PDF
(4347KB)
Abstract
Background: Sequence-specific binding by transcription factors (TFs) plays a significant role in the selection and regulation of target genes. At the protein:DNA interface, amino acid side-chains construct a diverse physicochemical network of specific and non-specific interactions, and seemingly subtle changes in amino acid identity at certain positions may dramatically impact TF:DNA binding. Variation of these specificity-determining residues (SDRs) is a major mechanism of functional divergence between TFs with strong structural or sequence homology.
Methods: In this study, we employed a combination of high-throughput specificity profiling by SELEX and Spec-seq, structural modeling, and evolutionary analysis to probe the binding preferences of winged helix-turn-helix TFs belonging to the OmpR sub-family in Escherichia coli.
Results: We found that E. coli OmpR paralogs recognize tandem, variably spaced repeats composed of “GT-A” or “GCT”-containing half-sites. Some divergent sequence preferences observed within the “GT-A” mode correlate with amino acid similarity; conversely, “GCT”-based motifs were observed for a subset of paralogs with low sequence homology. Direct specificity profiling of a subset of OmpR homologues (CpxR, RstA, and OmpR) as well as predicted “SDR-swap” variants revealed that individual SDRs may impact sequence preferences locally through direct contact with DNA bases or distally via the DNA backbone.
Conclusions: Overall, our work provides evidence for a common structural “code” for sequence-specific wHTH-DNA interactions, and demonstrates that surprisingly modest residue changes can enable recognition of highly divergent sequence motifs. Further examination of SDR predictions will likely reveal additional mechanisms controlling the evolutionary divergence of this important class of transcriptional regulators.
Graphical abstract
Keywords
transcription factor
/
SELEX
/
winged helix-turn-helix
/
specificity determinants
/
two-component signaling
Cite this article
Download citation ▾
Adam P. Joyce, James J. Havranek.
Deciphering the protein-DNA code of bacterial winged helix-turn-helix transcription factors.
Quant. Biol., 2018, 6(1): 68-84 DOI:10.1007/s40484-018-0130-0
| [1] |
Stock, A. M., Robinson, V. L. and Goudreau, P. N. (2000) Two-component signal transduction. Annu. Rev. Biochem., 69, 183–215
|
| [2] |
Laub, M. T. and Goulian, M. (2007) Specificity in two-component signal transduction pathways. Annu. Rev. Genet., 41, 121–145
|
| [3] |
Gao, R., Tao, Y. and Stock, A. M. (2008) System-level mapping of Escherichia coli response regulator dimerization with FRET hybrids. Mol. Microbiol., 69, 1358–1372
|
| [4] |
Skerker, J. M., Perchuk, B. S., Siryaporn, A., Lubin, E. A., Ashenberg, O., Goulian, M. and Laub, M. T. (2008) Rewiring the specificity of two-component signal transduction systems. Cell, 133, 1043–1054
|
| [5] |
Galperin, M. Y. (2010) Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol., 13, 150–159
|
| [6] |
Pérez-Rueda, E., Collado-Vides, J. and Segovia, L. (2004) Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Comput. Biol. Chem., 28, 341–350
|
| [7] |
Martínez-Hackert, E. and Stock, A. M. (1997) Structural relationships in the OmpR family of winged-helix transcription factors. J. Mol. Biol., 269, 301–312
|
| [8] |
Kenney, L. J. (2002) Structure/function relationships in OmpR and other winged-helix transcription factors. Curr. Opin. Microbiol., 5, 135–141
|
| [9] |
Toro-Roman, A., Wu, T. and Stock, A. M. (2005) A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci., 14, 3077–3088
|
| [10] |
Blanco, A. G., Sola, M., Gomis-Rüth, F. X. and Coll, M. (2002) Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. Structure, 10, 701–713
|
| [11] |
Mattison, K., Oropeza, R., Byers, N. and Kenney, L. J. (2002) A phosphorylation site mutant of OmpR reveals different binding conformations at ompF and ompC. J. Mol. Biol., 315, 497–511
|
| [12] |
Flores-Valdez, M. A., Fernández-Mora, M., Ares, M. Á., Girón, J. A., Calva, E. and De la Cruz, M. Á. (2014) OmpR phosphorylation regulates ompS1 expression by differentially controlling the use of promoters. Microbiology, 160, 733–741
|
| [13] |
Head, C. G., Tardy, A. and Kenney, L. J. (1998) Relative binding affinities of OmpR and OmpR-phosphate at the ompF and ompC regulatory sites. J. Mol. Biol., 281, 857–870
|
| [14] |
Narayanan, A., Paul, L. N., Tomar, S., Patil, D. N., Kumar, P. and Yernool, D. A. (2012) Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites. PLoS One, 7, e30102
|
| [15] |
Walthers, D., Tran, V. K. and Kenney, L. J. (2003) Interdomain linkers of homologous response regulators determine their mechanism of action. J. Bacteriol., 185, 317–324
|
| [16] |
Kim, S., Broströmer, E., Xing, D., Jin, J., Chong, S., Ge, H., Wang, S., Gu, C., Yang, L., Gao, Y. Q., (2013) Probing allostery through DNA. Science, 339, 816–819
|
| [17] |
Clarke, M. B. and Sperandio, V. (2005) Transcriptional regulation of flhDC by QseBC and σ 28 (FliA) in enterohaemorrhagic Escherichia coli. Mol. Microbiol., 57, 1734–1749
|
| [18] |
Ishihama, A., Shimada, T. and Yamazaki, Y. (2016) Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res., 44, 2058–2074
|
| [19] |
Ogasawara, H., Hasegawa, A., Kanda, E., Miki, T., Yamamoto, K. and Ishihama, A. (2007) Genomic SELEX search for target promoters under the control of the PhoQP-RstBA signal relay cascade. J. Bacteriol., 189, 4791–4799
|
| [20] |
Shimada, T., Takada, H., Yamamoto, K. and Ishihama, A. (2015) Expanded roles of two-component response regulator OmpR in Escherichia coli: genomic SELEX search for novel regulation targets. Genes Cells, 20, 915–931
|
| [21] |
Ogasawara, H., Shinohara, S., Yamamoto, K. and Ishihama, A. (2012) Novel regulation targets of the metal-response BasS-BasR two-component system of Escherichia coli. Microbiology, 158, 1482–1492
|
| [22] |
Park, D. M., Akhtar, M. S., Ansari, A. Z., Landick, R. and Kiley, P. J. (2013) The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet., 9, e1003839
|
| [23] |
Yang, C., Huang, T. W., Wen, S. Y., Chang, C. Y., Tsai, S. F., Wu, W. F. and Chang, C. H. (2012) Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in Escherichia coli. PLoS One, 7, e47314
|
| [24] |
Nishino, K., Honda, T. and Yamaguchi, A. (2005) Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J. Bacteriol., 187, 1763–1772
|
| [25] |
De Wulf, P., McGuire, A. M., Liu, X. and Lin, E. C. (2002) Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J. Biol. Chem., 277, 26652–26661
|
| [26] |
Harlocker, S. L., Bergstrom, L. and Inouye, M. (1995) Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. J. Biol. Chem., 270, 26849–26856
|
| [27] |
Batchelor, E., Walthers, D., Kenney, L. J. and Goulian, M. (2005) The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC. J. Bacteriol., 187, 5723–5731
|
| [28] |
Ogasawara, H., Yamada, K., Kori, A., Yamamoto, K. and Ishihama, A. (2010) Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology, 156, 2470–2483
|
| [29] |
Feldheim, Y. S., Zusman, T., Speiser, Y. and Segal, G. (2016) The Legionella pneumophila CpxRA two-component regulatory system: new insights into CpxR’s function as a dual regulator and its connection to the effectors regulatory network. Mol. Microbiol., 99, 1059–1079
|
| [30] |
Wang, X., Gao, H., Shen, Y., Weinstock, G. M., Zhou, J. and Palzkill, T. (2008) A high-throughput percentage-of-binding strategy to measure binding energies in DNA-protein interactions: application to genome-scale site discovery. Nucleic Acids Res., 36, 4863–4871
|
| [31] |
Park, D. M. and Kiley, P. J. (2014) The influence of repressor DNA binding site architecture on transcriptional control. MBio, 5, e01684–14
|
| [32] |
Nowak-Lovato, K. L., Hickmott, A. J., Maity, T. S., Bulyk, M. L., Dunbar, J. and Hong-Geller, E. (2012) DNA binding site analysis of Burkholderia thailandensis response regulators. J. Microbiol. Methods, 90, 46–52
|
| [33] |
He, X., Wang, L. and Wang, S. (2016) Structural basis of DNA sequence recognition by the response regulator PhoP in Mycobacterium tuberculosis. Sci. Rep., 6, 24442
|
| [34] |
Li, Y.-C., Chang, C. K., Chang, C.-F., Cheng, Y.-H., Fang, P.-J., Yu, T., Chen, S.-C., Li, Y.-C., Hsiao, C.-D. and Huang, T. H. (2014) Structural dynamics of the two-component response regulator RstA in recognition of promoter DNA element. Nucleic Acids Res., 42, 8777–8788
|
| [35] |
Lou, Y. C., Weng, T. H., Li, Y. C., Kao, Y. F., Lin, W. F., Peng, H. L., Chou, S. H., Hsiao, C. D. and Chen, C. (2015) Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA. Nat. Commun., 6, 8838
|
| [36] |
Narayanan, A., Kumar, S., Evrard, A. N., Paul, L. N. and Yernool, D. A. (2014) An asymmetric heterodomain interface stabilizes a response regulator-DNA complex. Nat. Commun., 5, 3282
|
| [37] |
Rhee, J. E., Sheng, W., Morgan, L. K., Nolet, R., Liao, X. and Kenney, L. J. (2008) Amino acids important for DNA recognition by the response regulator OmpR. J. Biol. Chem., 283, 8664–8677
|
| [38] |
Dhiman, A., Rahi, A., Gopalani, M., Bajpai, S., Bhatnagar, S. and Bhatnagar, R. (2017) Role of the recognition helix of response regulator WalR from Bacillus anthracis in DNA binding and specificity. Int. J. Biol. Macromol., 96, 257–264
|
| [39] |
Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter, S. C., Punta, M., Qureshi, M., Sangrador-Vegas, A., (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res., 44, D279–D285
|
| [40] |
Itou, H. and Tanaka, I. (2001) The OmpR-family of proteins: insight into the tertiary structure and functions of two-component regulator proteins. J. Biochem., 129, 343–350
|
| [41] |
Blanco, A. G., Canals, A., Bernués, J., Solà M. and Coll, M. (2011) The structure of a transcription activation subcomplex reveals how s70 is recruited to PhoB promoters. EMBO J., 30, 3776–3785
|
| [42] |
Sandelin, A. and Wasserman, W. W. (2004) Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinformatics. J. Mol. Biol., 338, 207–215
|
| [43] |
Sloutsky, R. and Naegle, K. M. (2016) High-resolution identification of specificity determining positions in the LacI protein family using ensembles of sub-sampled alignments. PLoS One, 11, e0162579
|
| [44] |
Liu, X., Brutlag, D. L. and Liu, J. S. (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. In Biocomputing 2001. pp. 127–138. Singapore: World Scientific Publishing Company
|
| [45] |
Stormo, G. D. (2013) Modeling the specificity of protein-DNA interactions. Quant. Biol., 1, 115–130
|
| [46] |
Schneider, T. D. and Stephens, R. M. (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res., 18, 6097–6100
|
| [47] |
Urano, H., Umezawa, Y., Yamamoto, K., Ishihama, A. and Ogasawara, H. (2015) Cooperative regulation of the common target genes between H2O2-sensing YedVW and Cu2+-sensing CusSR in Escherichia coli. Microbiology, 161, 729–738
|
| [48] |
Harari, O., Park, S. Y., Huang, H., Groisman, E. A. and Zwir, I. (2010) Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria. PLoS Comput. Biol., 6, e1000862
|
| [49] |
Cariss, S. J., Tayler, A. E. and Avison, M. B. (2008) Defining the growth conditions and promoter-proximal DNA sequences required for activation of gene expression by CreBC in Escherichia coli. J. Bacteriol., 190, 3930–3939
|
| [50] |
Yamamoto, K. and Ishihama, A. (2006) Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci. Biotechnol. Biochem., 70, 1688–1695
|
| [51] |
Stormo, G. D., Zuo, Z. and Chang, Y. K. (2015) Spec-seq: determining protein-DNA-binding specificity by sequencing. Brief. Funct. Genomics, 14, 30–38
|
| [52] |
Zuo, Z., Chang, Y. and Stormo, G. D. (2015) A quantitative understanding of lac repressor’s binding specificity and flexibility. Quant. Biol., 3, 69–80
|
| [53] |
Zuo, Z. and Stormo, G. D. (2014) High-resolution specificity from DNA sequencing highlights alternative modes of Lac repressor binding. Genetics, 198, 1329–1343
|
| [54] |
Foat, B. C., Morozov, A. V. and Bussemaker, H. J. (2006) Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics, 22, e141–e149
|
| [55] |
Zhao, Y. and Stormo, G. D. (2011) Quantitative analysis demonstrates most transcription factors require only simple models of specificity. Nat. Biotechnol., 29, 480–483
|
| [56] |
Simonetti, F. L., Teppa, E., Chernomoretz, A., Nielsen, M. and Marino Buslje, C. (2013) MISTIC: Mutual information server to infer coevolution. Nucleic Acids Res., 41, W8–W14
|
| [57] |
Marino Buslje, C., Teppa, E., Di Doménico, T., Delfino, J. M. and Nielsen, M. (2010) Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification. PLoS Comput. Biol., 6, e1000978
|
| [58] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
|
| [59] |
Capra, E. J., Perchuk, B. S., Lubin, E. A., Ashenberg, O., Skerker, J. M. and Laub, M. T. (2010) Systematic dissection and trajectory-scanning mutagenesis of the molecular interface that ensures specificity of two-component signaling pathways. PLoS Genet., 6, e1001220
|
| [60] |
Mizuno, T. (1987) Static bend of DNA helix at the activator recognition site of the ompF promoter in Escherichia coli. Gene, 54, 57–64
|
| [61] |
Nakagawa, S., Gisselbrecht, S. S., Rogers, J. M., Hartl, D. L. and Bulyk, M. L. (2013) DNA-binding specificity changes in the evolution of forkhead transcription factors. Proc. Natl. Acad. Sci. USA, 110, 12349–12354
|
| [62] |
He, X. and Wang, S. (2014) DNA consensus sequence motif for binding response regulator PhoP, a virulence regulator of Mycobacterium tuberculosis. Biochemistry, 53, 8008–8020
|
| [63] |
Korostelev, Y. D., Zharov, I. A., Mironov, A. A., Rakhmaininova, A. B. and Gelfand, M. S. (2016) Identification of position-specific correlations between DNA-binding domains and their binding sites. Application to the MerR family of transcription factors. PLoS One, 11, e0162681
|
| [64] |
Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif., 41, 207–234
|
| [65] |
Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A. 3rd and Smith, H. O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods, 6, 343–345
|
| [66] |
Sheridan, R. C., McCullough, J. F., Wakefield, Z. T., Allcock, H. R. and Walsh, E. J. (2007) Phosphoramidic Acid and its Salts Inorganic Syntheses. Hoboken: John Wiley & Sons, Inc.
|
| [67] |
Sambrook, J., Russell, D.W. (2006) Isolation of DNA fragments from polyacrylamide gels by the crush and soak method. CSH Protoc, 198–202
|
| [68] |
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410
|
| [69] |
Wallace, I. M., O’Sullivan, O., Higgins, D. G. and Notredame, C. (2006) M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res., 34, 1692–1699
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature