Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia
Saad M Khan, Jason E Denney, Michael X Wang, Dong Xu
Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia
Background: Clinical studies and genetic analyses have revealed that juvenile myelomonocytic leukemia (JMML) is caused by somatic and/or germline mutations of genes involved in the RAS/MAPK signalling pathway. Given the vastly different clinical prognosis among individual patients that have had this disease, mutations in genes of other pathways may be involved.
Methods: In this study, we conducted whole-exome and cancer-panel sequencing analyses on a bone marrow sample from a 2-year old juvenile myelomonocytic leukemia patient. We also measured the microRNA profile of the same patient’s bone marrow sample and the results were compared with the normal mature monocytic cells from the pooled peripheral blood.
Results: We identified additional novel mutations in the PI3K/AKT pathway and verified with a cancer panel targeted sequencing. We have confirmed the previously tested PTPN11 gene mutation (exon 3 181G>T) in the same sample and identified new nonsynonymous mutations in NTRK1, HMGA2, MLH3, MYH9 and AKT1 genes. Many of the microRNAs found to be differentially expressed are known to act as oncogenic MicroRNAs (onco-MicroRNAs or oncomiRs), whose target genes are enriched in the PI3K/AKT signalling pathway.
Conclusions: Our study suggests an alternative mechanism for JMML pathogenesis in addition to RAS/MAPK pathway. This discovery may provide new genetic markers for diagnosis and new therapeutic targets for JMML patients in the future.
single-cell / RNA-Seq / differential expression
[1] |
Arber, D. A., Orazi, A, Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., Vardiman, J. W. (2016) The 2016 revision to the WorldHealth Organization classification of myeloid neoplasms and acute leukemia. Blood, 127, 2391–405
|
[2] |
Beurlet, S., Chomienne, C. and Padua, R. A. (2013) Engineering mouse models with myelodysplastic syndrome human candidate genes; how relevant are they? Haematologica, 98, 10–22
CrossRef
Pubmed
Google scholar
|
[3] |
Loh, M. L. (2011) Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br. J. Haematol., 152, 677–687
CrossRef
Pubmed
Google scholar
|
[4] |
Basu, T. N., Gutmann, D. H., Fletcher, J. A., Glover, T. W., Collins, F. S. and Downward, J. (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature, 356, 713–715
CrossRef
Pubmed
Google scholar
|
[5] |
Patil, S. and Chamberlain, R. S. (2012) Neoplasms associated with germline and somatic NF1 gene mutations. Oncologist, 17, 101–116
CrossRef
Pubmed
Google scholar
|
[6] |
Loh, M. L., Vattikuti, S., Schubbert, S., Reynolds, M. G., Carlson, E., Lieuw, K. H., Cheng, J. W., Lee, C. M., Stokoe, D., Bonifas, J. M.,
CrossRef
Pubmed
Google scholar
|
[7] |
Sugimoto, Y., Muramatsu, H., Makishima, H., Prince, C., Jankowska, A. M., Yoshida, N., Xu, Y., Nishio, N., Hama, A., Yagasaki, H.,
CrossRef
Pubmed
Google scholar
|
[8] |
Gratias, E. J., Liu, Y. L., Meleth, S., Castleberry, R. P. and Emanuel, P. D. (2005) Activating FLT3 mutations are rare in children with juvenile myelomonocytic leukemia. Pediatr. Blood Cancer, 44, 142–146
CrossRef
Pubmed
Google scholar
|
[9] |
Hirabayashi, S., Flotho, C., Moetter, J., Heuser, M.,Hasle, H., Gruhn, B., Klingebiel, T., Thol, F., Schlegelberger, B., Baumann, I.,
CrossRef
Pubmed
Google scholar
|
[10] |
Sakaguchi, H., Okuno, Y., Muramatsu, H., Yoshida, K., Shiraishi, Y., Takahashi, M., Kon, A., Sanada, M., Chiba, K., Tanaka, H.,
CrossRef
Pubmed
Google scholar
|
[11] |
Olk-Batz, C., Poetsch, A. R., Nöllke, P., Claus, R., Zucknick, M., Sandrock, I., Witte, T., Strahm, B., Hasle, H., Zecca, M.,
CrossRef
Pubmed
Google scholar
|
[12] |
Lauchle, J. O. and Braun, B. S. (2010) Targeting RAS Signaling Pathways in Juvenile Myelomonocytic Leukemia (JMML). In Molecularly Targeted Therapy For Childhood Cancer. Houghton, P. J., Arceci, R. J., eds. pp. 123–138 New York: Springer
|
[13] |
Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward, P. A., Braxton, A., Beuten, J., Xia, F., Niu, Z.,
CrossRef
Pubmed
Google scholar
|
[14] |
Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26, 589–595
CrossRef
Pubmed
Google scholar
|
[15] |
Reid, J. G., Carroll, A., Veeraraghavan, N., Dahdouli, M., Sundquist, A., English, A., Bainbridge, M., White, S., Salerno, W., Buhay, C.,
CrossRef
Pubmed
Google scholar
|
[16] |
Kumar, P., Henikoff, S. and Ng, P. C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc., 4, 1073–1081
CrossRef
Pubmed
Google scholar
|
[17] |
Yin, T., Cook, D., Lawrence, M. (2012) ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol., 13, R77
CrossRef
Pubmed
Google scholar
|
[18] |
Yates, C. M., Filippis, I., Kelley, L. A. and Sternberg, M. J. (2014) SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. J. Mol. Biol., 426, 2692–2701
CrossRef
Pubmed
Google scholar
|
[19] |
Venselaar, H., te Beek. T. A. H, Kuipers, R. K. P., Hekkelman, M. L., Vriend, G. (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 11, 548
Pubmed
|
[20] |
Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S.,
CrossRef
Pubmed
Google scholar
|
[21] |
Laskowski, R. A. and Swindells, M. B. (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 51, 2778–2786
CrossRef
Pubmed
Google scholar
|
[22] |
Esquela-Kerscher, A. and Slack, F. J. (2006) Oncomirs– microRNAs with a role in cancer. Nat. Rev. Cancer, 6, 259–269
CrossRef
Pubmed
Google scholar
|
[23] |
Xu, X.-M., Wang, X.-B., Chen, M.-M., Liu, T., Li, Y.-X., Jia, W.-H., Liu, M., Li, X. and Tang, H. (2012) MicroRNA-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Lett., 322, 148–158
CrossRef
Pubmed
Google scholar
|
[24] |
Wu, Q., Yang, Z., An, Y., Hu, H., Yin, J., Zhang, P., Nie, Y., Wu, K., Shi, Y. and Fan, D. (2014) MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis., 5, e1144
CrossRef
Pubmed
Google scholar
|
[25] |
Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M.,
CrossRef
Pubmed
Google scholar
|
[26] |
Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M.,
CrossRef
Pubmed
Google scholar
|
[27] |
Chen, Z., Zeng, H., Guo, Y., Liu, P., Pan, H., Deng, A. and Hu, J. (2010) miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J. Exp. Clin. Cancer Res., 29, 151
CrossRef
Pubmed
Google scholar
|
[28] |
Ostenfeld, M. S., Bramsen, J. B., Lamy, P., Villadsen, S. B., Fristrup, N., Sørensen, K. D., Ulhøi, B., Borre, M., Kjems, J., Dyrskjøt, L.,
CrossRef
Pubmed
Google scholar
|
[29] |
Feng, R., Chen, X., Yu, Y., Su, L., Yu, B., Li, J., Cai, Q., Yan, M., Liu, B. and Zhu, Z. (2010) miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett., 298, 50–63
CrossRef
Pubmed
Google scholar
|
[30] |
Sasahira, T., Kurihara, M., Bhawal, U. K., Ueda, N., Shimomoto, T., Yamamoto, K., Kirita, T. and Kuniyasu, H. (2012) Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br. J. Cancer, 107, 700–706
CrossRef
Pubmed
Google scholar
|
[31] |
Zhang, P., Ji, D.-B., Han, H.-B., Shi, Y.-F., Du, C.-Z. and Gu, J. (2014) Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World J. Gastroenterol., 20, 12241–12248
CrossRef
Pubmed
Google scholar
|
[32] |
Jiang, L., Huang, Q., Zhang, S., Zhang, Q., Chang, J., Qiu, X. and Wang, E. (2010) Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer, 10, 318
CrossRef
Pubmed
Google scholar
|
[33] |
Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D. and Slack, F. J. (2005) RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647
CrossRef
Pubmed
Google scholar
|
[34] |
Vlachos, I. S., Zagganas, K., Paraskevopoulou, M. D., Georgakilas, G., Karagkouni, D., Vergoulis, T., Dalamagas, T. and Hatzigeorgiou, A. G. (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res., 43, W460–466
CrossRef
Pubmed
Google scholar
|
[35] |
Kolde, R. (2015). pheatmap: Pretty heatmaps [Software]. https://CRAN.R-project.org/package=pheatmap
|
[36] |
Green, B. D., Jabbour, A. M., Sandow, J. J., Riffkin, C. D., Masouras, D., Daunt, C. P., Salmanidis, M., Brumatti, G., Hemmings, B. A., Guthridge, M. A.,
CrossRef
Pubmed
Google scholar
|
[37] |
Carpten, J. D., Faber, A. L., Horn, C., Donoho, G. P., Briggs, S. L., Robbins, C. M., Hostetter, G., Boguslawski, S., Moses, T. Y., Savage, S.,
CrossRef
Pubmed
Google scholar
|
[38] |
Lipkin, S. M., Wang, V., Jacoby, R., Banerjee-Basu, S., Baxevanis, A. D., Lynch, H. T., Elliott, R. M. and Collins, F. S. (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat. Genet., 24, 27–35
CrossRef
Pubmed
Google scholar
|
[39] |
Wu, Y., Berends, M. J. W., Sijmons, R. H., Mensink, R. G. J., Verlind, E., Kooi, K. A., van der Sluis, T., Kempinga, C., van der Zee, A. G., Hollema, H.,
CrossRef
Pubmed
Google scholar
|
[40] |
Hienonen, T., Laiho, P., Salovaara, R., Mecklin, J.-P., Järvinen, H., Sistonen, P., Peltomäki, P., Lehtonen, R., Nupponen, N. N., Launonen, V.,
CrossRef
Pubmed
Google scholar
|
[41] |
Korhonen, M. K., Vuorenmaa, E. and Nyström, M. (2008) The first functional study of MLH3 mutations found in cancer patients. Gene. Chromosome. Canc., 47, 803–809
CrossRef
Pubmed
Google scholar
|
[42] |
Bostrom, M. A. and Freedman, B. I. (2010) The spectrum of MYH9-associated nephropathy. Clin. J. Am. Soc. Nephrol., 5, 1107–1113
CrossRef
Pubmed
Google scholar
|
[43] |
Katono, K., Sato, Y., Jiang, S.-X., Kobayashi, M., Nagashio, R., Ryuge, S., Fukuda, E., Goshima, N., Satoh, Y., Saegusa, M.,
CrossRef
Pubmed
Google scholar
|
[44] |
Mayr, C., Hemann, M. T., Bartel, D. P. (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315,1576–1579
CrossRef
Pubmed
Google scholar
|
[45] |
Young, A. R. J. and Narita, M. (2007) Oncogenic HMGA2: short or small? Genes Dev., 21, 1005–1009
CrossRef
Pubmed
Google scholar
|
[46] |
Vaishnavi, A., Capelletti, M., Le, A. T., Kako, S., Butaney, M., Ercan, D., Mahale, S., Davies, K. D., Aisner, D. L., Pilling, A. B.,
CrossRef
Pubmed
Google scholar
|
[47] |
Olive, V., Bennett, M. J., Walker, J. C., Ma, C., Jiang, I., Cordon-Cardo, C., Li, Q.-J., Lowe, S. W., Hannon, G. J. and He, L. (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev., 23, 2839–2849
CrossRef
Pubmed
Google scholar
|
[48] |
Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., Peters, H., Walter, T., Stojkovic, P., Evans, J.,
CrossRef
Pubmed
Google scholar
|
[49] |
Mendoza, M. C, Er, E. E & Blenis, J. (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci., 36(6), 320–328
CrossRef
Pubmed
Google scholar
|
[50] |
Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S.-M., García-Echeverría, C., Schultz, P. G. and Reddy, V. A. (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl. Acad. Sci. USA, 106, 268–273
CrossRef
Pubmed
Google scholar
|
[51] |
Carracedo, A. and Pandolfi, P. P. (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene, 27, 5527–5541
CrossRef
Pubmed
Google scholar
|
[52] |
Dienstmann, R., Rodon, J., Serra, V. and Tabernero, J. (2014) Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol. Cancer Ther., 13, 1021–1031
CrossRef
Pubmed
Google scholar
|
[53] |
Bertacchini, J., Heidari, N., Mediani, L., Capitani, S., Shahjahani, M., Ahmadzadeh, A. and Saki, N. (2015) Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci., 72, 2337–2347
CrossRef
Pubmed
Google scholar
|
[54] |
Jameson, J. L. and Longo, D. L. (2015) Precision medicine — personalized, problematic, and promising. N. Engl. J. Med., 372, 2229–2234
CrossRef
Pubmed
Google scholar
|
[55] |
Lillie, E.O., Patay, B., Diamant, J., Issell, B., Topol, E.J., Schork, N. J. (2011) The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Pers. Med., 8, 161–173
CrossRef
Pubmed
Google scholar
|
[56] |
Leggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D. and Davey, R. P. (2013) Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front. Genet., 4, 288
CrossRef
Pubmed
Google scholar
|
[57] |
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. and Durbin, R. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079
CrossRef
Pubmed
Google scholar
|
[58] |
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M.,
CrossRef
Pubmed
Google scholar
|
[59] |
Evani, U. S., Challis, D., Yu, J., Jackson, A. R., Paithankar, S., Bainbridge, M. N., Jakkamsetti, A., Pham, P., Coarfa, C., Milosavljevic, A.,
CrossRef
Pubmed
Google scholar
|
[60] |
Wang, K., Li, M., Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164
CrossRef
Google scholar
|
[61] |
Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S.,
CrossRef
Pubmed
Google scholar
|
[62] |
Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N. and Stratton, M. R. (2004) A census of human cancer genes. Nat. Rev. Cancer, 4, 177–183
CrossRef
Pubmed
Google scholar
|
[63] |
Quinlan, A. R. and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842
CrossRef
Pubmed
Google scholar
|
[64] |
Schwarz, J. M., Rödelsperger, C., Schuelke, M. and Seelow, D. (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods, 7, 575–576
CrossRef
Pubmed
Google scholar
|
[65] |
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T.(2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res.42,W252–W258
CrossRef
Pubmed
Google scholar
|
[66] |
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem., 25, 1605–1612
CrossRef
Pubmed
Google scholar
|
[67] |
Barturen, G., Rueda, A., Hamberg, M., Alganza, A., Lebron, R., Kotsyfakis, M., Shi, B.-J., Koppers-Lalic, D. and Hackenberg, M. (2014) sRNAbench: profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments. Methods Next Gener. Seq., 1, 21–31
CrossRef
Google scholar
|
[68] |
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
CrossRef
Pubmed
Google scholar
|
[69] |
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106
CrossRef
Pubmed
Google scholar
|
[70] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef
Pubmed
Google scholar
|
[71] |
Hsu, S.-D., Tseng, Y.-T., Shrestha, S., Lin, Y.-L., Khaleel, A., Chou, C.-H., Chu, C.-F., Huang, H.-Y., Lin, C.-M., Ho, S.-Y.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |