PMTDS: a computational method based on genetic interaction networks for Precision Medicine Target-Drug Selection in cancer

Varshini Vasudevaraja, Jamie Renbarger, Ridhhi Girish Shah, Garrett Kinnebrew, Murray Korc, Limei Wang, Yang Huo, Enze Liu, Lang Li, Lijun Cheng

PDF(2161 KB)
PDF(2161 KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (4) : 380-394. DOI: 10.1007/s40484-017-0126-1
METHODOLOGY ARTICLE
METHODOLOGY ARTICLE

PMTDS: a computational method based on genetic interaction networks for Precision Medicine Target-Drug Selection in cancer

Author information +
History +

Abstract

Background: Precision medicine attempts to tailor the right therapy for the right patient. Recent progress in large-scale collection of patents’ tumor molecular profiles in The Cancer Genome Atlas (TCGA) provides a foundation for systematic discovery of potential drug targets specific to different types of cancer. However, we still lack powerful computational methods to effectively integrate multiple omics data and protein-protein interaction network technology for an optimum target and drug recommendation for an individual patient.

Methods: In this study, a computation method, Precision Medicine Target-Drug Selection (PMTDS) based on genetic interaction networks is developed to select the optimum targets and associated drugs for precision medicine style treatment of cancer. The PMTDS system includes three parts: a personalized medicine knowledgebase for each cancer type, a genetic interaction network-based algorithm and a single patient molecular profiles. The knowledgebase integrates cancer drugs, drug-target databases and gene biological pathway networks. The molecular profiles of each tumor consists of DNA copy number alteration, gene mutation, and tumor gene expression variation compared to its adjacent normal tissue.

Results: The novel integrated PMTDS system is applied to select candidate target-drug pairs for 178 TCGA pancreatic adenocarcinoma (PDAC) tumors. The experiment results show known drug targets (EGFR, IGF1R, ERBB2, NR1I2 and AKR1B1) of PDAC treatment are identified, which provides important evidence of the PMTDS algorithm’s accuracy. Other potential targets PTK6, ATF, SYK are, also, recommended for PDAC. Further validation is provided by comparison of selected targets with, both, cell line molecular profiles from the Cancer Cell Line Encyclopedia (CCLE) and drug response data from the Cancer Therapeutics Response Portal (CTRP). Results from experimental analysis of forty six individual pancreatic cancer samples show that drugs selected by PMTDS have more sample-specific efficacy than the current clinical PDAC therapies.

Conclusions: A novelty target and drug priority algorithm PMTDS is developed to identify optimum target-drug pairs by integrating the knowledgebase base with a single patient’s genomics. The PMTDS system provides an accurate and reliable source for target and off-label drug selection for precision cancer medicine.

Graphical abstract

Keywords

precision medicine / drug target / algorithm / pancreatic adenocarcinoma / biological pathway / cancer

Cite this article

Download citation ▾
Varshini Vasudevaraja, Jamie Renbarger, Ridhhi Girish Shah, Garrett Kinnebrew, Murray Korc, Limei Wang, Yang Huo, Enze Liu, Lang Li, Lijun Cheng. PMTDS: a computational method based on genetic interaction networks for Precision Medicine Target-Drug Selection in cancer. Quant. Biol., 2017, 5(4): 380‒394 https://doi.org/10.1007/s40484-017-0126-1

