Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia

Saad M Khan, Jason E Denney, Michael X Wang, Dong Xu

PDF(1628 KB)
PDF(1628 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (1) : 85-97. DOI: 10.1007/s40484-017-0125-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia

Author information +
History +

Abstract

Background: Clinical studies and genetic analyses have revealed that juvenile myelomonocytic leukemia (JMML) is caused by somatic and/or germline mutations of genes involved in the RAS/MAPK signalling pathway. Given the vastly different clinical prognosis among individual patients that have had this disease, mutations in genes of other pathways may be involved.

Methods: In this study, we conducted whole-exome and cancer-panel sequencing analyses on a bone marrow sample from a 2-year old juvenile myelomonocytic leukemia patient. We also measured the microRNA profile of the same patient’s bone marrow sample and the results were compared with the normal mature monocytic cells from the pooled peripheral blood.

Results: We identified additional novel mutations in the PI3K/AKT pathway and verified with a cancer panel targeted sequencing. We have confirmed the previously tested PTPN11 gene mutation (exon 3 181G>T) in the same sample and identified new nonsynonymous mutations in NTRK1, HMGA2, MLH3, MYH9 and AKT1 genes. Many of the microRNAs found to be differentially expressed are known to act as oncogenic MicroRNAs (onco-MicroRNAs or oncomiRs), whose target genes are enriched in the PI3K/AKT signalling pathway.

Conclusions: Our study suggests an alternative mechanism for JMML pathogenesis in addition to RAS/MAPK pathway. This discovery may provide new genetic markers for diagnosis and new therapeutic targets for JMML patients in the future.

Graphical abstract

Keywords

single-cell / RNA-Seq / differential expression

Cite this article

Download citation ▾
Saad M Khan, Jason E Denney, Michael X Wang, Dong Xu. Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia. Quant. Biol., 2018, 6(1): 85‒97 https://doi.org/10.1007/s40484-017-0125-2

References

[1]
Arber, D. A., Orazi, A, Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., Vardiman, J. W. (2016) The 2016 revision to the WorldHealth Organization classification of myeloid neoplasms and acute leukemia. Blood, 127, 2391–405
[2]
Beurlet, S., Chomienne, C. and Padua, R. A. (2013) Engineering mouse models with myelodysplastic syndrome human candidate genes; how relevant are they? Haematologica, 98, 10–22
CrossRef Pubmed Google scholar
[3]
Loh, M. L. (2011) Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br. J. Haematol., 152, 677–687
CrossRef Pubmed Google scholar
[4]
Basu, T. N., Gutmann, D. H., Fletcher, J. A., Glover, T. W., Collins, F. S. and Downward, J. (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature, 356, 713–715
CrossRef Pubmed Google scholar
[5]
Patil, S. and Chamberlain, R. S. (2012) Neoplasms associated with germline and somatic NF1 gene mutations. Oncologist, 17, 101–116
CrossRef Pubmed Google scholar
[6]
Loh, M. L., Vattikuti, S., Schubbert, S., Reynolds, M. G., Carlson, E., Lieuw, K. H., Cheng, J. W., Lee, C. M., Stokoe, D., Bonifas, J. M., (2004) Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 103, 2325–2331
CrossRef Pubmed Google scholar
[7]
Sugimoto, Y., Muramatsu, H., Makishima, H., Prince, C., Jankowska, A. M., Yoshida, N., Xu, Y., Nishio, N., Hama, A., Yagasaki, H., (2010) Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations. Br. J. Haematol., 150, 83–87
CrossRef Pubmed Google scholar
[8]
Gratias, E. J., Liu, Y. L., Meleth, S., Castleberry, R. P. and Emanuel, P. D. (2005) Activating FLT3 mutations are rare in children with juvenile myelomonocytic leukemia. Pediatr. Blood Cancer, 44, 142–146
CrossRef Pubmed Google scholar
[9]
Hirabayashi, S., Flotho, C., Moetter, J., Heuser, M.,Hasle, H., Gruhn, B., Klingebiel, T., Thol, F., Schlegelberger, B., Baumann, I., (2012) Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML. Blood, 119, e96–e99
CrossRef Pubmed Google scholar
[10]
Sakaguchi, H., Okuno, Y., Muramatsu, H., Yoshida, K., Shiraishi, Y., Takahashi, M., Kon, A., Sanada, M., Chiba, K., Tanaka, H., (2013) Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat. Genet., 45, 937–941
CrossRef Pubmed Google scholar
[11]
Olk-Batz, C., Poetsch, A. R., Nöllke, P., Claus, R., Zucknick, M., Sandrock, I., Witte, T., Strahm, B., Hasle, H., Zecca, M., (2011) Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood, 117, 4871–4880
CrossRef Pubmed Google scholar
[12]
Lauchle, J. O. and Braun, B. S. (2010) Targeting RAS Signaling Pathways in Juvenile Myelomonocytic Leukemia (JMML). In Molecularly Targeted Therapy For Childhood Cancer. Houghton, P. J., Arceci, R. J., eds. pp. 123–138 New York: Springer
[13]
Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward, P. A., Braxton, A., Beuten, J., Xia, F., Niu, Z., (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med., 369, 1502–1511
CrossRef Pubmed Google scholar
[14]
Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26, 589–595
CrossRef Pubmed Google scholar
[15]
Reid, J. G., Carroll, A., Veeraraghavan, N., Dahdouli, M., Sundquist, A., English, A., Bainbridge, M., White, S., Salerno, W., Buhay, C., (2014) Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline. BMC Bioinformatics, 15, 30
CrossRef Pubmed Google scholar
[16]
Kumar, P., Henikoff, S. and Ng, P. C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc., 4, 1073–1081
CrossRef Pubmed Google scholar
[17]
Yin, T., Cook, D., Lawrence, M. (2012) ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol., 13, R77
CrossRef Pubmed Google scholar
[18]
Yates, C. M., Filippis, I., Kelley, L. A. and Sternberg, M. J. (2014) SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. J. Mol. Biol., 426, 2692–2701
CrossRef Pubmed Google scholar
[19]
Venselaar, H., te Beek. T. A. H, Kuipers, R. K. P., Hekkelman, M. L., Vriend, G. (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 11, 548
Pubmed
[20]
Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res., 43, D213–D221
CrossRef Pubmed Google scholar
[21]
Laskowski, R. A. and Swindells, M. B. (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 51, 2778–2786
CrossRef Pubmed Google scholar
[22]
Esquela-Kerscher, A. and Slack, F. J. (2006) Oncomirs– microRNAs with a role in cancer. Nat. Rev. Cancer, 6, 259–269
CrossRef Pubmed Google scholar
[23]
Xu, X.-M., Wang, X.-B., Chen, M.-M., Liu, T., Li, Y.-X., Jia, W.-H., Liu, M., Li, X. and Tang, H. (2012) MicroRNA-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Lett., 322, 148–158
CrossRef Pubmed Google scholar
[24]
Wu, Q., Yang, Z., An, Y., Hu, H., Yin, J., Zhang, P., Nie, Y., Wu, K., Shi, Y. and Fan, D. (2014) MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis., 5, e1144
CrossRef Pubmed Google scholar
[25]
Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA, 101, 2999–3004
CrossRef Pubmed Google scholar
[26]
Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA, 102, 13944–13949
CrossRef Pubmed Google scholar
[27]
Chen, Z., Zeng, H., Guo, Y., Liu, P., Pan, H., Deng, A. and Hu, J. (2010) miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J. Exp. Clin. Cancer Res., 29, 151
CrossRef Pubmed Google scholar
[28]
Ostenfeld, M. S., Bramsen, J. B., Lamy, P., Villadsen, S. B., Fristrup, N., Sørensen, K. D., Ulhøi, B., Borre, M., Kjems, J., Dyrskjøt, L., (2010) miR-145 induces caspase-dependent and-independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene, 29, 1073–1084
CrossRef Pubmed Google scholar
[29]
Feng, R., Chen, X., Yu, Y., Su, L., Yu, B., Li, J., Cai, Q., Yan, M., Liu, B. and Zhu, Z. (2010) miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett., 298, 50–63
CrossRef Pubmed Google scholar
[30]
Sasahira, T., Kurihara, M., Bhawal, U. K., Ueda, N., Shimomoto, T., Yamamoto, K., Kirita, T. and Kuniyasu, H. (2012) Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br. J. Cancer, 107, 700–706
CrossRef Pubmed Google scholar
[31]
Zhang, P., Ji, D.-B., Han, H.-B., Shi, Y.-F., Du, C.-Z. and Gu, J. (2014) Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World J. Gastroenterol., 20, 12241–12248
CrossRef Pubmed Google scholar
[32]
Jiang, L., Huang, Q., Zhang, S., Zhang, Q., Chang, J., Qiu, X. and Wang, E. (2010) Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer, 10, 318
CrossRef Pubmed Google scholar
[33]
Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D. and Slack, F. J. (2005) RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647
CrossRef Pubmed Google scholar
[34]
Vlachos, I. S., Zagganas, K., Paraskevopoulou, M. D., Georgakilas, G., Karagkouni, D., Vergoulis, T., Dalamagas, T. and Hatzigeorgiou, A. G. (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res., 43, W460–466
CrossRef Pubmed Google scholar
[35]
Kolde, R. (2015). pheatmap: Pretty heatmaps [Software]. https://CRAN.R-project.org/package=pheatmap
[36]
Green, B. D., Jabbour, A. M., Sandow, J. J., Riffkin, C. D., Masouras, D., Daunt, C. P., Salmanidis, M., Brumatti, G., Hemmings, B. A., Guthridge, M. A., (2013) Akt1 is the principal Akt isoform regulating apoptosis in limiting cytokine concentrations. Cell Death Differ., 20, 1341–1349
CrossRef Pubmed Google scholar
[37]
Carpten, J. D., Faber, A. L., Horn, C., Donoho, G. P., Briggs, S. L., Robbins, C. M., Hostetter, G., Boguslawski, S., Moses, T. Y., Savage, S., (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448, 439–444
CrossRef Pubmed Google scholar
[38]
Lipkin, S. M., Wang, V., Jacoby, R., Banerjee-Basu, S., Baxevanis, A. D., Lynch, H. T., Elliott, R. M. and Collins, F. S. (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat. Genet., 24, 27–35
CrossRef Pubmed Google scholar
[39]
Wu, Y., Berends, M. J. W., Sijmons, R. H., Mensink, R. G. J., Verlind, E., Kooi, K. A., van der Sluis, T., Kempinga, C., van der Zee, A. G., Hollema, H., (2001) A role for MLH3 in hereditary nonpolyposis colorectal cancer. Nat. Genet., 29, 137–138
CrossRef Pubmed Google scholar
[40]
Hienonen, T., Laiho, P., Salovaara, R., Mecklin, J.-P., Järvinen, H., Sistonen, P., Peltomäki, P., Lehtonen, R., Nupponen, N. N., Launonen, V., (2003) Little evidence for involvement of MLH3 in colorectal cancer predisposition. Int. J. Cancer, 106, 292–296
CrossRef Pubmed Google scholar
[41]
Korhonen, M. K., Vuorenmaa, E. and Nyström, M. (2008) The first functional study of MLH3 mutations found in cancer patients. Gene. Chromosome. Canc., 47, 803–809
CrossRef Pubmed Google scholar
[42]
Bostrom, M. A. and Freedman, B. I. (2010) The spectrum of MYH9-associated nephropathy. Clin. J. Am. Soc. Nephrol., 5, 1107–1113
CrossRef Pubmed Google scholar
[43]
Katono, K., Sato, Y., Jiang, S.-X., Kobayashi, M., Nagashio, R., Ryuge, S., Fukuda, E., Goshima, N., Satoh, Y., Saegusa, M., (2015) Prognostic significance of MYH9 expression in resected non-small cell lung cancer. PLoS One, 10, e0121460
CrossRef Pubmed Google scholar
[44]
Mayr, C., Hemann, M. T., Bartel, D. P. (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315,1576–1579
CrossRef Pubmed Google scholar
[45]
Young, A. R. J. and Narita, M. (2007) Oncogenic HMGA2: short or small? Genes Dev., 21, 1005–1009
CrossRef Pubmed Google scholar
[46]
Vaishnavi, A., Capelletti, M., Le, A. T., Kako, S., Butaney, M., Ercan, D., Mahale, S., Davies, K. D., Aisner, D. L., Pilling, A. B., (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med., 19, 1469–1472
CrossRef Pubmed Google scholar
[47]
Olive, V., Bennett, M. J., Walker, J. C., Ma, C., Jiang, I., Cordon-Cardo, C., Li, Q.-J., Lowe, S. W., Hannon, G. J. and He, L. (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev., 23, 2839–2849
CrossRef Pubmed Google scholar
[48]
Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., Peters, H., Walter, T., Stojkovic, P., Evans, J., (2006) The role of PI3K/AKT, MAPK/ERK and NFκβ signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum. Mol. Genet., 15, 1894–1913
CrossRef Pubmed Google scholar
[49]
Mendoza, M. C, Er, E. E & Blenis, J. (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci., 36(6), 320–328
CrossRef Pubmed Google scholar
[50]
Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S.-M., García-Echeverría, C., Schultz, P. G. and Reddy, V. A. (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl. Acad. Sci. USA, 106, 268–273
CrossRef Pubmed Google scholar
[51]
Carracedo, A. and Pandolfi, P. P. (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene, 27, 5527–5541
CrossRef Pubmed Google scholar
[52]
Dienstmann, R., Rodon, J., Serra, V. and Tabernero, J. (2014) Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol. Cancer Ther., 13, 1021–1031
CrossRef Pubmed Google scholar
[53]
Bertacchini, J., Heidari, N., Mediani, L., Capitani, S., Shahjahani, M., Ahmadzadeh, A. and Saki, N. (2015) Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci., 72, 2337–2347
CrossRef Pubmed Google scholar
[54]
Jameson, J. L. and Longo, D. L. (2015) Precision medicine — personalized, problematic, and promising. N. Engl. J. Med., 372, 2229–2234
CrossRef Pubmed Google scholar
[55]
Lillie, E.O., Patay, B., Diamant, J., Issell, B., Topol, E.J., Schork, N. J. (2011) The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Pers. Med., 8, 161–173
CrossRef Pubmed Google scholar
[56]
Leggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D. and Davey, R. P. (2013) Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front. Genet., 4, 288
CrossRef Pubmed Google scholar
[57]
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. and Durbin, R. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079
CrossRef Pubmed Google scholar
[58]
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 20, 1297–1303
CrossRef Pubmed Google scholar
[59]
Evani, U. S., Challis, D., Yu, J., Jackson, A. R., Paithankar, S., Bainbridge, M. N., Jakkamsetti, A., Pham, P., Coarfa, C., Milosavljevic, A., (2012) Atlas2 Cloud: a framework for personal genome analysis in the cloud. BMC Genomics, 13, S19
CrossRef Pubmed Google scholar
[60]
Wang, K., Li, M., Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164
CrossRef Google scholar
[61]
Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res., 43, D805–D811
CrossRef Pubmed Google scholar
[62]
Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N. and Stratton, M. R. (2004) A census of human cancer genes. Nat. Rev. Cancer, 4, 177–183
CrossRef Pubmed Google scholar
[63]
Quinlan, A. R. and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842
CrossRef Pubmed Google scholar
[64]
Schwarz, J. M., Rödelsperger, C., Schuelke, M. and Seelow, D. (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods, 7, 575–576
CrossRef Pubmed Google scholar
[65]
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T.(2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res.42,W252–W258
CrossRef Pubmed Google scholar
[66]
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem., 25, 1605–1612
CrossRef Pubmed Google scholar
[67]
Barturen, G., Rueda, A., Hamberg, M., Alganza, A., Lebron, R., Kotsyfakis, M., Shi, B.-J., Koppers-Lalic, D. and Hackenberg, M. (2014) sRNAbench: profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments. Methods Next Gener. Seq., 1, 21–31
CrossRef Google scholar
[68]
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
CrossRef Pubmed Google scholar
[69]
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106
CrossRef Pubmed Google scholar
[70]
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef Pubmed Google scholar
[71]
Hsu, S.-D., Tseng, Y.-T., Shrestha, S., Lin, Y.-L., Khaleel, A., Chou, C.-H., Chu, C.-F., Huang, H.-Y., Lin, C.-M., Ho, S.-Y., (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res., 42, D78–D85
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at 10.1007/s40484-017-0125-2.

ACKNOWLEDGEMENTS

This work was partially supported by the Mizzou Advantage Program at the University of Missouri and National Institute of Health (R01-GM100701). The authors would like to thank the Informatics Core of the University of Missouri for providing the computing resources of this work. The authors would also like to thank Mr. Miqdad O. Dhariwala for providing access to and help with Canvas image manipulation software.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Saad M Khan, Jason E Denney, Michael X Wang and Dong Xu declare they that have no conflict of interests.
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1628 KB)

Accesses

Citations

Detail

Sections
Recommended

/