Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia

Saad M Khan , Jason E Denney , Michael X Wang , Dong Xu

Quant. Biol. ›› 2018, Vol. 6 ›› Issue (1) : 85 -97.

PDF (1628KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (1) : 85 -97. DOI: 10.1007/s40484-017-0125-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia

Author information +
History +
PDF (1628KB)

Abstract

Background: Clinical studies and genetic analyses have revealed that juvenile myelomonocytic leukemia (JMML) is caused by somatic and/or germline mutations of genes involved in the RAS/MAPK signalling pathway. Given the vastly different clinical prognosis among individual patients that have had this disease, mutations in genes of other pathways may be involved.

Methods: In this study, we conducted whole-exome and cancer-panel sequencing analyses on a bone marrow sample from a 2-year old juvenile myelomonocytic leukemia patient. We also measured the microRNA profile of the same patient’s bone marrow sample and the results were compared with the normal mature monocytic cells from the pooled peripheral blood.

Results: We identified additional novel mutations in the PI3K/AKT pathway and verified with a cancer panel targeted sequencing. We have confirmed the previously tested PTPN11 gene mutation (exon 3 181G>T) in the same sample and identified new nonsynonymous mutations in NTRK1, HMGA2, MLH3, MYH9 and AKT1 genes. Many of the microRNAs found to be differentially expressed are known to act as oncogenic MicroRNAs (onco-MicroRNAs or oncomiRs), whose target genes are enriched in the PI3K/AKT signalling pathway.

Conclusions: Our study suggests an alternative mechanism for JMML pathogenesis in addition to RAS/MAPK pathway. This discovery may provide new genetic markers for diagnosis and new therapeutic targets for JMML patients in the future.

Graphical abstract

Keywords

single-cell / RNA-Seq / differential expression

Cite this article

Download citation ▾
Saad M Khan, Jason E Denney, Michael X Wang, Dong Xu. Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia. Quant. Biol., 2018, 6(1): 85-97 DOI:10.1007/s40484-017-0125-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arber, D. A., Orazi, A, Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., Vardiman, J. W. (2016) The 2016 revision to the WorldHealth Organization classification of myeloid neoplasms and acute leukemia. Blood, 127, 2391–405

[2]

Beurlet, S., Chomienne, C. and Padua, R. A. (2013) Engineering mouse models with myelodysplastic syndrome human candidate genes; how relevant are they? Haematologica, 98, 10–22

[3]

Loh, M. L. (2011) Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br. J. Haematol., 152, 677–687

[4]

Basu, T. N., Gutmann, D. H., Fletcher, J. A., Glover, T. W., Collins, F. S. and Downward, J. (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature, 356, 713–715

[5]

Patil, S. and Chamberlain, R. S. (2012) Neoplasms associated with germline and somatic NF1 gene mutations. Oncologist, 17, 101–116

[6]

Loh, M. L., Vattikuti, S., Schubbert, S., Reynolds, M. G., Carlson, E., Lieuw, K. H., Cheng, J. W., Lee, C. M., Stokoe, D., Bonifas, J. M., (2004) Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 103, 2325–2331

[7]

Sugimoto, Y., Muramatsu, H., Makishima, H., Prince, C., Jankowska, A. M., Yoshida, N., Xu, Y., Nishio, N., Hama, A., Yagasaki, H., (2010) Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations. Br. J. Haematol., 150, 83–87

[8]

Gratias, E. J., Liu, Y. L., Meleth, S., Castleberry, R. P. and Emanuel, P. D. (2005) Activating FLT3 mutations are rare in children with juvenile myelomonocytic leukemia. Pediatr. Blood Cancer, 44, 142–146

[9]

Hirabayashi, S., Flotho, C., Moetter, J., Heuser, M.,Hasle, H., Gruhn, B., Klingebiel, T., Thol, F., Schlegelberger, B., Baumann, I., (2012) Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML. Blood, 119, e96–e99

[10]

Sakaguchi, H., Okuno, Y., Muramatsu, H., Yoshida, K., Shiraishi, Y., Takahashi, M., Kon, A., Sanada, M., Chiba, K., Tanaka, H., (2013) Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat. Genet., 45, 937–941

[11]

Olk-Batz, C., Poetsch, A. R., Nöllke, P., Claus, R., Zucknick, M., Sandrock, I., Witte, T., Strahm, B., Hasle, H., Zecca, M., (2011) Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood, 117, 4871–4880

[12]

Lauchle, J. O. and Braun, B. S. (2010) Targeting RAS Signaling Pathways in Juvenile Myelomonocytic Leukemia (JMML). In Molecularly Targeted Therapy For Childhood Cancer. Houghton, P. J., Arceci, R. J., eds. pp. 123–138 New York: Springer

[13]

Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward, P. A., Braxton, A., Beuten, J., Xia, F., Niu, Z., (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med., 369, 1502–1511

[14]

Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26, 589–595

[15]

Reid, J. G., Carroll, A., Veeraraghavan, N., Dahdouli, M., Sundquist, A., English, A., Bainbridge, M., White, S., Salerno, W., Buhay, C., (2014) Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline. BMC Bioinformatics, 15, 30

[16]

Kumar, P., Henikoff, S. and Ng, P. C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc., 4, 1073–1081

[17]

Yin, T., Cook, D., Lawrence, M. (2012) ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol., 13, R77

[18]

Yates, C. M., Filippis, I., Kelley, L. A. and Sternberg, M. J. (2014) SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. J. Mol. Biol., 426, 2692–2701

[19]

Venselaar, H., te Beek. T. A. H, Kuipers, R. K. P., Hekkelman, M. L., Vriend, G. (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 11, 548

[20]

Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res., 43, D213–D221

[21]

Laskowski, R. A. and Swindells, M. B. (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 51, 2778–2786

[22]

Esquela-Kerscher, A. and Slack, F. J. (2006) Oncomirs– microRNAs with a role in cancer. Nat. Rev. Cancer, 6, 259–269

[23]

Xu, X.-M., Wang, X.-B., Chen, M.-M., Liu, T., Li, Y.-X., Jia, W.-H., Liu, M., Li, X. and Tang, H. (2012) MicroRNA-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Lett., 322, 148–158

[24]

Wu, Q., Yang, Z., An, Y., Hu, H., Yin, J., Zhang, P., Nie, Y., Wu, K., Shi, Y. and Fan, D. (2014) MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis., 5, e1144

[25]

Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA, 101, 2999–3004

[26]

Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA, 102, 13944–13949

[27]

Chen, Z., Zeng, H., Guo, Y., Liu, P., Pan, H., Deng, A. and Hu, J. (2010) miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J. Exp. Clin. Cancer Res., 29, 151

[28]

Ostenfeld, M. S., Bramsen, J. B., Lamy, P., Villadsen, S. B., Fristrup, N., Sørensen, K. D., Ulhøi, B., Borre, M., Kjems, J., Dyrskjøt, L., (2010) miR-145 induces caspase-dependent and-independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene, 29, 1073–1084

[29]

Feng, R., Chen, X., Yu, Y., Su, L., Yu, B., Li, J., Cai, Q., Yan, M., Liu, B. and Zhu, Z. (2010) miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett., 298, 50–63

[30]

Sasahira, T., Kurihara, M., Bhawal, U. K., Ueda, N., Shimomoto, T., Yamamoto, K., Kirita, T. and Kuniyasu, H. (2012) Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br. J. Cancer, 107, 700–706

[31]

Zhang, P., Ji, D.-B., Han, H.-B., Shi, Y.-F., Du, C.-Z. and Gu, J. (2014) Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World J. Gastroenterol., 20, 12241–12248

[32]

Jiang, L., Huang, Q., Zhang, S., Zhang, Q., Chang, J., Qiu, X. and Wang, E. (2010) Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer, 10, 318

[33]

Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D. and Slack, F. J. (2005) RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647

[34]

Vlachos, I. S., Zagganas, K., Paraskevopoulou, M. D., Georgakilas, G., Karagkouni, D., Vergoulis, T., Dalamagas, T. and Hatzigeorgiou, A. G. (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res., 43, W460–466

[35]

Kolde, R. (2015). pheatmap: Pretty heatmaps [Software].

[36]

Green, B. D., Jabbour, A. M., Sandow, J. J., Riffkin, C. D., Masouras, D., Daunt, C. P., Salmanidis, M., Brumatti, G., Hemmings, B. A., Guthridge, M. A., (2013) Akt1 is the principal Akt isoform regulating apoptosis in limiting cytokine concentrations. Cell Death Differ., 20, 1341–1349

[37]

Carpten, J. D., Faber, A. L., Horn, C., Donoho, G. P., Briggs, S. L., Robbins, C. M., Hostetter, G., Boguslawski, S., Moses, T. Y., Savage, S., (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448, 439–444

[38]

Lipkin, S. M., Wang, V., Jacoby, R., Banerjee-Basu, S., Baxevanis, A. D., Lynch, H. T., Elliott, R. M. and Collins, F. S. (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat. Genet., 24, 27–35

[39]

Wu, Y., Berends, M. J. W., Sijmons, R. H., Mensink, R. G. J., Verlind, E., Kooi, K. A., van der Sluis, T., Kempinga, C., van der Zee, A. G., Hollema, H., (2001) A role for MLH3 in hereditary nonpolyposis colorectal cancer. Nat. Genet., 29, 137–138

[40]

Hienonen, T., Laiho, P., Salovaara, R., Mecklin, J.-P., Järvinen, H., Sistonen, P., Peltomäki, P., Lehtonen, R., Nupponen, N. N., Launonen, V., (2003) Little evidence for involvement of MLH3 in colorectal cancer predisposition. Int. J. Cancer, 106, 292–296

[41]

Korhonen, M. K., Vuorenmaa, E. and Nyström, M. (2008) The first functional study of MLH3 mutations found in cancer patients. Gene. Chromosome. Canc., 47, 803–809

[42]

Bostrom, M. A. and Freedman, B. I. (2010) The spectrum of MYH9-associated nephropathy. Clin. J. Am. Soc. Nephrol., 5, 1107–1113

[43]

Katono, K., Sato, Y., Jiang, S.-X., Kobayashi, M., Nagashio, R., Ryuge, S., Fukuda, E., Goshima, N., Satoh, Y., Saegusa, M., (2015) Prognostic significance of MYH9 expression in resected non-small cell lung cancer. PLoS One, 10, e0121460

[44]

Mayr, C., Hemann, M. T., Bartel, D. P. (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315,1576–1579

[45]

Young, A. R. J. and Narita, M. (2007) Oncogenic HMGA2: short or small? Genes Dev., 21, 1005–1009

[46]

Vaishnavi, A., Capelletti, M., Le, A. T., Kako, S., Butaney, M., Ercan, D., Mahale, S., Davies, K. D., Aisner, D. L., Pilling, A. B., (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med., 19, 1469–1472

[47]

Olive, V., Bennett, M. J., Walker, J. C., Ma, C., Jiang, I., Cordon-Cardo, C., Li, Q.-J., Lowe, S. W., Hannon, G. J. and He, L. (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev., 23, 2839–2849

[48]

Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., Peters, H., Walter, T., Stojkovic, P., Evans, J., (2006) The role of PI3K/AKT, MAPK/ERK and NFκβ signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum. Mol. Genet., 15, 1894–1913

[49]

Mendoza, M. C, Er, E. E & Blenis, J. (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci., 36(6), 320–328

[50]

Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S.-M., García-Echeverría, C., Schultz, P. G. and Reddy, V. A. (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl. Acad. Sci. USA, 106, 268–273

[51]

Carracedo, A. and Pandolfi, P. P. (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene, 27, 5527–5541

[52]

Dienstmann, R., Rodon, J., Serra, V. and Tabernero, J. (2014) Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol. Cancer Ther., 13, 1021–1031

[53]

Bertacchini, J., Heidari, N., Mediani, L., Capitani, S., Shahjahani, M., Ahmadzadeh, A. and Saki, N. (2015) Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci., 72, 2337–2347

[54]

Jameson, J. L. and Longo, D. L. (2015) Precision medicine — personalized, problematic, and promising. N. Engl. J. Med., 372, 2229–2234

[55]

Lillie, E.O., Patay, B., Diamant, J., Issell, B., Topol, E.J., Schork, N. J. (2011) The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Pers. Med., 8, 161–173

[56]

Leggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D. and Davey, R. P. (2013) Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front. Genet., 4, 288

[57]

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. and Durbin, R. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079

[58]

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 20, 1297–1303

[59]

Evani, U. S., Challis, D., Yu, J., Jackson, A. R., Paithankar, S., Bainbridge, M. N., Jakkamsetti, A., Pham, P., Coarfa, C., Milosavljevic, A., (2012) Atlas2 Cloud: a framework for personal genome analysis in the cloud. BMC Genomics, 13, S19

[60]

Wang, K., Li, M., Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164

[61]

Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res., 43, D805–D811

[62]

Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N. and Stratton, M. R. (2004) A census of human cancer genes. Nat. Rev. Cancer, 4, 177–183

[63]

Quinlan, A. R. and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842

[64]

Schwarz, J. M., Rödelsperger, C., Schuelke, M. and Seelow, D. (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods, 7, 575–576

[65]

Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T.(2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res.42,W252–W258

[66]

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem., 25, 1605–1612

[67]

Barturen, G., Rueda, A., Hamberg, M., Alganza, A., Lebron, R., Kotsyfakis, M., Shi, B.-J., Koppers-Lalic, D. and Hackenberg, M. (2014) sRNAbench: profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments. Methods Next Gener. Seq., 1, 21–31

[68]

Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140

[69]

Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106

[70]

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504

[71]

Hsu, S.-D., Tseng, Y.-T., Shrestha, S., Lin, Y.-L., Khaleel, A., Chou, C.-H., Chu, C.-F., Huang, H.-Y., Lin, C.-M., Ho, S.-Y., (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res., 42, D78–D85

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1628KB)

Supplementary files

QB-17125-OF-XD_suppl_1

QB-17125-OF-XD_suppl_2

QB-17125-OF-XD_suppl_3

QB-17125-OF-XD_suppl_4

QB-17125-OF-XD_suppl_6

1509

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/