PMTDS: a computational method based on genetic interaction networks for Precision Medicine Target-Drug Selection in cancer
Varshini Vasudevaraja, Jamie Renbarger, Ridhhi Girish Shah, Garrett Kinnebrew, Murray Korc, Limei Wang, Yang Huo, Enze Liu, Lang Li, Lijun Cheng
PMTDS: a computational method based on genetic interaction networks for Precision Medicine Target-Drug Selection in cancer
Background: Precision medicine attempts to tailor the right therapy for the right patient. Recent progress in large-scale collection of patents’ tumor molecular profiles in The Cancer Genome Atlas (TCGA) provides a foundation for systematic discovery of potential drug targets specific to different types of cancer. However, we still lack powerful computational methods to effectively integrate multiple omics data and protein-protein interaction network technology for an optimum target and drug recommendation for an individual patient.
Methods: In this study, a computation method, Precision Medicine Target-Drug Selection (PMTDS) based on genetic interaction networks is developed to select the optimum targets and associated drugs for precision medicine style treatment of cancer. The PMTDS system includes three parts: a personalized medicine knowledgebase for each cancer type, a genetic interaction network-based algorithm and a single patient molecular profiles. The knowledgebase integrates cancer drugs, drug-target databases and gene biological pathway networks. The molecular profiles of each tumor consists of DNA copy number alteration, gene mutation, and tumor gene expression variation compared to its adjacent normal tissue.
Results: The novel integrated PMTDS system is applied to select candidate target-drug pairs for 178 TCGA pancreatic adenocarcinoma (PDAC) tumors. The experiment results show known drug targets (EGFR, IGF1R, ERBB2, NR1I2 and AKR1B1) of PDAC treatment are identified, which provides important evidence of the PMTDS algorithm’s accuracy. Other potential targets PTK6, ATF, SYK are, also, recommended for PDAC. Further validation is provided by comparison of selected targets with, both, cell line molecular profiles from the Cancer Cell Line Encyclopedia (CCLE) and drug response data from the Cancer Therapeutics Response Portal (CTRP). Results from experimental analysis of forty six individual pancreatic cancer samples show that drugs selected by PMTDS have more sample-specific efficacy than the current clinical PDAC therapies.
Conclusions: A novelty target and drug priority algorithm PMTDS is developed to identify optimum target-drug pairs by integrating the knowledgebase base with a single patient’s genomics. The PMTDS system provides an accurate and reliable source for target and off-label drug selection for precision cancer medicine.
precision medicine / drug target / algorithm / pancreatic adenocarcinoma / biological pathway / cancer
[1] |
Le Tourneau, C., Kamal, M., Tsimberidou, A.-M., Bedard, P., Pierron, G., Callens, C., Rouleau, E., Vincent-Salomon, A., Servant, N., Alt, M.,
Pubmed
|
[2] |
Ciardiello, F., Arnold, D., Casali, P. G., Cervantes, A., Douillard, J.-Y., Eggermont, A., Eniu, A., McGregor, K., Peters, S., Piccart, M.,
CrossRef
Pubmed
Google scholar
|
[3] |
Schork, N. J. (2015) Personalized medicine: time for one-person trials. Nature, 520, 609–611
CrossRef
Pubmed
Google scholar
|
[4] |
Le Tourneau, C., Delord, J.-P., Gonçalves, A., Gavoille, C., Dubot, C., Isambert, N., Campone, M., Trédan, O., Massiani, M.-A., Mauborgne, C.,
CrossRef
Pubmed
Google scholar
|
[5] |
Rodon, J., Soria, J. C., Berger, R., Batist, G., Tsimberidou, A., Bresson, C., Lee, J. J., Rubin, E., Onn, A., Schilsky, R. L.,
CrossRef
Pubmed
Google scholar
|
[6] |
Tsimberidou, A.-M., Wen, S., Hong, D. S., Wheler, J. J., Falchook, G. S., Fu, S., Piha-Paul, S., Naing, A., Janku, F., Aldape, K.