References

[1]
Le Tourneau, C., Kamal, M., Tsimberidou, A.-M., Bedard, P., Pierron, G., Callens, C., Rouleau, E., Vincent-Salomon, A., Servant, N., Alt, M., (2015) Treatment algorithms based on tumor molecular profiling: the essence of precision medicine trials. J. Natl. Cancer Inst., 108, djv362 https://doi.org/10.1093/jnci/djv362
Pubmed
[2]
Ciardiello, F., Arnold, D., Casali, P. G., Cervantes, A., Douillard, J.-Y., Eggermont, A., Eniu, A., McGregor, K., Peters, S., Piccart, M., , (2014) Delivering precision medicine in oncology today and in future-the promise and challenges of personalised cancer medicine: a position paper by the European Society for Medical Oncology (ESMO). Ann. Oncol., 25, 1673–1678
CrossRef Pubmed Google scholar
[3]
Schork, N. J. (2015) Personalized medicine: time for one-person trials. Nature, 520, 609–611
CrossRef Pubmed Google scholar
[4]
Le Tourneau, C., Delord, J.-P., Gonçalves, A., Gavoille, C., Dubot, C., Isambert, N., Campone, M., Trédan, O., Massiani, M.-A., Mauborgne, C., (2015) Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol., 16, 1324–1334
CrossRef Pubmed Google scholar
[5]
Rodon, J., Soria, J. C., Berger, R., Batist, G., Tsimberidou, A., Bresson, C., Lee, J. J., Rubin, E., Onn, A., Schilsky, R. L., (2015) Challenges in initiating and conducting personalized cancer therapy trials: perspectives from WINTHER, a Worldwide Innovative Network (WIN) Consortium trial. Ann. Oncol., 26, 1791–1798
CrossRef Pubmed Google scholar
[6]
Tsimberidou, A.-M., Wen, S., Hong, D. S., Wheler, J. J., Falchook, G. S., Fu, S., Piha-Paul, S., Naing, A., Janku, F., Aldape, K. (2014) Personalized medicine for patients with advanced cancer in the phase I program at MD Anderson: validation and landmark Analyses. Clin. Cancer Res., 20, 4827–4836
CrossRef Google scholar
[7]
Mullard, A. (2015) NCI-MATCH trial pushes cancer umbrella trial paradigm. Nat. Rev. Drug Discov., 14, 513–515
CrossRef Pubmed Google scholar
[8]
Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., Wyczalkowski, M. A., (2013) Mutational landscape and significance across 12 major cancer types. Nature, 502, 333–339
CrossRef Pubmed Google scholar
[9]
Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, A. D., Saksena, G., Tabak, B., Lawrence, M. S., Zhang, C. Z., Wala, J., Mermel, C. H., (2013) Pan-cancer patterns of somatic copy number alteration. Nat. Genet., 45, 1134–1140
CrossRef Pubmed Google scholar
[10]
Chin, L., Andersen, J. N. and Futreal, P. A. (2011) Cancer genomics: from discovery science to personalized medicine. Nat. Med., 17, 297–303
CrossRef Pubmed Google scholar
[11]
Conti, R. M., Bernstein, A. C., Villaflor, V. M., Schilsky, R. L., Rosenthal, M. B. and Bach, P. B. (2013) Prevalence of off-label use and spending in 2010 among patent-protected chemotherapies in a population-based cohort of medical oncologists. J. Clin. Oncol., 31, 1134–1139
CrossRef Pubmed Google scholar
[12]
Gupta, S. K. and Nayak, R. P. (2014) Off-label use of medicine: Perspective of physicians, patients, pharmaceutical companies and regulatory authorities. J. Pharmacol. Pharmacother., 5, 88–92
CrossRef Pubmed Google scholar
[13]
Witkiewicz, A. K., McMillan, E. A., Balaji, U., Baek, G., Lin, W.-C., Mansour, J., Mollaee, M., Wagner, K.-U., Koduru, P., Yopp, A., (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun., 6, 6744
CrossRef Pubmed Google scholar
[14]
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483, 603–607
CrossRef Pubmed Google scholar
[15]
Seashore-Ludlow, B., Rees, M. G., Cheah, J. H., Cokol, M., Price, E. V., Coletti, M. E., Jones, V., Bodycombe, N. E., Soule, C. K., Gould, J., (2015) Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov., 5, 1210–1223
CrossRef Pubmed Google scholar
[16]
Vargas, A. J. and Harris, C. C. (2016) Biomarker development in the precision medicine era: lung cancer as a case study. Nat. Rev. Cancer, 16, 525–537
CrossRef Pubmed Google scholar
[17]
Jameson, J. L. and Longo, D. L. (2015) Precision medicine — personalized, problematic, and promising. N. Engl. J. Med., 372, 2229–2234
CrossRef Google scholar
[18]
Cheng, F., Hong, H., Yang, S. and Wei, Y. (2016) A bioinformatics approach for precision medicine off-label drug drug selection among triple negative breast cancer patients. J. Am. Med. Inform. Assoc., 23, 741–749
CrossRef Pubmed Google scholar
[19]
Cheng, F., Hong, H., Yang, S. and Wei, Y. (2017) Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era. Brief. Bioinformatics, 18, 682–697
CrossRef Pubmed Google scholar
[20]
Tang, H., Zhong, F., Liu, W., He, F. and Xie, H. (2015) PathPPI: an integrated dataset of human pathways and protein-protein interactions. Sci. China Life Sci., 58, 579–589
CrossRef Pubmed Google scholar
[21]
Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., He, X., Mieczkowski, P., Grimm, S. A., Perou, C. M., (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res., 38, e178
CrossRef Pubmed Google scholar
[22]
Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. and Dewey, C. N. (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics, 26, 493–500
CrossRef Pubmed Google scholar
[23]
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
CrossRef Pubmed Google scholar
[24]
Hidalgo, M. (2012) New insights into pancreatic cancer biology. Ann. Oncol., 23, x135–x138
CrossRef Pubmed Google scholar
[25]
Kruger, S., Haas, M., Ormanns, S., Bächmann, S., Siveke, J. T., Kirchner, T., Heinemann, V. and Boeck, S. (2014) Translational research in pancreatic ductal adenocarcinoma: current evidence and future concepts. World J. Gastroenterol., 20, 10769–10777
CrossRef Pubmed Google scholar
[26]
Chung, Y. T., Matkowskyj, K. A., Li, H., Bai, H., Zhang, W., Tsao, M.-S., Liao, J. and Yang, G.-Y. (2012) Overexpression and oncogenic function of aldo-keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. Mod. Pathol., 25, 758–766
CrossRef Pubmed Google scholar
[27]
Philip, P. A. (2008) Targeted therapies for pancreatic cancer. Gastrointest. Cancer. Res., 2, S16–S19
Pubmed
[28]
Scott, A. J. and Wilkinson, J. C. (2016) HNF1A, KRT81, and CYP3A5: three more straws on the back of pancreatic cancer? Transl. Cancer Res., 5, S253–S256
CrossRef Google scholar
[29]
Thompson, M. R., Xu, D. and Williams, B. R. G. (2009) ATF3 transcription factor and its emerging roles in immunity and cancer. J. Mol. Med. (Berl.), 87, 1053–1060
CrossRef Pubmed Google scholar
[30]
Simeone, D. M., Ji, B., Banerjee, M., Arumugam, T., Li, D., Anderson, M. A., Bamberger, A. M., Greenson, J., Brand, R. E., Ramachandran, V., (2007) CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas, 34, 436–443
CrossRef Pubmed Google scholar
[31]
Harsha, H. C., Kandasamy, K., Ranganathan, P., Rani, S., Ramabadran, S., Gollapudi, S., Balakrishnan, L., Dwivedi, S. B., Telikicherla, D., Selvan, L. D. N., (2009) A compendium of potential biomarkers of pancreatic cancer. PLoS Med., 6, e1000046
CrossRef Pubmed Google scholar
[32]
Huang, Y.-H., Zhu, C., Kondo, Y., Anderson, A. C., Gandhi, A., Russell, A., Dougan, S. K., Petersen, B.-S., Melum, E., Pertel, T., (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature, 517, 386–390
CrossRef Pubmed Google scholar
[33]
Saloman, J. L., Albers, K. M., Li, D., Hartman, D. J., Crawford, H. C., Muha, E. A., Rhim, A. D. and Davis, B. M. (2016) Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl. Acad. Sci. USA, 113, 3078–3083
CrossRef Pubmed Google scholar
[34]
Ono, H., Basson, M. D. and Ito, H. (2015) PTK6 potentiates gemcitabine-induced apoptosis by prolonging s-phase and enhancing DNA damage in pancreatic cancer. Mol. Cancer Res., 13, 1174–1184
CrossRef Pubmed Google scholar
[35]
Ono, H., Basson, M. D. and Ito, H. (2014) PTK6 promotes cancer migration and invasion in pancreatic cancer cells dependent on ERK signaling. PLoS One, 9, e96060
CrossRef Pubmed Google scholar
[36]
Middleton, G., Palmer, D. H., Greenhalf, W., Ghaneh, P., Jackson, R., Cox, T., Evans, A., Shaw, V. E., Wadsley, J., Valle, J. W., (2017) Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (ViP): a prospective, randomised, double-blind, multicentre phase 2 trial. Lancet Oncol., 18, 486–499
CrossRef Pubmed Google scholar
[37]
Tomczak, K., Czerwińska, P. and Wiznerowicz, M. (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.), 19, A68–A77
CrossRef Pubmed Google scholar
[38]
Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164
CrossRef Pubmed Google scholar
[39]
Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z. and Woolsey, J. (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 34, D668–D672
CrossRef Pubmed Google scholar
[40]
Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B. and Hassanali, M. (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 36, D901–D906
CrossRef Pubmed Google scholar
[41]
Bruford, E. A., Lush, M. J., Wright, M. W., Sneddon, T. P., Povey, S. and Birney, E. (2008) The HGNC Database in 2008: a resource for the human genome. Nucleic Acids Res., 36, D445–D448
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at DOI 10.1007/s40484-017-0126-1.

ACKNOWLEDGEMENTS

This work was supported by NIH Funding 1U54HD090215-01.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Varshini Vasudevaraja, Jamie Renbarger, Ridhhi Girish Shah, Garrett Kinnebrew, Murray Korc, Limei Wang, Yang Huo, Enze Liu, Lang Li and Lijun Cheng declare they have no conflict of interests.
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(2161 KB)

Accesses

Citations

Detail

Sections
Recommended

/