Cap-seq reveals complicated miRNA transcriptional mechanisms in C. elegans and mouse

Jiao Chen, Dongxiao Zhu, Yanni Sun

PDF(2058 KB)
PDF(2058 KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (4) : 352-367. DOI: 10.1007/s40484-017-0123-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Cap-seq reveals complicated miRNA transcriptional mechanisms in C. elegans and mouse

Author information +
History +

Abstract

Background: MicroRNAs (miRNAs) regulate target gene expression at post-transcriptional level. Intense research has been conducted for miRNA identification and the target finding. However, much less is known about the transcriptional regulation of miRNA genes themselves. Recently, a special group of pre-miRNAs that are produced directly by transcription without Drosha processing were validated in mouse, indicating the complexity of miRNA biogenesis.

Methods: In this work, we detect clusters of aligned Cap-seq reads to find the transcription start sites (TSSs) for intergenic miRNAs and study their transcriptional regulation in Caenorhabditis elegans and mouse.

Results: In both species, we have identified a class of special pre-miRNAs whose 5′ ends are capped, and are most probably generated directly by transcription. Furthermore, we distinguished another class of special pre-miRNAs that are 5′-capped but are also part of longer primary miRNAs, suggesting they may have more than one transcription mechanism. We detected multiple cap reads peaks within miRNA clusters in C. elegans. We surmised that the miRNAs in a cluster may either be transcribed independently or be re-capped during the microprocessor cleavage process. We also observed that H3K4me3 and Pol II are enriched at those identified miRNA TSSs.

Conclusions: The Cap-seq datasets enabled us to annotate the primary TSSs for miRNA genes with high resolution. Special class of 5′-capped pre-miRNAs have been identified in both C. elegans and mouse. The capping patter of miRNAs in a cluster indicate that clustered miRNA transcripts probably undergo a re-capping procedure during the microprocessor cleavage process.

Graphical abstract

Keywords

miRNA / Cap-seq / transcriptional regulation

Cite this article

Download citation ▾
Jiao Chen, Dongxiao Zhu, Yanni Sun. Cap-seq reveals complicated miRNA transcriptional mechanisms in C. elegans and mouse. Quant. Biol., 2017, 5(4): 352‒367 https://doi.org/10.1007/s40484-017-0123-4

References

[1]
Kim, V. N. and Nam, J.-W. (2006) Genomics of microRNA. Trends Genet., 22, 165–173
CrossRef Pubmed Google scholar
[2]
Krol, J., Loedige, I. and Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 11, 597–610
Pubmed
[3]
Berezikov, E. (2011) Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet., 12, 846–860
CrossRef Pubmed Google scholar
[4]
Mallanna, S. K. and Rizzino, A. (2010) Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev. Biol., 344, 16–25
CrossRef Pubmed Google scholar
[5]
Collins, F. S. and Varmus, H. (2015) A new initiative on precision medicine. N. Engl. J. Med., 372, 793–795
CrossRef Pubmed Google scholar
[6]
Larry Jameson, J. and Longo, D. L. (2015) Precision medicine—personalized, problematic, and promising. Obstet. Gynecol. Surv., 70, 612–614
CrossRef Google scholar
[7]
Lüscher, T. F. (2016) Frontiers in precision medicine: genes and their modulation by miRNAs. Eur. Heart J., 37, 3247–3250
CrossRef Pubmed Google scholar
[8]
Willeit, P., Skroblin, P., Kiechl, S., Fernández-Hernando, C. and Mayr, M. (2016) Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? Eur. Heart J., 37, 3260–3266
CrossRef Pubmed Google scholar
[9]
Matin, F., Jeet, V., Clements, J. A., Yousef, G. M. and Batra, J. (2016) MicroRNA theranostics in prostate cancer precision medicine. Clin. Chem., 62, 1318–1333
[10]
Coronnello, C. and Benos, P. V. (2013) ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res., 41, W159– W164
CrossRef Pubmed Google scholar
[11]
Yuan, C. and Sun, Y. (2013) RNA-CODE: a noncoding RNA classification tool for short reads in NGS data lacking reference genomes. PLoS One, 8, e77596
CrossRef Pubmed Google scholar
[12]
Lei, J. and Sun, Y. (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics, 30, 2837–2839
CrossRef Pubmed Google scholar
[13]
Lee, Y., Kim, M., Han, J., Yeom, K.-H., Lee, S., Baek, S. H. and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 23, 4051–4060
CrossRef Pubmed Google scholar
[14]
Borchert, G. M., Lanier, W. and Davidson, B. L. (2006) RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol., 13, 1097–1101
CrossRef Pubmed Google scholar
[15]
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S., (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419
CrossRef Pubmed Google scholar
[16]
Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K. and Shiekhattar, R. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436, 740–744
CrossRef Pubmed Google scholar
[17]
Kuehbacher, A., Urbich, C., Zeiher, A. M. and Dimmeler, S. (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res., 101, 59–68
CrossRef Pubmed Google scholar
[18]
Berezikov, E., Chung, W.-J., Willis, J., Cuppen, E. and Lai, E. C. (2007) Mammalian mirtron genes. Mol. Cell, 28, 328–336
CrossRef Pubmed Google scholar
[19]
Ruby, J. G., Jan, C. H. and Bartel, D. P. (2007) Intronic microRNA precursors that bypass Drosha processing. Nature, 448, 83–86
CrossRef Pubmed Google scholar
[20]
Chang, T.-C., Pertea, M., Lee, S., Salzberg, S. L. and Mendell, J. T. (2015) Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms. Genome Res., 25, 1401–1409
CrossRef Pubmed Google scholar
[21]
Dai, L., Chen, K., Youngren, B., Kulina, J., Yang, A., Guo, Z., Li, J., Yu, P. and Gu, S. (2016) Cytoplasmic Drosha activity generated by alternative splicing. Nucleic Acids Res., 44, 10454–10466
Pubmed
[22]
Xie, M., Li, M., Vilborg, A., Lee, N., Shu, M.-D., Yartseva, V., Šestan, N. and Steitz, J. A. (2013) Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell, 155, 1568–1580
CrossRef Pubmed Google scholar
[23]
Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. and Enright, A. J. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res., 34, D140–D144
CrossRef Pubmed Google scholar
[24]
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
CrossRef Pubmed Google scholar
[25]
Saini, H. K., Griffiths-Jones, S. and Enright, A. J. (2007) Genomic analysis of human microRNA transcripts. Proc. Natl. Acad. Sci. USA, 104, 17719–17724
CrossRef Pubmed Google scholar
[26]
Ozsolak, F., Poling, L. L., Wang, Z., Liu, H., Liu, X. S., Roeder, R. G., Zhang, X., Song, J. S. and Fisher, D. E. (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev., 22, 3172–3183
CrossRef Pubmed Google scholar
[27]
Corcoran, D. L., Pandit, K. V., Gordon, B., Bhattacharjee, A., Kaminski, N. and Benos, P. V. (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One, 4, e5279
CrossRef Pubmed Google scholar
[28]
Chien, C.-H., Sun, Y.-M., Chang, W.-C., Chiang-Hsieh, P.-Y., Lee, T.-Y., Tsai, W.-C., Horng, J.-T., Tsou, A.-P. and Huang, H.-D. (2011) Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res., 39, 9345–9356
CrossRef Pubmed Google scholar
[29]
Wang, G., Wang, Y., Shen, C., Huang, Y. W., Huang, K., Huang, T. H., Nephew, K. P., Li, L. and Liu, Y. (2010) RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation. PLoS One, 5, e13798
CrossRef Pubmed Google scholar
[30]
Saini, H. K., Enright, A. J. and Griffiths-Jones, S. (2008) Annotation of mammalian primary microRNAs. BMC Genomics, 9, 564
CrossRef Pubmed Google scholar
[31]
Kodzius, R., Kojima, M., Nishiyori, H., Nakamura, M., Fukuda, S., Tagami, M., Sasaki, D., Imamura, K., Kai, C., Harbers, M., (2006) CAGE: cap analysis of gene expression. Nat. Methods, 3, 211–222
CrossRef Pubmed Google scholar
[32]
de Hoon, M. and Hayashizaki, Y. (2008) Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques, 44, 627–632
CrossRef Pubmed Google scholar
[33]
Gu, W., Lee, H.-C., Chaves, D., Youngman, E. M., Pazour, G. J., Conte, D. Jr and Mello, C. C. (2012) CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell, 151, 1488–1500
CrossRef Pubmed Google scholar
[34]
Corsi, A. K. (2006) A biochemist’s guide to Caenorhabditis elegans. Anal. Biochem., 359, 1–17
CrossRef Pubmed Google scholar
[35]
Chen, R. A.-J., Down, T. A., Stempor, P., Chen, Q. B., Egelhofer, T. A., Hillier, L. W., Jeffers, T. E. and Ahringer, J. (2013) The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures. Genome Res., 23, 1339–1347
CrossRef Pubmed Google scholar
[36]
Kruesi, W. S., Core, L. J., Waters, C. T., Lis, J. T. and Meyer, B. J. (2013) Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife, 2, e00808
CrossRef Pubmed Google scholar
[37]
Spieth, J., Lawson, D., Davis, P., Williams, G. and Howe, K. (2014) Overview of gene structure in C. elegans. In WormBook, 1–18.
CrossRef Pubmed Google scholar
[38]
Büssing, I., Yang, J. S. Jr, Lai, E. C. and Grosshans, H. (2010) The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila. EMBO J., 29, 1830–1839
CrossRef Pubmed Google scholar
[39]
Li, N., You, X., Chen, T., Mackowiak, S. D., Friedländer, M. R., Weigt, M., Du, H., Gogol-Döring, A., Chang, Z., Dieterich, C., (2013) Global profiling of miRNAs and the hairpin precursors: insights into miRNA processing and novel miRNA discovery. Nucleic Acids Res., 41, 3619–3634
CrossRef Pubmed Google scholar
[40]
Fejes-Toth, K., Sotirova, V., Sachidanandam, R., Assaf, G., Hannon, G. J., Kapranov, P., Foissac, S., Willingham, A. T., Duttagupta, R., Dumais, E., (2009) Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature, 457, 1028–1032
CrossRef Pubmed Google scholar
[41]
Crooks, G. E., Hon, G., Chandonia, J.-M. and Brenner, S. E. (2004) WebLogo: a sequence logo generator. Genome Res., 14, 1188–1190
CrossRef Pubmed Google scholar
[42]
Abeel, T., Van Parys, T., Saeys, Y., Galagan, J. and Van de Peer, Y. (2012) GenomeView: a next-generation genome browser. Nucleic Acids Res., 40, e12
CrossRef Pubmed Google scholar
[43]
Bracht, J., Hunter, S., Eachus, R., Weeks, P. and Pasquinelli, A. E. (2004) Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA, 10, 1586–1594
CrossRef Pubmed Google scholar
[44]
Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C. and Huang, T. H.-M. (2008) The functional consequences of alternative promoter use in mammalian genomes. Trends Genet., 24, 167–177
CrossRef Pubmed Google scholar
[45]
Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., (2012) Landscape of transcription in human cells. Nature, 489, 101–108
CrossRef Pubmed Google scholar
[46]
Sigova, A. A., Mullen, A. C., Molinie, B., Gupta, S., Orlando, D. A., Guenther, M. G., Almada, A. E., Lin, C., Sharp, P. A., Giallourakis, C. C., (2013) Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc. Natl. Acad. Sci. USA, 110, 2876–2881
CrossRef Pubmed Google scholar
[47]
Wei, Y., Zhang, S., Shang, S., Zhang, B., Li, S., Wang, X., Wang, F., Su, J., Wu, Q., Liu, H., (2016) SEA: a super-enhancer archive. Nucleic Acids Res., 44, D172–D179
CrossRef Pubmed Google scholar
[48]
Biasiolo, M., Sales, G., Lionetti, M., Agnelli, L., Todoerti, K., Bisognin, A., Coppe, A., Romualdi, C., Neri, A. and Bortoluzzi, S. (2011) Impact of host genes and strand selection on miRNA and miRNA* expression. PLoS One, 6, e23854
CrossRef Pubmed Google scholar
[49]
Meijer, H. A., Smith, E. M. and Bushell, M. (2014) Regulation of miRNA strand selection: follow the leader? Biochem. Soc. Trans., 42, 1135–1140
CrossRef Pubmed Google scholar
[50]
Lau, N. C., Lim, L. P., Weinstein, E. G. and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294, 858–862
CrossRef Pubmed Google scholar
[51]
Otsuka, Y., Kedersha, N. L. and Schoenberg, D. R. (2009) Identification of a cytoplasmic complex that adds a cap onto 5′-monophosphate RNA. Mol. Cell. Biol., 29, 2155–2167
CrossRef Pubmed Google scholar
[52]
Schoenberg, D. R. and Maquat, L. E. (2009) Re-capping the message. Trends Biochem. Sci., 34, 435–442
CrossRef Pubmed Google scholar
[53]
Mukherjee, C., Patil, D. P., Kennedy, B. A., Bakthavachalu, B., Bundschuh, R. and Schoenberg, D. R. (2012) Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability. Cell Rep., 2, 674–684
CrossRef Pubmed Google scholar
[54]
Kiss, D. L., Oman, K., Bundschuh, R. and Schoenberg, D. R. (2015) Uncapped 5′ ends of mRNAs targeted by cytoplasmic capping map to the vicinity of downstream CAGE tags. FEBS Lett., 589, 279–284
CrossRef Pubmed Google scholar
[55]
Rouha, H., Thurner, C. and Mandl, C. W. (2010) Functional microRNA generated from a cytoplasmic RNA virus. Nucleic Acids Res., 38, 8328–8337
CrossRef Pubmed Google scholar
[56]
Shapiro, J. S., Langlois, R. A., Pham, A. M. and Tenoever, B. R. (2012) Evidence for a cytoplasmic microprocessor of pri-miRNAs. RNA, 18, 1338–1346
CrossRef Pubmed Google scholar
[57]
Sandelin, A., Carninci, P., Lenhard, B., Ponjavic, J., Hayashizaki, Y. and Hume, D. A. (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet., 8, 424–436
CrossRef Pubmed Google scholar
[58]
Frith, M. C., Valen, E., Krogh, A., Hayashizaki, Y., Carninci, P. and Sandelin, A. (2008) A code for transcription initiation in mammalian genomes. Genome Res., 18, 1–12
CrossRef Pubmed Google scholar
[59]
Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. and Lenhard, B. (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res., 32, D91–D94
CrossRef Pubmed Google scholar
[60]
Winter, J., Jung, S., Keller, S., Gregory, R. I. and Diederichs, S. (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol., 11, 228–234
CrossRef Pubmed Google scholar
[61]
Song, G. and Wang, L. (2008) MiR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433-127 locus. PLoS One, 3, e3574
CrossRef Pubmed Google scholar
[62]
Murphy, D., Dancis, B. and Brown, J. R. (2008) The evolution of core proteins involved in microRNA biogenesis. BMC Evol. Biol., 8, 92
CrossRef Pubmed Google scholar
[63]
Kiezun, A., Artzi, S., Modai, S., Volk, N., Isakov, O. and Shomron, N. (2012) miRviewer: a multispecies microRNA homologous viewer. BMC Res. Notes, 5, 92
CrossRef Pubmed Google scholar
[64]
Carninci, P., Sandelin, A., Lenhard, B., Katayama, S., Shimokawa, K., Ponjavic, J., Semple, C. A., Taylor, M. S., Engström, P. G., Frith, M. C., (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet., 38, 626–635
CrossRef Pubmed Google scholar
[65]
Danino, Y. M., Even, D., Ideses, D. and Juven-Gershon, T. (2015) The core promoter: at the heart of gene expression. Biochim. Biophys. Acta, 1849, 1116–1131
CrossRef Pubmed Google scholar
[66]
Landry, J.-R., Mager, D. L. and Wilhelm, B. T. (2003) Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet., 19, 640–648
CrossRef Pubmed Google scholar
[67]
Baek, D., Davis, C., Ewing, B., Gordon, D. and Green, P. (2007) Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Res., 17, 145–155
CrossRef Pubmed Google scholar
[68]
Staff, S. (2011) Using the sra toolkit to convert. sra files into other formats.National Center for Biotechnology Information (US)
[69]
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25
CrossRef Pubmed Google scholar
[70]
Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol., 9, R137
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at DOI 10.1007/s40484-017-0123-4.

ACKNOWLEDGEMENTS

We thank David Arnosti for critical discussions and helpful comments on the manuscript. We are also grateful to Weifeng Gu, Ron Chen, and Mingyi Xie for providing the explicit explanations to questions related to 5′-capped pre-miRNAs and 5′ recessed RNAs. This work was supported by NSF CAREER Grant DBI-0953738.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Jiao Chen, Dongxiao Zhu, and Yanni Sun declare they have no conflict of interests. All the data sets the authors used are from public repositories.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(2058 KB)

Accesses

Citations

Detail

Sections
Recommended

/