Cap-seq reveals complicated miRNA transcriptional mechanisms in C. elegans and mouse
Jiao Chen, Dongxiao Zhu, Yanni Sun
Cap-seq reveals complicated miRNA transcriptional mechanisms in C. elegans and mouse
Background: MicroRNAs (miRNAs) regulate target gene expression at post-transcriptional level. Intense research has been conducted for miRNA identification and the target finding. However, much less is known about the transcriptional regulation of miRNA genes themselves. Recently, a special group of pre-miRNAs that are produced directly by transcription without Drosha processing were validated in mouse, indicating the complexity of miRNA biogenesis.
Methods: In this work, we detect clusters of aligned Cap-seq reads to find the transcription start sites (TSSs) for intergenic miRNAs and study their transcriptional regulation in Caenorhabditis elegans and mouse.
Results: In both species, we have identified a class of special pre-miRNAs whose 5′ ends are capped, and are most probably generated directly by transcription. Furthermore, we distinguished another class of special pre-miRNAs that are 5′-capped but are also part of longer primary miRNAs, suggesting they may have more than one transcription mechanism. We detected multiple cap reads peaks within miRNA clusters in C. elegans. We surmised that the miRNAs in a cluster may either be transcribed independently or be re-capped during the microprocessor cleavage process. We also observed that H3K4me3 and Pol II are enriched at those identified miRNA TSSs.
Conclusions: The Cap-seq datasets enabled us to annotate the primary TSSs for miRNA genes with high resolution. Special class of 5′-capped pre-miRNAs have been identified in both C. elegans and mouse. The capping patter of miRNAs in a cluster indicate that clustered miRNA transcripts probably undergo a re-capping procedure during the microprocessor cleavage process.
miRNA / Cap-seq / transcriptional regulation
[1] |
Kim, V. N. and Nam, J.-W. (2006) Genomics of microRNA. Trends Genet., 22, 165–173
CrossRef
Pubmed
Google scholar
|
[2] |
Krol, J., Loedige, I. and Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 11, 597–610
Pubmed
|
[3] |
Berezikov, E. (2011) Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet., 12, 846–860
CrossRef
Pubmed
Google scholar
|
[4] |
Mallanna, S. K. and Rizzino, A. (2010) Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev. Biol., 344, 16–25
CrossRef
Pubmed
Google scholar
|
[5] |
Collins, F. S. and Varmus, H. (2015) A new initiative on precision medicine. N. Engl. J. Med., 372, 793–795
CrossRef
Pubmed
Google scholar
|
[6] |
Larry Jameson, J. and Longo, D. L. (2015) Precision medicine—personalized, problematic, and promising. Obstet. Gynecol. Surv., 70, 612–614
CrossRef
Google scholar
|
[7] |
Lüscher, T. F. (2016) Frontiers in precision medicine: genes and their modulation by miRNAs. Eur. Heart J., 37, 3247–3250
CrossRef
Pubmed
Google scholar
|
[8] |
Willeit, P., Skroblin, P., Kiechl, S., Fernández-Hernando, C. and Mayr, M. (2016) Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? Eur. Heart J., 37, 3260–3266
CrossRef
Pubmed
Google scholar
|
[9] |
Matin, F., Jeet, V., Clements, J. A., Yousef, G. M. and Batra, J. (2016) MicroRNA theranostics in prostate cancer precision medicine. Clin. Chem., 62, 1318–1333
|
[10] |
Coronnello, C. and Benos, P. V. (2013) ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res., 41, W159– W164
CrossRef
Pubmed
Google scholar
|
[11] |
Yuan, C. and Sun, Y. (2013) RNA-CODE: a noncoding RNA classification tool for short reads in NGS data lacking reference genomes. PLoS One, 8, e77596
CrossRef
Pubmed
Google scholar
|
[12] |
Lei, J. and Sun, Y. (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics, 30, 2837–2839
CrossRef
Pubmed
Google scholar
|
[13] |
Lee, Y., Kim, M., Han, J., Yeom, K.-H., Lee, S., Baek, S. H. and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 23, 4051–4060
CrossRef
Pubmed
Google scholar
|
[14] |
Borchert, G. M., Lanier, W. and Davidson, B. L. (2006) RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol., 13, 1097–1101
CrossRef
Pubmed
Google scholar
|
[15] |
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S.,