CrossRef
Google scholar
|
[7] |
Mullard, A. (2015) NCI-MATCH trial pushes cancer umbrella trial paradigm. Nat. Rev. Drug Discov., 14, 513–515
CrossRef
Pubmed
Google scholar
|
[8] |
Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., Wyczalkowski, M. A.,
CrossRef
Pubmed
Google scholar
|
[9] |
Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, A. D., Saksena, G., Tabak, B., Lawrence, M. S., Zhang, C. Z., Wala, J., Mermel, C. H.,
CrossRef
Pubmed
Google scholar
|
[10] |
Chin, L., Andersen, J. N. and Futreal, P. A. (2011) Cancer genomics: from discovery science to personalized medicine. Nat. Med., 17, 297–303
CrossRef
Pubmed
Google scholar
|
[11] |
Conti, R. M., Bernstein, A. C., Villaflor, V. M., Schilsky, R. L., Rosenthal, M. B. and Bach, P. B. (2013) Prevalence of off-label use and spending in 2010 among patent-protected chemotherapies in a population-based cohort of medical oncologists. J. Clin. Oncol., 31, 1134–1139
CrossRef
Pubmed
Google scholar
|
[12] |
Gupta, S. K. and Nayak, R. P. (2014) Off-label use of medicine: Perspective of physicians, patients, pharmaceutical companies and regulatory authorities. J. Pharmacol. Pharmacother., 5, 88–92
CrossRef
Pubmed
Google scholar
|
[13] |
Witkiewicz, A. K., McMillan, E. A., Balaji, U., Baek, G., Lin, W.-C., Mansour, J., Mollaee, M., Wagner, K.-U., Koduru, P., Yopp, A.,
CrossRef
Pubmed
Google scholar
|
[14] |
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D.,
CrossRef
Pubmed
Google scholar
|
[15] |
Seashore-Ludlow, B., Rees, M. G., Cheah, J. H., Cokol, M., Price, E. V., Coletti, M. E., Jones, V., Bodycombe, N. E., Soule, C. K., Gould, J.,
CrossRef
Pubmed
Google scholar
|
[16] |
Vargas, A. J. and Harris, C. C. (2016) Biomarker development in the precision medicine era: lung cancer as a case study. Nat. Rev. Cancer, 16, 525–537
CrossRef
Pubmed
Google scholar
|
[17] |
Jameson, J. L. and Longo, D. L. (2015) Precision medicine — personalized, problematic, and promising. N. Engl. J. Med., 372, 2229–2234
CrossRef
Google scholar
|
[18] |
Cheng, F., Hong, H., Yang, S. and Wei, Y. (2016) A bioinformatics approach for precision medicine off-label drug drug selection among triple negative breast cancer patients. J. Am. Med. Inform. Assoc., 23, 741–749
CrossRef
Pubmed
Google scholar
|
[19] |
Cheng, F., Hong, H., Yang, S. and Wei, Y. (2017) Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era. Brief. Bioinformatics, 18, 682–697
CrossRef
Pubmed
Google scholar
|
[20] |
Tang, H., Zhong, F., Liu, W., He, F. and Xie, H. (2015) PathPPI: an integrated dataset of human pathways and protein-protein interactions. Sci. China Life Sci., 58, 579–589
CrossRef
Pubmed
Google scholar
|
[21] |
Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., He, X., Mieczkowski, P., Grimm, S. A., Perou, C. M.,
CrossRef
Pubmed
Google scholar
|
[22] |
Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. and Dewey, C. N. (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics, 26, 493–500
CrossRef
Pubmed
Google scholar
|
[23] |
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
CrossRef
Pubmed
Google scholar
|
[24] |
Hidalgo, M. (2012) New insights into pancreatic cancer biology. Ann. Oncol., 23, x135–x138
CrossRef
Pubmed
Google scholar
|
[25] |
Kruger, S., Haas, M., Ormanns, S., Bächmann, S., Siveke, J. T., Kirchner, T., Heinemann, V. and Boeck, S. (2014) Translational research in pancreatic ductal adenocarcinoma: current evidence and future concepts. World J. Gastroenterol., 20, 10769–10777
CrossRef
Pubmed
Google scholar
|
[26] |
Chung, Y. T., Matkowskyj, K. A., Li, H., Bai, H., Zhang, W., Tsao, M.-S., Liao, J. and Yang, G.-Y. (2012) Overexpression and oncogenic function of aldo-keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. Mod. Pathol., 25, 758–766
CrossRef
Pubmed
Google scholar
|
[27] |
Philip, P. A. (2008) Targeted therapies for pancreatic cancer. Gastrointest. Cancer. Res., 2, S16–S19
Pubmed
|
[28] |
Scott, A. J. and Wilkinson, J. C. (2016) HNF1A, KRT81, and CYP3A5: three more straws on the back of pancreatic cancer? Transl. Cancer Res., 5, S253–S256
CrossRef
Google scholar
|
[29] |
Thompson, M. R., Xu, D. and Williams, B. R. G. (2009) ATF3 transcription factor and its emerging roles in immunity and cancer. J. Mol. Med. (Berl.), 87, 1053–1060
CrossRef
Pubmed
Google scholar
|
[30] |
Simeone, D. M., Ji, B., Banerjee, M., Arumugam, T., Li, D., Anderson, M. A., Bamberger, A. M., Greenson, J., Brand, R. E., Ramachandran, V.,
CrossRef
Pubmed
Google scholar
|
[31] |
Harsha, H. C., Kandasamy, K., Ranganathan, P., Rani, S., Ramabadran, S., Gollapudi, S., Balakrishnan, L., Dwivedi, S. B., Telikicherla, D., Selvan, L. D. N.,
CrossRef
Pubmed
Google scholar
|
[32] |
Huang, Y.-H., Zhu, C., Kondo, Y., Anderson, A. C., Gandhi, A., Russell, A., Dougan, S. K., Petersen, B.-S., Melum, E., Pertel, T.,
CrossRef
Pubmed
Google scholar
|
[33] |
Saloman, J. L., Albers, K. M., Li, D., Hartman, D. J., Crawford, H. C., Muha, E. A., Rhim, A. D. and Davis, B. M. (2016) Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl. Acad. Sci. USA, 113, 3078–3083
CrossRef
Pubmed
Google scholar
|
[34] |
Ono, H., Basson, M. D. and Ito, H. (2015) PTK6 potentiates gemcitabine-induced apoptosis by prolonging s-phase and enhancing DNA damage in pancreatic cancer. Mol. Cancer Res., 13, 1174–1184
CrossRef
Pubmed
Google scholar
|
[35] |
Ono, H., Basson, M. D. and Ito, H. (2014) PTK6 promotes cancer migration and invasion in pancreatic cancer cells dependent on ERK signaling. PLoS One, 9, e96060
CrossRef
Pubmed
Google scholar
|
[36] |
Middleton, G., Palmer, D. H., Greenhalf, W., Ghaneh, P., Jackson, R., Cox, T., Evans, A., Shaw, V. E., Wadsley, J., Valle, J. W.,
CrossRef
Pubmed
Google scholar
|
[37] |
Tomczak, K., Czerwińska, P. and Wiznerowicz, M. (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.), 19, A68–A77
CrossRef
Pubmed
Google scholar
|
[38] |
Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164
CrossRef
Pubmed
Google scholar
|
[39] |
Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z. and Woolsey, J. (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 34, D668–D672
CrossRef
Pubmed
Google scholar
|
[40] |
Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B. and Hassanali, M. (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 36, D901–D906
CrossRef
Pubmed
Google scholar
|
[41] |
Bruford, E. A., Lush, M. J., Wright, M. W., Sneddon, T. P., Povey, S. and Birney, E. (2008) The HGNC Database in 2008: a resource for the human genome. Nucleic Acids Res., 36, D445–D448
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |