The Ontology of Biological and Clinical Statistics (OBCS)-based statistical method standardization and meta-analysis of host responses to yellow fever vaccines
Jie Zheng, Huan Li, Qingzhi Liu, Yongqun He
The Ontology of Biological and Clinical Statistics (OBCS)-based statistical method standardization and meta-analysis of host responses to yellow fever vaccines
Background: The community-based Ontology of Biological and Clinical Statistics (OBCS) represents and standardizes biological and clinical data and statistical methods.
Methods: Both OBCS and the Vaccine Ontology (VO) were used to ontologically model various components and relations in a typical host response to vaccination study. Such a model was then applied to represent and compare three microarray studies of host responses to the yellow fever vaccine YF-17D. A literature meta-analysis was then conducted to survey yellow fever vaccine response papers and summarize statistical methods, using OBCS.
Results: A general ontological model was developed to identify major components in a typical host response to vaccination. Our ontology modeling of three similar studies identified common and different components which may contribute to varying conclusions. Although these three studies all used the same vaccine, human blood samples, similar sample collection time post vaccination, and microarray assays, statistically differentially expressed genes and associated gene functions differed, likely due to the differences in specific variables (e.g., microarray type and human variations). Our manual annotation of 95 papers in human responses to yellow fever vaccines identified 38 data analysis methods. These statistical methods were consistently represented and classified with OBCS. Eight statistical methods not available in existing ontologies were added to OBCS.
Conclusions: The study represents the first single use case of applying OBCS ontology to standardize, integrate, and use biomedical data and statistical methods. Our ontology-based meta-analysis showed that different experimental results might be due to different experimental assays and conditions, sample variations, and data analysis methods.
OBCS / ontology / vaccine / host response to vaccination / statistical data analysis
[1] |
Zheng, J., Harris, M. R., Masci, A. M., Lin, Y., Hero, A. , Smith, B. and He, Y. (2016) The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis. J. Biomed. Semantics, 7, 53160;
CrossRef
Pubmed
Google scholar
|
[2] |
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H. , Cherry, J. M. , Davis, A. P. , Dolinski, K. , Dwight, S. S. , Eppig, J. T. ,
CrossRef
Pubmed
Google scholar
|
[3] |
Salvadores, M., Alexander, P. R., Musen, M. A. and Noy, N. F. (2013) BioPortal as a dataset of linked biomedical ontologies and terminologies in RDF. Semant Web, 4, 277–284
Pubmed
|
[4] |
Ong, E., Xiang, Z., Zhao, B. , Liu, Y. , Lin, Y. , Zheng, J. , Mungall, C. , Courtot, M. , Ruttenberg, A. and He, Y. (2017) Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration. Nucleic Acids Res., 45, D347–D352160;
CrossRef
Pubmed
Google scholar
|
[5] |
Schulz, S., Balkanyi, L., Cornet, R. and Bodenreider, O. (2013) From concept representations to ontologies: a paradigm shift in health informatics? Healthc. Inform. Res., 19, 235–242
CrossRef
Pubmed
Google scholar
|
[6] |
Blake, J. A. and Bult, C. J. (2006) Beyond the data deluge: data integration and bio-ontologies. J. Biomed. Inform., 39, 314–320
CrossRef
Pubmed
Google scholar
|
[7] |
Hoehndorf, R., Schofield, P. N. and Gkoutos, G. V. (2015) The role of ontologies in biological and biomedical research: a functional perspective. Brief. Bioinform., 16, 1069–1080
CrossRef
Pubmed
Google scholar
|
[8] |
Bodenreider, O. (2009) Biomedical ontologies in action: role in knowledge management, data integration and decision support. Yearb. Med. Inform., 67–79
Pubmed
|
[9] |
Bandrowski, A., Brinkman, R., Brochhausen, M. , Brush, M. H. , Bug, B. , Chibucos, M. C. , Clancy, K. , Courtot, M. , Derom, D. , Dumontier, M. ,
CrossRef
Pubmed
Google scholar
|
[10] |
Smith, B., Ashburner, M., Rosse, C. , Bard, J. , Bug, W. , Ceusters, W. , Goldberg, L. J. , Eilbeck, K. , Ireland, A. , Mungall, C. J. ,
CrossRef
Pubmed
Google scholar
|
[11] |
Zheng, J., Harris, M. R., Masci, A. M., Lin, Y., Hero, A. , Smith, B. and He, Y. (2016) The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis. J. Biomed. Semantics, 7, 53
CrossRef
Pubmed
Google scholar
|
[12] |
He, Y., Cowell, L., Diehl, A. D. , Mobley, H. L. , Peters, B. , Ruttenberg, A. , Scheuermann, R. H. , Brinkman, R. R. , Courtot, M. , Mungall, C. ,
|
[13] |
Özgür, A. , Xiang, Z. , Radev, D. R. and He, Y. (2011) Mining of vaccine-associated IFN-γ gene interaction networks using the Vaccine Ontology. J. Biomed. Semantics, 2, S8
CrossRef
Pubmed
Google scholar
|
[14] |
Lin, Y. and He, Y. (2012) Ontology representation and analysis of vaccine formulation and administration and their effects on vaccine immune responses. J. Biomed. Semantics, 3, 17
CrossRef
Pubmed
Google scholar
|
[15] |
Beasley, D. W. , McAuley, A. J. and Bente, D. A. (2015) Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Antiviral Res., 115, 48–70
CrossRef
Pubmed
Google scholar
|
[16] |
Gardner, C. L. and Ryman, K. D. (2010) Yellow fever: a reemerging threat. Clin. Lab. Med., 30, 237–260
CrossRef
Pubmed
Google scholar
|
[17] |
Theiler, M. and Smith, H. H. (1937) The use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med., 65, 787–800
CrossRef
Pubmed
Google scholar
|
[18] |
Norrby, E. (2007) Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine. J. Exp. Med., 204, 2779–2784
CrossRef
Pubmed
Google scholar
|
[19] |
Roukens, A. H. and Visser, L. G. (2008) Yellow fever vaccine: past, present and future. Expert Opin. Biol. Ther., 8, 1787–1795
CrossRef
Pubmed
Google scholar
|
[20] |
Pulendran, B. (2009) Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat. Rev. Immunol., 9, 741–747
Pubmed
|
[21] |
Pulendran, B., Li, S. and Nakaya, H. I. (2010) Systems vaccinology. Immunity, 33, 516–529
CrossRef
Pubmed
Google scholar
|
[22] |
Gaucher, D., Therrien, R., Kettaf, N. , Angermann, B. R. , Boucher, G. , Filali-Mouhim, A. , Moser, J. M. , Mehta, R. S. , Drake, D. R. 3rd , Castro, E. ,
CrossRef
Pubmed
Google scholar
|
[23] |
Scherer, C. A. , Magness, C. L. , Steiger, K. V. , Poitinger, N. D. , Caputo, C. M. , Miner, D. G. , Winokur, P. L. , Klinzman, D. , McKee, J. , Pilar, C. ,
CrossRef
Pubmed
Google scholar
|
[24] |
Smyth, G. K.Ritchie, M., Thorne, N. , and Wettenhall, J. (2005) Limma: Linear Models for Microarray Data. In Statistics for Biology and Health. pp. 397–420. New York: Springer
|
[25] |
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L. , Golub, T. R. , Lander, E. S. ,
CrossRef
Pubmed
Google scholar
|
[26] |
Querec, T. D. , Akondy, R. S. , Lee, E. K. , Cao, W. , Nakaya, H. I. , Teuwen, D. , Pirani, A. , Gernert, K. , Deng, J. , Marzolf, B. ,
CrossRef
Pubmed
Google scholar
|
[27] |
Xiang, Z., Courtot, M., Brinkman, R. R. , Ruttenberg, A. and He, Y. (2010) OntoFox: web-based support for ontology reuse. BMC Res. Notes, 3, 175160;
CrossRef
Pubmed
Google scholar
|
[28] |
Arp, R., Smith, B. and Spear, A. D. (2015) Building Ontologies With Basic Formal Ontology. Cambridge: MIT Press
|
[29] |
Musen, M. A. (2015) The protégé project: a look back and a look forward. AI Matters, 1, 4–12
|
[30] |
The protege ontology editor. http://protege.stanford.edu/
|
/
〈 | 〉 |