CrossRef
Pubmed
Google scholar
|
[16] |
Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K. and Shiekhattar, R. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436, 740–744
CrossRef
Pubmed
Google scholar
|
[17] |
Kuehbacher, A., Urbich, C., Zeiher, A. M. and Dimmeler, S. (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res., 101, 59–68
CrossRef
Pubmed
Google scholar
|
[18] |
Berezikov, E., Chung, W.-J., Willis, J., Cuppen, E. and Lai, E. C. (2007) Mammalian mirtron genes. Mol. Cell, 28, 328–336
CrossRef
Pubmed
Google scholar
|
[19] |
Ruby, J. G., Jan, C. H. and Bartel, D. P. (2007) Intronic microRNA precursors that bypass Drosha processing. Nature, 448, 83–86
CrossRef
Pubmed
Google scholar
|
[20] |
Chang, T.-C., Pertea, M., Lee, S., Salzberg, S. L. and Mendell, J. T. (2015) Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms. Genome Res., 25, 1401–1409
CrossRef
Pubmed
Google scholar
|
[21] |
Dai, L., Chen, K., Youngren, B., Kulina, J., Yang, A., Guo, Z., Li, J., Yu, P. and Gu, S. (2016) Cytoplasmic Drosha activity generated by alternative splicing. Nucleic Acids Res., 44, 10454–10466
Pubmed
|
[22] |
Xie, M., Li, M., Vilborg, A., Lee, N., Shu, M.-D., Yartseva, V., Šestan, N. and Steitz, J. A. (2013) Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell, 155, 1568–1580
CrossRef
Pubmed
Google scholar
|
[23] |
Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. and Enright, A. J. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res., 34, D140–D144
CrossRef
Pubmed
Google scholar
|
[24] |
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
CrossRef
Pubmed
Google scholar
|
[25] |
Saini, H. K., Griffiths-Jones, S. and Enright, A. J. (2007) Genomic analysis of human microRNA transcripts. Proc. Natl. Acad. Sci. USA, 104, 17719–17724
CrossRef
Pubmed
Google scholar
|
[26] |
Ozsolak, F., Poling, L. L., Wang, Z., Liu, H., Liu, X. S., Roeder, R. G., Zhang, X., Song, J. S. and Fisher, D. E. (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev., 22, 3172–3183
CrossRef
Pubmed
Google scholar
|
[27] |
Corcoran, D. L., Pandit, K. V., Gordon, B., Bhattacharjee, A., Kaminski, N. and Benos, P. V. (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One, 4, e5279
CrossRef
Pubmed
Google scholar
|
[28] |
Chien, C.-H., Sun, Y.-M., Chang, W.-C., Chiang-Hsieh, P.-Y., Lee, T.-Y., Tsai, W.-C., Horng, J.-T., Tsou, A.-P. and Huang, H.-D. (2011) Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res., 39, 9345–9356
CrossRef
Pubmed
Google scholar
|
[29] |
Wang, G., Wang, Y., Shen, C., Huang, Y. W., Huang, K., Huang, T. H., Nephew, K. P., Li, L. and Liu, Y. (2010) RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation. PLoS One, 5, e13798
CrossRef
Pubmed
Google scholar
|
[30] |
Saini, H. K., Enright, A. J. and Griffiths-Jones, S. (2008) Annotation of mammalian primary microRNAs. BMC Genomics, 9, 564
CrossRef
Pubmed
Google scholar
|
[31] |
Kodzius, R., Kojima, M., Nishiyori, H., Nakamura, M., Fukuda, S., Tagami, M., Sasaki, D., Imamura, K., Kai, C., Harbers, M.,
CrossRef
Pubmed
Google scholar
|
[32] |
de Hoon, M. and Hayashizaki, Y. (2008) Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques, 44, 627–632
CrossRef
Pubmed
Google scholar
|
[33] |
Gu, W., Lee, H.-C., Chaves, D., Youngman, E. M., Pazour, G. J., Conte, D. Jr and Mello, C. C. (2012) CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell, 151, 1488–1500
CrossRef
Pubmed
Google scholar
|
[34] |
Corsi, A. K. (2006) A biochemist’s guide to Caenorhabditis elegans. Anal. Biochem., 359, 1–17
CrossRef
Pubmed
Google scholar
|
[35] |
Chen, R. A.-J., Down, T. A., Stempor, P., Chen, Q. B., Egelhofer, T. A., Hillier, L. W., Jeffers, T. E. and Ahringer, J. (2013) The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures. Genome Res., 23, 1339–1347
CrossRef
Pubmed
Google scholar
|
[36] |
Kruesi, W. S., Core, L. J., Waters, C. T., Lis, J. T. and Meyer, B. J. (2013) Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife, 2, e00808
CrossRef
Pubmed
Google scholar
|
[37] |
Spieth, J., Lawson, D., Davis, P., Williams, G. and Howe, K. (2014) Overview of gene structure in C. elegans. In WormBook, 1–18.
CrossRef
Pubmed
Google scholar
|
[38] |
Büssing, I., Yang, J. S. Jr, Lai, E. C. and Grosshans, H. (2010) The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila. EMBO J., 29, 1830–1839
CrossRef
Pubmed
Google scholar
|
[39] |
Li, N., You, X., Chen, T., Mackowiak, S. D., Friedländer, M. R., Weigt, M., Du, H., Gogol-Döring, A., Chang, Z., Dieterich, C.,
CrossRef
Pubmed
Google scholar
|
[40] |
Fejes-Toth, K., Sotirova, V., Sachidanandam, R., Assaf, G., Hannon, G. J., Kapranov, P., Foissac, S., Willingham, A. T., Duttagupta, R., Dumais, E.,
CrossRef
Pubmed
Google scholar
|
[41] |
Crooks, G. E., Hon, G., Chandonia, J.-M. and Brenner, S. E. (2004) WebLogo: a sequence logo generator. Genome Res., 14, 1188–1190
CrossRef
Pubmed
Google scholar
|
[42] |
Abeel, T., Van Parys, T., Saeys, Y., Galagan, J. and Van de Peer, Y. (2012) GenomeView: a next-generation genome browser. Nucleic Acids Res., 40, e12
CrossRef
Pubmed
Google scholar
|
[43] |
Bracht, J., Hunter, S., Eachus, R., Weeks, P. and Pasquinelli, A. E. (2004) Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA, 10, 1586–1594
CrossRef
Pubmed
Google scholar
|
[44] |
Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C. and Huang, T. H.-M. (2008) The functional consequences of alternative promoter use in mammalian genomes. Trends Genet., 24, 167–177
CrossRef
Pubmed
Google scholar
|
[45] |
Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F.,
CrossRef
Pubmed
Google scholar
|
[46] |
Sigova, A. A., Mullen, A. C., Molinie, B., Gupta, S., Orlando, D. A., Guenther, M. G., Almada, A. E., Lin, C., Sharp, P. A., Giallourakis, C. C.,
CrossRef
Pubmed
Google scholar
|
[47] |
Wei, Y., Zhang, S., Shang, S., Zhang, B., Li, S., Wang, X., Wang, F., Su, J., Wu, Q., Liu, H.,
CrossRef
Pubmed
Google scholar
|
[48] |
Biasiolo, M., Sales, G., Lionetti, M., Agnelli, L., Todoerti, K., Bisognin, A., Coppe, A., Romualdi, C., Neri, A. and Bortoluzzi, S. (2011) Impact of host genes and strand selection on miRNA and miRNA* expression. PLoS One, 6, e23854
CrossRef
Pubmed
Google scholar
|
[49] |
Meijer, H. A., Smith, E. M. and Bushell, M. (2014) Regulation of miRNA strand selection: follow the leader? Biochem. Soc. Trans., 42, 1135–1140
CrossRef
Pubmed
Google scholar
|
[50] |
Lau, N. C., Lim, L. P., Weinstein, E. G. and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294, 858–862
CrossRef
Pubmed
Google scholar
|
[51] |
Otsuka, Y., Kedersha, N. L. and Schoenberg, D. R. (2009) Identification of a cytoplasmic complex that adds a cap onto 5′-monophosphate RNA. Mol. Cell. Biol., 29, 2155–2167
CrossRef
Pubmed
Google scholar
|
[52] |
Schoenberg, D. R. and Maquat, L. E. (2009) Re-capping the message. Trends Biochem. Sci., 34, 435–442
CrossRef
Pubmed
Google scholar
|
[53] |
Mukherjee, C., Patil, D. P., Kennedy, B. A., Bakthavachalu, B., Bundschuh, R. and Schoenberg, D. R. (2012) Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability. Cell Rep., 2, 674–684
CrossRef
Pubmed
Google scholar
|
[54] |
Kiss, D. L., Oman, K., Bundschuh, R. and Schoenberg, D. R. (2015) Uncapped 5′ ends of mRNAs targeted by cytoplasmic capping map to the vicinity of downstream CAGE tags. FEBS Lett., 589, 279–284
CrossRef
Pubmed
Google scholar
|
[55] |
Rouha, H., Thurner, C. and Mandl, C. W. (2010) Functional microRNA generated from a cytoplasmic RNA virus. Nucleic Acids Res., 38, 8328–8337
CrossRef
Pubmed
Google scholar
|
[56] |
Shapiro, J. S., Langlois, R. A., Pham, A. M. and Tenoever, B. R. (2012) Evidence for a cytoplasmic microprocessor of pri-miRNAs. RNA, 18, 1338–1346
CrossRef
Pubmed
Google scholar
|
[57] |
Sandelin, A., Carninci, P., Lenhard, B., Ponjavic, J., Hayashizaki, Y. and Hume, D. A. (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet., 8, 424–436
CrossRef
Pubmed
Google scholar
|
[58] |
Frith, M. C., Valen, E., Krogh, A., Hayashizaki, Y., Carninci, P. and Sandelin, A. (2008) A code for transcription initiation in mammalian genomes. Genome Res., 18, 1–12
CrossRef
Pubmed
Google scholar
|
[59] |
Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. and Lenhard, B. (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res., 32, D91–D94
CrossRef
Pubmed
Google scholar
|
[60] |
Winter, J., Jung, S., Keller, S., Gregory, R. I. and Diederichs, S. (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol., 11, 228–234
CrossRef
Pubmed
Google scholar
|
[61] |
Song, G. and Wang, L. (2008) MiR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433-127 locus. PLoS One, 3, e3574
CrossRef
Pubmed
Google scholar
|
[62] |
Murphy, D., Dancis, B. and Brown, J. R. (2008) The evolution of core proteins involved in microRNA biogenesis. BMC Evol. Biol., 8, 92
CrossRef
Pubmed
Google scholar
|
[63] |
Kiezun, A., Artzi, S., Modai, S., Volk, N., Isakov, O. and Shomron, N. (2012) miRviewer: a multispecies microRNA homologous viewer. BMC Res. Notes, 5, 92
CrossRef
Pubmed
Google scholar
|
[64] |
Carninci, P., Sandelin, A., Lenhard, B., Katayama, S., Shimokawa, K., Ponjavic, J., Semple, C. A., Taylor, M. S., Engström, P. G., Frith, M. C.,
CrossRef
Pubmed
Google scholar
|
[65] |
Danino, Y. M., Even, D., Ideses, D. and Juven-Gershon, T. (2015) The core promoter: at the heart of gene expression. Biochim. Biophys. Acta, 1849, 1116–1131
CrossRef
Pubmed
Google scholar
|
[66] |
Landry, J.-R., Mager, D. L. and Wilhelm, B. T. (2003) Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet., 19, 640–648
CrossRef
Pubmed
Google scholar
|
[67] |
Baek, D., Davis, C., Ewing, B., Gordon, D. and Green, P. (2007) Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Res., 17, 145–155
CrossRef
Pubmed
Google scholar
|
[68] |
Staff, S. (2011) Using the sra toolkit to convert. sra files into other formats.National Center for Biotechnology Information (US)
|
[69] |
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25
CrossRef
Pubmed
Google scholar
|
[70] |
Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |