRef Pubmed Google scholar
[46]
Schneider, T. D. and Stephens, R. M. (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res., 18, 6097–6100
CrossRef Pubmed Google scholar
[47]
Urano, H., Umezawa, Y., Yamamoto, K., Ishihama, A. and Ogasawara, H. (2015) Cooperative regulation of the common target genes between H2O2-sensing YedVW and Cu2+-sensing CusSR in Escherichia coli. Microbiology, 161, 729–738
CrossRef Pubmed Google scholar
[48]
Harari, O., Park, S. Y., Huang, H., Groisman, E. A. and Zwir, I. (2010) Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria. PLoS Comput. Biol., 6, e1000862
CrossRef Pubmed Google scholar
[49]
Cariss, S. J., Tayler, A. E. and Avison, M. B. (2008) Defining the growth conditions and promoter-proximal DNA sequences required for activation of gene expression by CreBC in Escherichia coli. J. Bacteriol., 190, 3930–3939
CrossRef Pubmed Google scholar
[50]
Yamamoto, K. and Ishihama, A. (2006) Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci. Biotechnol. Biochem., 70, 1688–1695
CrossRef Pubmed Google scholar
[51]
Stormo, G. D., Zuo, Z. and Chang, Y. K. (2015) Spec-seq: determining protein-DNA-binding specificity by sequencing. Brief. Funct. Genomics, 14, 30–38
CrossRef Pubmed Google scholar
[52]
Zuo, Z., Chang, Y. and Stormo, G. D. (2015) A quantitative understanding of lac repressor’s binding specificity and flexibility. Quant. Biol., 3, 69–80
CrossRef Pubmed Google scholar
[53]
Zuo, Z. and Stormo, G. D. (2014) High-resolution specificity from DNA sequencing highlights alternative modes of Lac repressor binding. Genetics, 198, 1329–1343
CrossRef Pubmed Google scholar
[54]
Foat, B. C., Morozov, A. V. and Bussemaker, H. J. (2006) Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics, 22, e141–e149
CrossRef Pubmed Google scholar
[55]
Zhao, Y. and Stormo, G. D. (2011) Quantitative analysis demonstrates most transcription factors require only simple models of specificity. Nat. Biotechnol., 29, 480–483
CrossRef Pubmed Google scholar
[56]
Simonetti, F. L., Teppa, E., Chernomoretz, A., Nielsen, M. and Marino Buslje, C. (2013) MISTIC: Mutual information server to infer coevolution. Nucleic Acids Res., 41, W8–W14
CrossRef Pubmed Google scholar
[57]
Marino Buslje, C., Teppa, E., Di Doménico, T., Delfino, J. M. and Nielsen, M. (2010) Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification. PLoS Comput. Biol., 6, e1000978
CrossRef Pubmed Google scholar
[58]
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef Pubmed Google scholar
[59]
Capra, E. J., Perchuk, B. S., Lubin, E. A., Ashenberg, O., Skerker, J. M. and Laub, M. T. (2010) Systematic dissection and trajectory-scanning mutagenesis of the molecular interface that ensures specificity of two-component signaling pathways. PLoS Genet., 6, e1001220
CrossRef Pubmed Google scholar
[60]
Mizuno, T. (1987) Static bend of DNA helix at the activator recognition site of the ompF promoter in Escherichia coli. Gene, 54, 57–64
CrossRef Pubmed Google scholar
[61]
Nakagawa, S., Gisselbrecht, S. S., Rogers, J. M., Hartl, D. L. and Bulyk, M. L. (2013) DNA-binding specificity changes in the evolution of forkhead transcription factors. Proc. Natl. Acad. Sci. USA, 110, 12349–12354
CrossRef Pubmed Google scholar
[62]
He, X. and Wang, S. (2014) DNA consensus sequence motif for binding response regulator PhoP, a virulence regulator of Mycobacterium tuberculosis. Biochemistry, 53, 8008–8020
CrossRef Pubmed Google scholar
[63]
Korostelev, Y. D., Zharov, I. A., Mironov, A. A., Rakhmaininova, A. B. and Gelfand, M. S. (2016) Identification of position-specific correlations between DNA-binding domains and their binding sites. Application to the MerR family of transcription factors. PLoS One, 11, e0162681
CrossRef Pubmed Google scholar
[64]
Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif., 41, 207–234
CrossRef Pubmed Google scholar
[65]
Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A. 3rd and Smith, H. O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods, 6, 343–345
CrossRef Pubmed Google scholar
[66]
Sheridan, R. C., McCullough, J. F., Wakefield, Z. T., Allcock, H. R. and Walsh, E. J. (2007) Phosphoramidic Acid and its Salts Inorganic Syntheses. Hoboken: John Wiley & Sons, Inc.
[67]
Sambrook, J., Russell, D.W. (2006) Isolation of DNA fragments from polyacrylamide gels by the crush and soak method. CSH Protoc, 198–202
[68]
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410
CrossRef Pubmed Google scholar
[69]
Wallace, I. M., O’Sullivan, O., Higgins, D. G. and Notredame, C. (2006) M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res., 34, 1692–1699
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at DOI 10.1007/s40484-018-0130-0.

ACKNOWLEDGEMENTS

We are grateful for the thoughtful input of former members of the laboratory Benjamin Borgo and Chi Zhang in the initial phases of this work, and for continuing helpful discussions and whose technical expertise greatly added to this work. We thank Dr. Cailin Joyce and Dr. GiNell Elliott for their critical commentary during the preparation of this manuscript. We especially thank Jessica Hoisington-Lopez for her input and heroic patience in our SELEX library design and the development of sequencing approaches. This project was completed with support of NSF Graduate Research Fellowship Award DGE-1143954 (to A.P.J.) and National Institutes of Health Award Number R01GM101602 (to J.J.H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors report no potential conflicts of interest.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Adam P. Joyce and James J. Havranek declare that they have no conflict of interests.ƒThis article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4347 KB)

Accesses

Citations

Detail

Sections
Recommended

/