Systems and synthetic biology approaches in understanding biological oscillators
Zhengda Li, Qiong Yang
Systems and synthetic biology approaches in understanding biological oscillators
Background: Self-sustained oscillations are a ubiquitous and vital phenomenon in living systems. From primitive single-cellular bacteria to the most sophisticated organisms, periodicities have been observed in a broad spectrum of biological processes such as neuron firing, heart beats, cell cycles, circadian rhythms, etc. Defects in these oscillators can cause diseases from insomnia to cancer. Elucidating their fundamental mechanisms is of great significance to diseases, and yet challenging, due to the complexity and diversity of these oscillators.
Results: Approaches in quantitative systems biology and synthetic biology have been most effective by simplifying the systems to contain only the most essential regulators. Here, we will review major progress that has been made in understanding biological oscillators using these approaches. The quantitative systems biology approach allows for identification of the essential components of an oscillator in an endogenous system. The synthetic biology approach makes use of the knowledge to design the simplest, de novo oscillators in both live cells and cell-free systems. These synthetic oscillators are tractable to further detailed analysis and manipulations.
Conclusion: With the recent development of biological and computational tools, both approaches have made significant achievements.
biological oscillators / synthetic oscillators / circuit design principles
[1] |
Yang, Q. and Ferrell, J. E. Jr. (2013) The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat. Cell Biol., 15, 519–525
CrossRef
Pubmed
Google scholar
|
[2] |
Ferrell, J. E. Jr, Tsai, T. Y. and Yang, Q. (2011) Modeling the cell cycle: why do certain circuits oscillate? Cell, 144, 874–885
CrossRef
Pubmed
Google scholar
|
[3] |
Periasamy, M., Bhupathy, P. and Babu, G. J. (2008) Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc. Res., 77, 265–273
CrossRef
Pubmed
Google scholar
|
[4] |
Liu, N. and Priori, S. G. (2008) Disruption of calcium homeostasis and arrhythmogenesis induced by mutations in the cardiac ryanodine receptor and calsequestrin. Cardiovasc. Res., 77, 293–301
CrossRef
Pubmed
Google scholar
|
[5] |
Bénazéraf, B. and Pourquié, O. (2013) Formation and segmentation of the vertebrate body axis. Annu. Rev. Cell Dev. Biol., 29, 1–26
CrossRef
Pubmed
Google scholar
|
[6] |
Mara, A. and Holley, S. A. (2007) Oscillators and the emergence of tissue organization during zebrafish somitogenesis. Trends Cell Biol., 17, 593–599
CrossRef
Pubmed
Google scholar
|
[7] |
Bell-Pedersen, D., Cassone, V. M., Earnest, D. J., Golden, S. S., Hardin, P. E., Thomas, T. L. and Zoran, M. J. (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet., 6, 544–556
CrossRef
Pubmed
Google scholar
|
[8] |
Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500–544
CrossRef
Pubmed
Google scholar
|
[9] |
Tomida, T., Takekawa, M. and Saito, H. (2015) Oscillation of p38 activity controls efficient pro-inflammatory gene expression. Nat. Commun., 6, 8350
CrossRef
Pubmed
Google scholar
|
[10] |
Zambrano, S., De Toma, I., Piffer, A., Bianchi, M. E. and Agresti, A. (2016) NF-κB oscillations translate into functionally related patterns of gene expression. eLife, 5, e09100
CrossRef
Pubmed
Google scholar
|
[11] |
Batchelor, E., Loewer, A., Mock, C. and Lahav, G. (2011) Stimulus-dependent dynamics of p53 in single cells. Mol. Syst. Biol., 7, 488
CrossRef
Pubmed
Google scholar
|
[12] |
Dunlap, J. C. (1999) Molecular bases for circadian clocks. Cell, 96, 271–290
CrossRef
Pubmed
Google scholar
|
[13] |
Gallego, M. and Virshup, D. M. (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol., 8, 139–148
CrossRef
Pubmed
Google scholar
|
[14] |
Brown, H., Difrancesco, D. and Noble, S. (1979) Cardiac pacemaker oscillation and its modulation by autonomic transmitters. J. Exp. Biol., 81, 175–204
Pubmed
|
[15] |
Paydarfar, D. and Eldridge, F. L. (1987) Phase resetting and dysrhythmic responses of the respiratory oscillator. Am. J. Physiol., 252, R55–R62
Pubmed
|
[16] |
Hartwell, L. H. and Kastan, M. B. (1994) Cell cycle control and cancer. Science, 266, 1821–1828
CrossRef
Pubmed
Google scholar
|
[17] |
McDonald, E. R. 3rd and El-Deiry, W. S. (2000) Cell cycle control as a basis for cancer drug development (Review). Int. J. Oncol., 16, 871–957
Pubmed
|
[18] |
Kastan, M. B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature, 432, 316–323
CrossRef
Pubmed
Google scholar
|
[19] |
Gelens, L., Anderson, G. A. and Ferrell, J. E. Jr. (2014) Spatial trigger waves: positive feedback gets you a long way. Mol. Biol. Cell, 25, 3486–3493
CrossRef
Pubmed
Google scholar
|
[20] |
Novák, B. and Bentrup, F. W. (1972) An electrophysiological study of regeneration in Acetabularia mediterranea. Planta, 108, 227–244
CrossRef
Pubmed
Google scholar
|
[21] |
Gerisch, G. (1968) Cell aggregation and differentiation in Dictyostelium. Curr. Top. Dev. Biol., 3, 157–197
CrossRef
Pubmed
Google scholar
|
[22] |
Chang, J. B. and Ferrell, J. E. Jr. (2013) Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature, 500, 603–607
CrossRef
Pubmed
Google scholar
|
[23] |
Goodwin, B. C. and Cohen, M. H. (1969) A phase-shift model for the spatial and temporal organization of developing systems. J. Theor. Biol., 25, 49–107
CrossRef
Pubmed
Google scholar
|
[24] |
Oates, A. C., Morelli, L. G. and Ares, S. (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development, 139, 625–639
CrossRef
Pubmed
Google scholar
|
[25] |
Purvis, J. E., Karhohs, K. W., Mock, C., Batchelor, E., Loewer, A. and Lahav, G. (2012) p53 dynamics control cell fate. Science, 336, 1440–1444
CrossRef
Pubmed
Google scholar
|
[26] |
Isomura, A. and Kageyama, R. (2014) Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions. Development, 141, 3627–3636
CrossRef
Pubmed
Google scholar
|
[27] |
Ainsworth, M., Lee, S., Cunningham, M. O., Traub, R. D., Kopell, N. J. and Whittington, M. A. (2012) Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron, 75, 572–583
CrossRef
Pubmed
Google scholar
|
[28] |
Nelson, D. E., Ihekwaba, A. E., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E., Nelson, G., See, V., Horton, C. A., Spiller, D. G.,
CrossRef
Pubmed
Google scholar
|
[29] |
Proctor, C. J. and Gray, D. A. (2008) Explaining oscillations and variability in the p53-Mdm2 system. BMC Syst. Biol., 2, 75
CrossRef
Pubmed
Google scholar
|
[30] |
Salazar, C., Politi, A. Z. and Höfer, T. (2008) Decoding of calcium oscillations by phosphorylation cycles: analytic results. Biophys. J., 94, 1203–1215
CrossRef
Pubmed
Google scholar
|
[31] |
Cai, L., Dalal, C. K. and Elowitz, M. B. (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature, 455, 485–490
CrossRef
Pubmed
Google scholar
|
[32] |
Hodgkin, A. L., Huxley, A. F. and Katz, B. (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol., 116, 424–448
CrossRef
Pubmed
Google scholar
|
[33] |
Hodgkin, A. L. and Katz, B. (1949) The effect of temperature on the electrical activity of the giant axon of the squid. J. Physiol., 109, 240–249
CrossRef
Pubmed
Google scholar
|
[34] |
Hodgkin, A. L. and Huxley, A. F. (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol., 116, 497–506
CrossRef
Pubmed
Google scholar
|
[35] |
Hodgkin, A. L. and Huxley, A. F. (1952) The components of membrane conductance in the giant axon of Loligo. J. Physiol., 116, 473–496
CrossRef
Pubmed
Google scholar
|
[36] |
Hodgkin, A. L. and Huxley, A. F. (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol., 116, 449–472
CrossRef
Pubmed
Google scholar
|
[37] |
Ghosh, A. and Chance, B. (1964) Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun., 16, 174–181
CrossRef
Pubmed
Google scholar
|
[38] |
Chance, B., Hess, B. and Betz, A. (1964) DPNH oscillations in a cell-free extract of S. carlsbergensis. Biochem. Biophys. Res. Commun., 16, 182–187
CrossRef
Pubmed
Google scholar
|
[39] |
Chance, B., Schoener, B. and Elsaesser, S. (1965) Metabolic control phenomena involved in damped sinusoidal oscillations of reduced diphosphopyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. J. Biol. Chem., 240, 3170–3181
Pubmed
|
[40] |
Higgins, J. (1964) A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Natl. Acad. Sci. USA, 51, 989–994
CrossRef
Pubmed
Google scholar
|
[41] |
Pye, K. and Chance, B. (1966) Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. Proc. Natl. Acad. Sci. USA, 55, 888–894
CrossRef
Pubmed
Google scholar
|
[42] |
Gerisch, G., Fromm, H., Huesgen, A. and Wick, U. (1975) Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyostelium cells. Nature, 255, 547–549
CrossRef
Pubmed
Google scholar
|
[43] |
Olsen, L. F. and Degn, H. (1978) Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. Experimental and theoretical studies. Biochim. Biophys. Acta, 523, 321–334
CrossRef
Pubmed
Google scholar
|
[44] |
Goodwin, B. C. (1963) Temporal Organization in Cells. In A Dynamic Theory of Cellular Control Processes. New York: Academic Press
|
[45] |
Liu, Y., Tsinoremas, N. F., Johnson, C. H., Lebedeva, N. V., Golden, S. S., Ishiura, M. and Kondo, T. (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev., 9, 1469–1478
CrossRef
Pubmed
Google scholar
|
[46] |
Crosthwaite, S. K., Dunlap, J. C. and Loros, J. J. (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science, 276, 763–769
CrossRef
Pubmed
Google scholar
|
[47] |
Hamblen, M. J., White, N. E., Emery, P. T. J., Kaiser, K. and Hall, J. C. (1998) Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics, 149, 165–178
Pubmed
|
[48] |
Antoch, M. P., Song, E. J., Chang, A. M., Vitaterna, M. H., Zhao, Y., Wilsbacher, L. D., Sangoram, A. M., King, D. P., Pinto, L. H. and Takahashi, J. S. (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell, 89, 655–667
CrossRef
Pubmed
Google scholar
|
[49] |
Millar, A.J. and Kay, S. A. (1997) The genetics of phototransduction and circadian rhythms in Arabidopsis. BioEssays, 19, 209–214
CrossRef
Pubmed
Google scholar
|
[50] |
Goldbeter, A. (1996) Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. In Physics Today. New York: Cambridge University Press
|
[51] |
Goldbeter, A. (2007) Biological Rhythms as Temporal Dissipative Structures. Special Volume in Memory of Ilya Prigogine: Advances in Chemical Physics. pp. 253–295. New York: John Wiley & Sons, Inc.
|
[52] |
Yang, Q., Pando, B. F., Dong, G., Golden, S. S. and van Oudenaarden, A. (2010) Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science, 327, 1522–1526
CrossRef
Pubmed
Google scholar
|
[53] |
Bieler, J., Cannavo, R., Gustafson, K., Gobet, C., Gatfield, D. and Naef, F. (2014) Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol. Syst. Biol., 10, 739
CrossRef
Pubmed
Google scholar
|
[54] |
Feillet, C., van der Horst, G. T., Levi, F., Rand, D. A. and Delaunay, F. (2015) Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front. Neurol., 6, 96
CrossRef
Pubmed
Google scholar
|
[55] |
Sevim, V., Gong, X. and Socolar, J. E. S. (2010) Reliability of transcriptional cycles and the yeast cell-cycle oscillator. PLoS Comput. Biol., 6, e1000842
CrossRef
Pubmed
Google scholar
|
[56] |
Longtin, A. (1993) Stochastic resonance in neuron models. J. Stat. Phys., 70, 309–327
CrossRef
Google scholar
|
[57] |
Glass, L. (2001) Synchronization and rhythmic processes in physiology. Nature, 410, 277–284
CrossRef
Pubmed
Google scholar
|
[58] |
Prigogine, I., Lefever, R., Goldbeter, A. and Herschkowitz-Kaufman, M. (1969) Symmetry breaking instabilities in biological systems. Nature, 223, 913–916
CrossRef
Pubmed
Google scholar
|
[59] |
FitzHugh, R. (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1, 445–466
CrossRef
Pubmed
Google scholar
|
[60] |
Morris, C. and Lecar, H. (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35, 193–213
CrossRef
Pubmed
Google scholar
|
[61] |
Goodwin, B. C. (1965) Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul., 3, 425–428
CrossRef
Pubmed
Google scholar
|
[62] |
Friesen, W. O. and Block, G. D. (1984) What is a biological oscillator? Am. J. Physiol., 246, R847–R853
Pubmed
|
[63] |
Barkai, N. and Leibler, S. (2000) Circadian clocks limited by noise. Nature, 403, 267–268
Pubmed
|
[64] |
Novák, B. and Tyson, J. J. (2008) Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol., 9, 981–991
CrossRef
Pubmed
Google scholar
|
[65] |
Tsai, T. Y., Choi, Y. S., Ma, W., Pomerening, J. R., Tang, C. and Ferrell, J. E. Jr. (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321, 126–129
CrossRef
Pubmed
Google scholar
|
[66] |
Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338
CrossRef
Pubmed
Google scholar
|
[67] |
Atkinson, M. R., Savageau, M. A., Myers, J. T. and Ninfa, A. J. (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell, 113, 597–607
CrossRef
Pubmed
Google scholar
|
[68] |
Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S. and Hasty, J. (2008) A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–519
CrossRef
Pubmed
Google scholar
|
[69] |
Fung, E., Wong, W. W., Suen, J. K., Bulter, T. , Lee, S. G. and Liao, J. C. (2005) A synthetic gene-metabolic oscillator. Nature, 435, 118–122
CrossRef
Pubmed
Google scholar
|
[70] |
Tigges, M., Marquez-Lago, T. T., Stelling, J. and Fussenegger, M. (2009) A tunable synthetic mammalian oscillator. Nature, 457, 309–312
CrossRef
Pubmed
Google scholar
|
[71] |
Tigges, M., Dénervaud, N., Greber, D., Stelling, J. and Fussenegger, M. (2010) A synthetic low-frequency mammalian oscillator. Nucleic Acids Res., 38, 2702–2711
CrossRef
Pubmed
Google scholar
|
[72] |
Mondragón-Palomino, O., Danino, T., Selimkhanov, J., Tsimring, L. and Hasty, J. (2011) Entrainment of a population of synthetic genetic oscillators. Science, 333, 1315–1319
CrossRef
Pubmed
Google scholar
|
[73] |
Butzin, N. C., Hochendoner, P., Ogle, C. T., Hill, P. and Mather, W. H. (2016) Marching along to an offbeat drum: entrainment of synthetic gene oscillators by a noisy stimulus. ACS Synth. Biol., 5, 146–153
CrossRef
Pubmed
Google scholar
|
[74] |
Hussain, F., Gupta, C., Hirning, A. J., Ott, W., Matthews, K. S., Josic, K. and Bennett, M. R. (2014) Engineered temperature compensation in a synthetic genetic clock. Proc. Natl. Acad. Sci. USA, 111, 972–977
CrossRef
Pubmed
Google scholar
|
[75] |
Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. and Paulsson, J. (2016) Synchronous long-term oscillations in a synthetic gene circuit. Nature, 538, 514–517
CrossRef
Pubmed
Google scholar
|
[76] |
Danino, T., Mondragón-Palomino, O., Tsimring, L. and Hasty, J. (2010) A synchronized quorum of genetic clocks. Nature, 463, 326–330
CrossRef
Pubmed
Google scholar
|
[77] |
Chen, Y., Kim, J. K., Hirning, A. J., Josić, K. and Bennett, M. R. (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science, 349, 986–989
CrossRef
Pubmed
Google scholar
|
[78] |
Toettcher, J. E., Mock, C., Batchelor, E., Loewer, A. and Lahav, G. (2010) A synthetic-natural hybrid oscillator in human cells. Proc. Natl. Acad. Sci. USA, 107, 17047–17052
CrossRef
Pubmed
Google scholar
|
[79] |
Niederholtmeyer, H., Sun, Z. Z., Hori, Y., Yeung, E., Verpoorte, A., Murray, R. M. and Maerkl, S. J. (2015) Rapid cell-free forward engineering of novel genetic ring oscillators. eLife, 4, e09771
CrossRef
Pubmed
Google scholar
|
[80] |
Purcell, O., Savery, N. J., Grierson, C. S. and di Bernardo, M. (2010) A comparative analysis of synthetic genetic oscillators. J. R. Soc. Interface, 7, 1503–1524
CrossRef
Pubmed
Google scholar
|
[81] |
Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L. S. and Hasty, J. (2011) A sensing array of radically coupled genetic “biopixels”. Nature, 481, 39–44
CrossRef
Pubmed
Google scholar
|
[82] |
Scott, S. R. and Hasty, J. (2016) Quorum sensing communication modules for microbial consortia. ACS Synth. Biol., 5, 969–977
CrossRef
Pubmed
Google scholar
|
[83] |
Marguet, P., Tanouchi, Y., Spitz, E., Smith, C. and You, L. (2010) Oscillations by minimal bacterial suicide circuits reveal hidden facets of host-circuit physiology. PLoS One, 5, e11909
CrossRef
Pubmed
Google scholar
|
[84] |
Dies, M., Galera-Laporta, L. and Garcia-Ojalvo, J. (2016) Mutual regulation causes co-entrainment between a synthetic oscillator and the bacterial cell cycle. Integr. Biol., 8, 533–541
CrossRef
Pubmed
Google scholar
|
[85] |
Chen, A. H., Lubkowicz, D., Yeong, V., Chang, R. L. and Silver, P. A. (2015) Transplantability of a circadian clock to a noncircadian organism. Sci. Adv., 1, e1500358
CrossRef
Pubmed
Google scholar
|
[86] |
Din, M. O., Danino, T., Prindle, A., Skalak, M., Selimkhanov, J., Allen, K., Julio, E., Atolia, E., Tsimring, L. S., Bhatia, S. N.,
CrossRef
Pubmed
Google scholar
|
[87] |
Murray, A. W., Solomon, M. J. and Kirschner, M. W. (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature, 339, 280–286
CrossRef
Pubmed
Google scholar
|
[88] |
Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol., 36, 581–605
CrossRef
Pubmed
Google scholar
|
[89] |
Heald, R., Tournebize, R., Habermann, A., Karsenti, E. and Hyman, A. (1997) Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol., 138, 615–628
CrossRef
Pubmed
Google scholar
|
[90] |
Kim, S. Y. and Ferrell, J. E. Jr. (2007) Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell, 128, 1133–1145
CrossRef
Pubmed
Google scholar
|
[91] |
Pomerening, J. R., Kim, S. Y. and Ferrell, J. E. Jr. (2005) Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell, 122, 565–578
Pubmed
|
[92] |
Trunnell, N. B., Poon, A. C., Kim, S. Y. and Ferrell, J. E. Jr. (2011) Ultrasensitivity in the regulation of Cdc25C by Cdk1. Mol. Cell, 41, 263–274
CrossRef
Pubmed
Google scholar
|
[93] |
Lohka, M. J. and Maller, J. L. (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J. Cell Biol., 101, 518–523
CrossRef
Pubmed
Google scholar
|
[94] |
Lohka, M. J., Hayes, M. K. and Maller, J. L. (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA, 85, 3009–3013
CrossRef
Pubmed
Google scholar
|
[95] |
Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F. C., Ruderman, J. V. and Hershko, A. (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell, 6, 185–197
CrossRef
Pubmed
Google scholar
|
[96] |
Kumagai, A. and Dunphy, W. G. (1992) Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell, 70, 139–151
CrossRef
Pubmed
Google scholar
|
[97] |
Mueller, P. R., Coleman, T. R. and Dunphy, W. G. (1995) Cell cycle regulation of a Xenopus Wee1-like kinase. Mol. Biol. Cell, 6, 119–134
CrossRef
Pubmed
Google scholar
|
[98] |
Novak, B. and Tyson, J. J. (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell. Sci., 106, 1153–1168
Pubmed
|
[99] |
Thron, C. D. (1996) A model for a bistable biochemical trigger of mitosis. Biophys. Chem., 57, 239–251
CrossRef
Pubmed
Google scholar
|
[100] |
Pomerening, J. R., Sontag, E. D. and Ferrell, J. E. Jr. (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol., 5, 346–351
CrossRef
Pubmed
Google scholar
|
[101] |
Ferrell, J. E. Jr. (2008) Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses. Curr. Biol., 18, R244–R245
CrossRef
Pubmed
Google scholar
|
[102] |
Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H., Oyama, T. and Kondo, T. (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science, 308, 414–415
CrossRef
Pubmed
Google scholar
|
[103] |
Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S. and O’Shea, E. K. (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science, 318, 809–812
CrossRef
Pubmed
Google scholar
|
[104] |
Forster, A. C. and Church, G. M. (2007) Synthetic biology projects in vitro. Genome Res., 17, 1–6
CrossRef
Pubmed
Google scholar
|
[105] |
Nakano, M., Komatsu, J., Matsuura, S., Takashima, K., Katsura, S. and Mizuno, A. (2003) Single-molecule PCR using water-in-oil emulsion. J. Biotechnol., 102, 117–124
CrossRef
Pubmed
Google scholar
|
[106] |
Tan, C., Saurabh, S., Bruchez, M. P., Schwartz, R. and Leduc, P. (2013) Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nat. Nanotechnol., 8, 602–608
CrossRef
Pubmed
Google scholar
|
[107] |
Shin, J. and Noireaux, V. (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol., 1, 29–41
CrossRef
Pubmed
Google scholar
|
[108] |
Noireaux, V. and Libchaber, A. (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. USA, 101, 17669–17674
CrossRef
Pubmed
Google scholar
|
[109] |
Kim, J., White, K. S. and Winfree, E. (2006) Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol., 2, 68
CrossRef
Pubmed
Google scholar
|
[110] |
Ackermann, J., Wlotzka, B. and McCaskill, J. S. (1998) In vitro DNA-based predator-prey system with oscillatory kinetics. Bull. Math. Biol., 60, 329–354
CrossRef
Google scholar
|
[111] |
Fujii, T. and Rondelez, Y. (2013) Predator-prey molecular ecosystems. ACS Nano, 7, 27–34
CrossRef
Pubmed
Google scholar
|
[112] |
Kim, J. and Winfree, E. (2011) Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol., 7, 465
CrossRef
Pubmed
Google scholar
|
[113] |
Montagne, K., Plasson, R., Sakai, Y., Fujii, T. and Rondelez, Y. (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol., 7, 466
CrossRef
Pubmed
Google scholar
|
[114] |
Franco, E., Friedrichs, E., Kim, J., Jungmann, R., Murray, R., Winfree, E. and Simmel, F. C. (2011) Timing molecular motion and production with a synthetic transcriptional clock. Proc. Natl. Acad. Sci. USA, 108, E784–E793
CrossRef
Pubmed
Google scholar
|
[115] |
Weitz, M., Kim, J., Kapsner, K., Winfree, E., Franco, E. and Simmel, F. C. (2014) Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat. Chem., 6, 295–302
CrossRef
Pubmed
Google scholar
|
[116] |
Hasatani, K., Leocmach, M., Genot, A. J., Estévez-Torres, A., Fujii, T. and Rondelez, Y. (2013) High-throughput and long-term observation of compartmentalized biochemical oscillators. Chem. Commun. (Camb.), 49, 8090–8092
CrossRef
Pubmed
Google scholar
|
[117] |
Epstein, I. R., Vanag, V. K., Balazs, A. C., Kuksenok, O., Dayal, P. and Bhattacharya, A. (2012) Chemical oscillators in structured media. Acc. Chem. Res., 45, 2160–2168
CrossRef
Pubmed
Google scholar
|
[118] |
Vanag, V. K. and Epstein, I. R. (2001) Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett., 87, 228301
CrossRef
Pubmed
Google scholar
|
[119] |
Good, M. C., Vahey, M. D., Skandarajah, A., Fletcher, D. A. and Heald, R. (2013) Cytoplasmic volume modulates spindle size during embryogenesis. Science, 342, 856–860
CrossRef
Pubmed
Google scholar
|
[120] |
Telley, I. A., Gáspár,I., Ephrussi, A. and Surrey, T. (2013) A single Drosophila embryo extract for the study of mitosis ex vitro. Nat. Protoc., 8, 310–324
CrossRef
Pubmed
Google scholar
|
[121] |
Telley, I. A., Gáspár, I., Ephrussi, A. and Surrey, T. (2012) Aster migration determines the length scale of nuclear separation in the Drosophila syncytial embryo. J. Cell Biol., 197, 887–895
CrossRef
Pubmed
Google scholar
|
[122] |
Ho, K. K., Lee, J. W., Durand, G., Majumder, S. and Liu, A. P. (2017) Protein aggregation with poly(vinyl) alcohol surfactant reduces double emulsion-encapsulated mammalian cell-free expression. PLoS One, 12, e0174689
CrossRef
Pubmed
Google scholar
|
[123] |
Zemella, A., Thoring, L., Hoffmeister, C. and Kubick, S. (2015) Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems. ChemBioChem, 16, 2420–2431
CrossRef
Pubmed
Google scholar
|
[124] |
Richard, P. (2003) The rhythm of yeast. FEMS Microbiol. Rev., 27, 547–557
CrossRef
Pubmed
Google scholar
|
[125] |
Lu, Y., Lee, B. H., King, R. W., Finley, D. and Kirschner, M. W. (2015) Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science, 348, 1250834
CrossRef
Pubmed
Google scholar
|
[126] |
Lu, Y., Wang, W. and Kirschner, M. W. (2015) Specificity of the anaphase-promoting complex: a single-molecule study. Science, 348, 1248737
CrossRef
Pubmed
Google scholar
|
[127] |
Shimizu, Y., Kanamori, T. and Ueda, T. (2005) Protein synthesis by pure translation systems. Methods, 36, 299–304
CrossRef
Pubmed
Google scholar
|
[128] |
Nevin, D. E. and Pratt, J. M. (1991) A coupled in vitro transcription-translation system for the exclusive synthesis of polypeptides expressed from the T7 promoter. FEBS Lett., 291, 259–263
CrossRef
Pubmed
Google scholar
|
[129] |
Garamella, J., Marshall, R., Rustad, M. and Noireaux, V. (2016) The all E. coli TX-TL Toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth. Biol., 5, 344–355
CrossRef
Pubmed
Google scholar
|
[130] |
Genot, A. J., Baccouche, A., Sieskind, R., Aubert-Kato, N., Bredeche, N., Bartolo, J. F., Taly, V., Fujii, T. and Rondelez, Y. (2016) High-resolution mapping of bifurcations in nonlinear biochemical circuits. Nat. Chem., 8, 760–767
CrossRef
Pubmed
Google scholar
|
[131] |
Wang, F. and Fan, C. (2016) DNA reaction networks: providing a panoramic view. Nat. Chem., 8, 738–740
CrossRef
Pubmed
Google scholar
|
[132] |
Semenov, S. N., Kraft, L. J., Ainla, A., Zhao, M., Baghbanzadeh, M., Campbell, V. E., Kang, K., Fox, J. M. and Whitesides, G. M. (2016) Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature, 537, 656–660
CrossRef
Pubmed
Google scholar
|
[133] |
Tyson, J. J. and Novák, B. (2010) Functional motifs in biochemical reaction networks. Annu. Rev. Phys. Chem., 61, 219–240
CrossRef
Pubmed
Google scholar
|
[134] |
Nguyen, L. K. (2012) Regulation of oscillation dynamics in biochemical systems with dual negative feedback loops. J. R. Soc. Interface, 9, 1998–2010
CrossRef
Pubmed
Google scholar
|
[135] |
Lomnitz, J. G. and Savageau, M. A. (2014) Strategy revealing phenotypic differences among synthetic oscillator designs. ACS Synth. Biol., 3, 686–701
CrossRef
Pubmed
Google scholar
|
[136] |
Guantes, R. and Poyatos, J. F. (2006) Dynamical principles of two-component genetic oscillators. PLoS Comput. Biol., 2, e30
CrossRef
Pubmed
Google scholar
|
[137] |
Wagner, A. (2005) Circuit topology and the evolution of robustness in two-gene circadian oscillators. Proc. Natl. Acad. Sci. USA, 102, 11775–11780
CrossRef
Pubmed
Google scholar
|
[138] |
Noman, N., Monjo, T., Moscato, P. and Iba, H. (2015) Evolving robust gene regulatory networks. PLoS One, 10, e0116258
CrossRef
Pubmed
Google scholar
|
[139] |
Castillo-Hair, S. M., Villota, E. R. and Coronado, A. M. (2015) Design principles for robust oscillatory behavior. Syst. Synth. Biol., 9, 125–133
CrossRef
Pubmed
Google scholar
|
[140] |
Woods, M. L., Leon, M., Perez-Carrasco, R. and Barnes, C. P. (2016) A statistical approach reveals designs for the most robust stochastic gene oscillators. ACS Synth. Biol., 5, 459–470
CrossRef
Pubmed
Google scholar
|
[141] |
Mukherji, S. and van Oudenaarden, A. (2009) Synthetic biology: understanding biological design from synthetic circuits. Nat. Rev. Genet., 10, 859–871
Pubmed
|
[142] |
Anafi, R. C., Lee, Y., Sato, T. K., Venkataraman, A., Ramanathan, C., Kavakli, I. H., Hughes, M. E., Baggs, J. E., Growe, J., Liu, A. C.,
CrossRef
Pubmed
Google scholar
|
[143] |
Caschera, F., Bedau, M. A., Buchanan, A., Cawse, J., de Lucrezia, D., Gazzola, G., Hanczyc, M. M. and Packard, N. H. (2011) Coping with complexity: machine learning optimization of cell-free protein synthesis. Biotechnol. Bioeng., 108, 2218–2228
CrossRef
Pubmed
Google scholar
|
[144] |
Trejo Banos, D., Millar, A. J. and Sanguinetti, G. (2015) A Bayesian approach for structure learning in oscillating regulatory networks. Bioinformatics, 31, 3617–3624
Pubmed
|
[145] |
Malumbres, M. and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 9, 153–166
CrossRef
Pubmed
Google scholar
|
[146] |
Dart, A. (2016) Tumorigenesis: cancer goes tick tock. Nat. Rev. Cancer, 16, 409
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |