Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles

Saurav Mallik , Zhongming Zhao

Quant. Biol. ›› 2017, Vol. 5 ›› Issue (4) : 302 -327.

PDF (1585KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (4) : 302 -327. DOI: 10.1007/s40484-017-0119-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles

Author information +
History +
PDF (1585KB)

Abstract

Background: Marker detection is an important task in complex disease studies. Here we provide an association rule mining (ARM) based approach for identifying integrated markers through mutual information (MI) based statistically significant feature extraction, and apply it to acute myeloid leukemia (AML) and prostate carcinoma (PC) gene expression and methylation profiles.

Methods: We first collect the genes having both expression and methylation values in AML as well as PC. Next, we run Jarque-Bera normality test on the expression/methylation data to divide the whole dataset into two parts: one that follows normal distribution and the other that does not follow normal distribution. Thus, we have now four parts of the dataset: normally distributed expression data, normally distributed methylation data, non-normally distributed expression data, and non-normally distributed methylated data. A feature-extraction technique, “mRMR” is then utilized on each part. This results in a list of top-ranked genes. Next, we apply Welch t-test (parametric test) and Shrink t-test (non-parametric test) on the expression/methylation data for the top selected normally distributed genes and non-normally distributed genes, respectively. We then use a recent weighted ARM method, “RANWAR” to combine all/specific resultant genes to generate top oncogenic rules along with respective integrated markers. Finally, we perform literature search as well as KEGG pathway and Gene-Ontology (GO) analyses using Enrichr database for in silico validation of the prioritized oncogenes as the markers and labeling the markers as existing or novel.

Results: The novel markers of AML are {ABCB11↑ ∪ KRT17↓} (i.e., ABCB11 as up-regulated, & KRT17 as down-regulated), and {AP1S1- ∪ KRT17↓ ∪ NEIL2- ∪ DYDC1↓}) (i.e., AP1S1 and NEIL2 both as hypo-methylated, & KRT17 and DYDC1 both as down-regulated). The novel marker of PC is {UBIAD1¶ ∪ APBA2‡ ∪ C4orf31‡} (i.e., UBIAD1 as up-regulated and hypo-methylated, & APBA2 and C4orf31 both as down-regulated and hyper-methylated).

Conclusion: The identified novel markers might have critical roles in AML as well as PC. The approach can be applied to other complex disease.

Graphical abstract

Keywords

integrated markers / feature extraction / statistical test / rule mining

Cite this article

Download citation ▾
Saurav Mallik, Zhongming Zhao. Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles. Quant. Biol., 2017, 5(4): 302-327 DOI:10.1007/s40484-017-0119-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Strimbu, K. and Tavel, J. A. (2010) What are biomarkers? Curr. Opin. HIV AIDS, 5, 463–466

[2]

Dessì N., Pascariello, E. and Pes, B. (2013) A comparative analysis of biomarker selection techniques. BioMed Res. Int., 2013, 387673

[3]

Maiorov, E. G., Keskin, O., Ng, O. H., Ozbek, U. and Gursoy, A. (2013) Identification of interconnected markers for T-cell acute lymphoblastic leukemia. Biomed Res Int, 2013, 210253

[4]

Renneville, A., Roumier, C., Biggio, V., Nibourel, O., Boissel, N., Fenaux, P. and Preudhomme, C. (2008) Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia, 22, 915–931

[5]

Opgen-Rhein, R. and Strimmer, K. (2007) Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Stat. Appl. Genet. Mol. Biol., 6, e9

[6]

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W. and Smyth, G. K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47

[7]

Smyth, G. K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3, 1–25

[8]

He, Z. and Yu, W. (2010) Stable feature selection for biomarker discovery. Comput. Biol. Chem., 34, 215–225

[9]

Mallik, S., Akashi, H. and Kundu, S. (2015) Assembly constraints drive co-evolution among ribosomal constituents. Nucleic Acids Res., 43, 5352–5363

[10]

Mallik, S. and Kundu, S. (2015) Co-evolutionary constraints of globular proteins correlate with their folding rates. FEBS Lett., 589, 2179–2185

[11]

Vickers, A. J. (2005) Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data. BMC Med. Res. Methodol., 5, 35

[12]

Hogg, R. V. and Ledolter, J. (1987) Engineering Statistics. New York: MacMillan Publishers Ltd

[13]

Vapnik, V. N. (2000) The Nature of Statistical Learning Theory. 2nd ed. New York: Springer

[14]

Ghasemi, A. and Zahediasl, S. (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metab., 10, 486–489

[15]

Bhattacharjee, S., Renganaath, K., Mehrotra, R. and Mehrotra, S. (2013) Combinatorial control of gene expression. BioMed Res. Int., 407263

[16]

Wang, Q., Jia, P., Cheng, F. and Zhao, Z. (2015) Heterogeneous DNA methylation contributes to tumorigenesis through inducing the loss of coexpression connectivity in colorectal cancer. Genes Chromosome. Canc., 54, 110–121

[17]

Mallik, S., Mukhopadhyay, A. and Maulik, U. (2013) Integrated statistical and rule-mining techniques for DNA methylation and gene expression data analysis. J. Arti. Int. Soft Comp. Res., 3

[18]

Mukhopadhyay, A. and Mandal, M. (2014) Identifying non-redundant gene markers from microarray data: a multiobjective variable length PSO-based approach. IEEE/ACM Trans. Comput. Biol. Bioinform., 11, 1170–1183

[19]

Mallik, S., Mukhopadhyay, A., Maulik, U. and Bandyopadhyay, S. (2013) Integrated Analysis of Gene Expression and Genome-wide DNA Methylation for Tumor Prediction: An Association Rule Mining-based Approach. In 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 120–127. Singapore

[20]

Liao, C., Li, S. and Luo, Z. (2007) Gene selection using Wilcoxon rank sum test and support vector machine for cancer classification. Lect. Notes Comput. Sci., 4456, 57–66

[21]

Yu, L. and Liu, H. (2004) Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res., 5, 1205–1224

[22]

Jarque, C. and Bera, A. (1987) A test for normality of observations and regression residuals. Int. Stat. Rev., 55, 163–172

[23]

Bandyopadhyay, S., Mallik, S. and Mukhopadhyay, A. (2013) A survey and comparative study of statistical tests for identifying differential expression from microarray data. IEEE/ACM Trans. Comput. Biol Bioinform.14299619

[24]

Peng, H., Long, F. and Ding, C. (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 27, 1226–1238

[25]

Welch, B. (1938) The significance of the difference between two means when the population variances are unequal. Biometrika, 29, 350–362

[26]

Mallik, S., Mukhopadhyay, A. and Maulik, U. (2015) RANWAR: rank-based weighted association rule mining from gene expression and methylation data. IEEE Trans. Nanobiosci., 14, 59–66

[27]

Cover, T. M. and Thomas, J. A. (1991) Elements of information theory. New York: Wiley

[28]

Battiti, R. (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw., 5, 537–550

[29]

Strehl, A. and Ghosh, J. (2002) Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res., 3, 583–617

[30]

Agrawal, R., Imielinski, T. and Swami, A. (1993) Mining Association Rules between Sets of Items in large Databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pp. 207–216. New York: ACM SIGMOD

[31]

Maulik, U., Mallik, S., Mukhopadhyay, A. and Bandyopadhyay, S. (2015) Analyzing large gene expression and methylation data profiles using StatBicRM: statistical biclustering-based rule mining. PLoS One, 10, e0119448

[32]

Pasquier, N., Bastide, Y., Taouil, R. and Lakhal, L. (1999) Discovering Frequent Closed Itemsets for Association Rules. In Proceedings of the 7th International Conference on Database Theory, pp. 398–416. London: Springer-Verlag

[33]

Ruiz, R., Riquelme, J. C. and Aguilar-Ruiz, J. S. (2006) Incremental wrapper-based gene selection from microarray data for cancer classification. Pattern Recognit., 39, 2383–2392

[34]

Xiong, M., Fang, X. and Zhao, J. (2001) Biomarker identification by feature wrappers. Genome Res., 11, 1878–1887

[35]

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. and Levine, A. J. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, 96, 6745–6750

[36]

Li, J., Tang, X., Zhao, W. and Huang, J. (2007) A new framework for identifying differentially expressed genes. Pattern Recognit., 40, 3249–3262

[37]

Glaab, E., Bacardit, J., Garibaldi, J. M. and Krasnogor, N. (2012) Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS One, 7, e39932

[38]

Mallik, S., Sen, S. and Maulik, U. (2016) IDPT: Insights into potential intrinsically disordered proteins through transcriptomic analysis of genes for prostate carcinoma epigenetic data. Gene, 586, 87–96

[39]

Wang, Q., Jia, P., Cuenco, K. T., Zeng, Z., Feingold, E., Marazita, M. L., Wang, L. and Zhao, Z. (2013) Association signals unveiled by a comprehensive gene set enrichment analysis of dental caries genome-wide association studies. PLoS One, 8, e72653

[40]

Huang, H. C., Zheng, S., VanBuren, V. and Zhao, Z. (2010) Discovering disease-specific biomarker genes for cancer diagnosis and prognosis. Technol. Cancer Res. Treat., 9, 219–229

[41]

Coburn, L. A., Gong, X., Singh, K., Asim, M., Scull, B. P., Allaman, M. M., Williams, C. S., Rosen, M. J., Washington, M. K., Barry, D. P., (2012) L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS One, 7, e33546

[42]

Zheng, S., Tansey, W. P., Hiebert, S. W. and Zhao, Z. (2011) Integrative network analysis identifies key genes and pathways in the progression of hepatitis C virus induced hepatocellular carcinoma. BMC Med. Genomics, 4, 62

[43]

Guo, X., Xu, Y. and Zhao, Z. (2015) In-depth genomic data analyses revealed complex transcriptional and epigenetic dysregulations of BRAFV600E in melanoma. Mol. Cancer, 14, 60

[44]

Mallik, S. and Maulik, U. (2015) MiRNA-TF-gene network analysis through ranking of biomolecules for multi-informative uterine leiomyoma dataset. J. Biomed. Inform., 57, 308–319

[45]

Furney, S. J., Kronenberg, D., Simmons, A., Güntert, A., Dobson, R. J., Proitsi, P., Wahlund, L. O., Kloszewska, I., Mecocci, P., Soininen, H., (2011) Combinatorial markers of mild cognitive impairment conversion to Alzheimer’s disease--cytokines and MRI measures together predict disease progression. J. Alzheimers Dis., 26, 395–405

[46]

Kim, H. J., Choi, E. J., Sohn, H. J., Park, S. H., Min, W. S. and Kim, T. G. (2013) Combinatorial molecular marker assays of WT1, survivin, and TERT at initial diagnosis of adult acute myeloid leukemia. Eur. J. Haematol., 91, 411–422

[47]

Loulier, K., Barry, R., Mahou, P., Le Franc, Y., Supatto, W., Matho, K. S., Ieng, S., Fouquet, S., Dupin, E., Benosman, R., (2014) Multiplex cell and lineage tracking with combinatorial labels. Neuron, 81, 505–520

[48]

Shi, Z. Q., Song, D. F., Li, R. Q., Yang, H., Qi, L. W., Xin, G. Z., Wang, D. Q., Song, H. P., Chen, J., Hao, H., (2014) Identification of effective combinatorial markers for quality standardization of herbal medicines. J. Chromatogr. A, 1345, 78–85

[49]

Rakha, E. A., Reis-Filho, J. S. and Ellis, I. O. (2010) Combinatorial biomarker expression in breast cancer. Breast Cancer Res. Treat., 120, 293–308

[50]

Bandyopadhyay, S. and Mallik, S (2016) Integrating multiple data sources for combinatorial marker discovery: a study in tumorigenesis. IEEE/ACM trans. Comput. Biol. Bioinform.

[51]

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res., 44, W90–W97

[52]

https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/?datasetSearch=TCGA

[53]

Paziewska, A., Dabrowska, M., Goryca, K., Antoniewicz, A., Dobruch, J., Mikula, M., Jarosz, D., Zapala, L., Borowka, A. and Ostrowski, J. (2014) DNA methylation status is more reliable than gene expression at detecting cancer in prostate biopsy. Br. J. Cancer, 111, 781–789

[54]

Rithidech, K. N., Tungjai, M., Jangiam, W., Honikel, L., Gordon, C., Lai, X. and Witzmann, F. (2015) Proteomic profiling of hematopoietic stem/progenitor cells after a whole body exposure of CBA/CaJ mice to titanium (48Ti) ions. Proteomes, 3, 132–159

[55]

Gu, J., Zhang, Q. H., Huang, Q. H., Ren, S. X., Wu, X. Y., Ye, M., Huang, C. H., Fu, G., Zhou, J., Niu, C., (2000) Gene expression in CD34(+) cells from normal bone marrow and leukemic origins. Hematol. J., 1, 206–217

[56]

Lau, C. M., Nish, S. A., Yogev, N., Waisman, A., Reiner, S. L. and Reizis, B. (2016) Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses. J. Exp. Med., 213, 415–431

[57]

Khan, I., Malinge, S. and Crispino, J. (2011) Myeloid leukemia in Down syndrome. Crit. Rev. Oncog., 16, 25–36

[58]

Morgan, G. J., Walker, B. A. and Davies, F. E. (2012) The genetic architecture of multiple myeloma. Nat. Rev. Cancer, 12, 335–348

[59]

Ge, Y., Dombkowski, A. A., LaFiura, K. M., Tatman, D., Yedidi, R. S., Stout, M. L., Buck, S. A., Massey, G., Becton, D. L., Weinstein, H. J., (2006) Differential gene expression, GATA1 target genes, and the chemotherapy sensitivity of Down syndrome megakaryocytic leukemia. Blood, 107, 1570–1581

[60]

CHRDL1 gene, available from the website of bloodjournal.

[61]

Bello-Fernández, C., Stasakova, J., Renner, A., Carballido-Perrig, N., Koening, M., Waclavicek, M., Madjic, O., Oehler, L., Haas, O., Carballido, J. M., (2003) Retrovirus-mediated IL-7 expression in leukemic dendritic cells generated from primary acute myelogenous leukemias enhances their functional properties. Blood, 101, 2184–2190

[62]

Zarogoulidis, P., Lampaki, S., Yarmus, L., Kioumis, I., Pitsiou, G., Katsikogiannis, N., Hohenforst-Schmidt, W., Li, Q., Huang, H., Sakkas, A., (2014) Interleukin-7 and interleukin-15 for cancer. J. Cancer, 5, 765–773

[63]

Brenner, A. K., Reikvam, H., Lavecchia, A. and Bruserud, Ø. (2014) Therapeutic targeting the cell division cycle 25 (CDC25) phosphatases in human acute myeloid leukemia--the possibility to target several kinases through inhibition of the various CDC25 isoforms. Molecules, 19, 18414–18447

[64]

Tsai, H. C., Li, H., Van Neste, L., Cai, Y., Robert, C., Rassool, F. V., Shin, J. J., Harbom, K. M., Beaty, R., Pappou, E., (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell, 21, 430–446

[65]

Palande, K. K., Beekman, R., van der Meeren, L. E., Beverloo, H. B., Valk, P. J. M. and Touw, I. P. (2011) The antioxidant protein peroxiredoxin 4 is epigenetically down regulated in acute promyelocytic leukemia. PLoS One, 6, e16340

[66]

Chen, S., Schneider, B., Nagel, S., Geffers, R., Kaufmann, M., Quentmeier, H., Drexler, H. G. and MacLeod, R. A. (2009) Spliceosomal targeting in acute myeloid leukemia cells with ETV6-NTRK3 fusion. Blood, 114, 5042

[67]

Mallik, S., Bhadra, T. and Maulik, U. (2017) Identifying epigenetic biomarkers using maximal relevance and minimal redundancy based feature selection for multi-omics data. IEEE Trans. Nanobioscience, 16, 3–10

[68]

PTK2 gene, available from the website of atlasgeneticsoncology.

[69]

Testa, U. and Riccioni, R. (2007) Deregulation of apoptosis in acute myeloid leukemia. Haematologica, 92, 81–94

[70]

Cellai, C., Laurenzana, A., Bianchi, E., Sdelci, S., Manfredini, R., Vannucchi, A. M., Caporale, R., Balliu, M., Mannelli, F., Ferrari, S., (2009) Mechanistic insight into WEB-2170-induced apoptosis in human acute myelogenous leukemia cells: the crucial role of PTEN. Exp. Hematol., 37, 1176–1185

[71]

Majeti, R., Becker, M. W., Tian, Q., Lee, T. L., Yan, X., Liu, R., Chiang, J. H., Hood, L., Clarke, M. F. and Weissman, I. L. (2009) Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc. Natl. Acad. Sci. USA, 106, 3396–3401

[72]

Jatiani, S. S., Baker, S. J., Silverman, L. R. and Reddy, E. P. (2010) Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer, 1, 979–993

[73]

Eden, C. O., Edwards V, D. K., Eide, C. A., Traer, E., Tyner, J. W., McWeeney, S. K. and Agarwal, A. (2016) Cytokine-mediated inammatory pathways promote clonal evolution and disease progression in acute myeloid leukemia. Blood, 128, 1688

[74]

[75]

Yuan, X., Chen, J., Lin, Y., Li, Y., Xu, L., Chen, L., Hua, H. and Shen, B. (2017) Network biomarkers constructed from gene expression and protein-protein interaction data for accurate prediction of leukemia. J. Cancer, 8, 278–286

[76]

Park, S., Chapuis, N., Tamburini, J., Bardet, V., Cornillet-Lefebvre, P., Willems, L., Green, A., Mayeux, P., Lacombe, C. and Bouscary, D. (2010) Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica, 95, 819–828

[77]

Koski, G. K., Schwartz, G. N., Weng, D. E., Czerniecki, B. J., Carter, C., Gress, R. E. and Cohen, P. A. (1999) Calcium mobilization in human myeloid cells results in acquisition of individual dendritic cell-like characteristics through discrete signaling pathways. J. Immunol., 163, 82–92

[78]

hsa05202, transcriptional misregulation in cancer ( available from KEGG DISEASE Database ).

[79]

Zhang, M.Y.(2015) Genomics of inherited bone marrow failure and myelodysplasia.Dissertation for the Doctoral Degree, University of Washington.

[80]

Caldarelli, A., Müller, J. P., Paskowski-Rogacz, M., Herrmann, K., Bauer, R., Koch, S., Heninger, A. K., Krastev, D., Ding, L., Kasper, S., (2013) A genome-wide RNAi screen identifies proteins modulating aberrant FLT3-ITD signaling. Leukemia, 27, 2301–2310

[81]

Crispino, J. D. and Le Beau, M. M. (2012) BMP meets AML: induction of BMP signaling by a novel fusion gene promotes pediatric acute leukemia. Cancer Cell, 22, 567–568

[82]

Bonardi, F., Fusetti, F., Deelen, P., van Gosliga, D., Vellenga, E. and Schuringa, J. J. (2013) A proteomics and transcriptomics approach to identify leukemic stem cell (LSC) markers. Mol. Cell. Proteomics, 12, 626–637

[83]

Chigaev, A. (2015) Does aberrant membrane transport contribute to poor outcome in adult acute myeloid leukemia? Front. Pharmacol., 6, 134

[84]

Badie, C., Blachowicz, A., Barjaktarovic, Z., Finnon, R., Michaux, A., Sarioglu, H., Brown, N., Manning, G., Abderrafi Benotmane, M., Tapio, S., (2016) Transcriptomic and proteomic analysis of mouse radiation-induced acute myeloid leukaemia (AML). Oncotarget, 7, 40461–40480

[85]

Teo, T., Lam, F., Yu, M., Yang, Y., Basnet, S. K. C., Albrecht, H., Sykes, M. J. and Wang, S. (2015) Pharmacologic inhibition of MNKs in acute myeloid leukemia. Mol. Pharmacol., 88, 380–389

[86]

Andersson, A., Edén, P., Lindgren, D., Nilsson, J., Lassen, C., Heldrup, J., Fontes, M., Borg, A., Mitelman, F., Johansson, B., (2005) Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations. Leukemia, 19, 1042–1050

[87]

Suleiman, L., Négrier, C. and Boukerche, H. (2013) Protein S: A multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit. Rev. Oncol. Hematol., 88, 637–654

[88]

Available from the website of haematologica.

[89]

Krupp, M., Maass, T., Marquardt, J. U., Staib, F., Bauer, T., König, R., Biesterfeld, S., Galle, P. R., Tresch, A. and Teufel, A. (2011) The functional cancer map: a systems-level synopsis of genetic deregulation in cancer. BMC Med. Genomics, 4, 53

[90]

Sun, Y., Boyd, K., Xu, W., Ma, J., Jackson, C. W., Fu, A., Shillingford, J. M., Robinson, G. W., Hennighausen, L., Hitzler, J. K., (2006) Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Mol. Cell. Biol., 26, 5809–5826

[91]

Roney, K. E., O’Connor, B. P., Wen, H., Holl, E. K., Guthrie, E. H., Davis, B. K., Jones, S. W., Jha, S., Sharek, L., Garcia-Mata, R., (2011) Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation. PLoS One, 6, e24795

[92]

Rossetti, S., Hoogeveen, A. T., Liang, P., Stanciu, C., van der Spek, P. and Sacchi, N. (2007) A distinct epigenetic signature at targets of a leukemia protein. BMC Genomics, 8, 38

[93]

Foroushani, A., Agrahari, R., Docking, R., Chang, L., Duns, G., Hudoba, M., Karsan, A. and Zare, H. (2017) Large-scale gene network analysis reveals the significance of extracellular matrix pathway and homeobox genes in acute myeloid leukemia: an introduction to the Pigengene package and its applications. BMC Med. Genomics, 10, 16

[94]

Barfeld, S. J., East, P., Zuber, V. and Mills, I. G. (2014) Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Med. Genomics, 7, 513

[95]

Fredericks, W. J., Sepulveda, J., Lal, P., Tomaszewski, J. E., Lin, M. F., McGarvey, T., Rauscher, F. J. 3rd and Malkowicz, S. B. (2013) The tumor suppressor TERE1 (UBIAD1) prenyltransferase regulates the elevated cholesterol phenotype in castration resistant prostate cancer by controlling a program of ligand dependent SXR target genes. Oncotarget, 4, 1075–1092

[96]

Shil, S., Joshi, R. S., Joshi, C. G., Patel, A. K., Shah, R. K., Patel, N., Jakhesara, S. J., Kundu, S., Reddy, B., Koringa, P. G., (2017) Transcriptomic comparison of primary bovine horn core carcinoma culture and parental tissue at early stage. Vet. World, 10, 38–55

[97]

Lhakhang, T. W. and Chaudhry, M. A. (2012) Interactome of radiation-induced microRNA-predicted target genes. Comp. Funct. Genomics, 2012, 569731

[98]

Jung, C. J., Iyengar, S., Blahnik, K. R., Jiang, J. X., Tahimic, C., Torok, N. J., de vere White, R. W., Farnham, P. J. and Zern, M. (2012) Human ESC self-renewal promoting microRNAs induce epithelial-mesenchymal transition in hepatocytes by controlling the PTEN and TGFβ tumor suppressor signaling pathways. Mol. Cancer Res., 10, 979–991

[99]

Chen, Z. and Lu, W. (2015) Roles of ubiquitination and SUMOylation on prostate cancer: mechanisms and clinical implications. Int. J. Mol. Sci., 16, 4560–4580

[100]

Xu, H. D., Shi, S. P., Chen, X. and Qiu, J. D. (2015) Systematic analysis of the genetic variability that impacts SUMO conjugation and their involvement in human diseases. Sci. Rep., 5, 10900

[101]

Vlachostergios, P. J. and Papandreou, C. N. (2012) The Role of the Small Ubiquitin-Related Modifier (SUMO) Pathway in Prostate Cancer. Biomolecules, 2, 240–255

[102]

Young, M. D., Wakefield, M. J., Smyth, G. K. and Oshlack, A. (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol., 11, R14

[103]

Junicho, A., Matsuda, T., Yamamoto, T., Kishi, H., Korkmaz, K., Saatcioglu, F., Fuse, H. and Muraguchi, A. (2000) Protein inhibitor of activated STAT3 regulates androgen receptor signaling in prostate carcinoma cells. Biochem. Biophys. Res. Commun., 278, 9–13

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (1585KB)

1975

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/