Multifaceted roles of complementary sequences on circRNA formation
Qin Yang, Ying Wang, Li Yang
Multifaceted roles of complementary sequences on circRNA formation
Background: Circular RNAs (circRNAs) from back-spliced exon(s) are characterized by the covalently closed loop feature with neither 5′ to 3′ polarity nor polyadenylated tail. By using specific computational approaches that identify reads mapped to back-splice junctions with a reversed genomic orientation, ten thousands of circRNAs have been recently re-identified in various cell lines/tissues and across different species. Increasing lines of evidence suggest that back-splicing is catalyzed by the canonical spliceosomal machinery and modulated by cis-elements and trans-factors.
Results: In this mini-review, we discuss our current understanding of circRNA biogenesis regulation, mainly focusing on the complex regulation of complementary sequences, especially Alus in human, on circRNA formation.
Conclusions: Back-splicing can be significantly facilitated by RNA pair formed by orientation-opposite complementary sequences that juxtapose flanking introns of circularized exon(s). RNA pair formed within individual introns competes with RNA pair formed across flanking introns in the same gene locus, leading to distinct choices for either canonical splicing or back-splicing. Multiple RNA pairs that bracket different circle-forming exons compete for alternative back-splicing selection, resulting in multiple circRNAs generated in a single gene locus.
circRNA / circRNA biogenesis / back-splicing / cis-elements / complementary sequences / Alu
[1] |
Chen, L. L. (2016) The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol., 17, 205–211
CrossRef
Google scholar
|
[2] |
Chen, L. L. and Yang, L. (2015) Regulation of circRNA biogenesis. RNA Biol., 12, 381–388
CrossRef
Google scholar
|
[3] |
Lasda, E. and Parker, R. (2014) Circular RNAs: diversity of form and function. RNA, 20, 1829–1842
CrossRef
Google scholar
|
[4] |
Yang, L. (2015) Splicing noncoding RNAs from the inside out. WIREs RNA, 6, 651–660
CrossRef
Google scholar
|
[5] |
Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., Zhu, S., Yang, L. and Chen, L. L. (2013) Circular intronic long noncoding RNAs. Mol. Cell, 51, 792–806
CrossRef
Google scholar
|
[6] |
Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F. and Sharpless, N. E. (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19, 141–157
CrossRef
Google scholar
|
[7] |
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M.,
CrossRef
Google scholar
|
[8] |
Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L. and Brown, P. O. (2013) Cell-type specific features of circular RNA expression. PLoS Genet., 9, e1003777
CrossRef
Google scholar
|
[9] |
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. and Brown, P. O. (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 7, e30733
CrossRef
Google scholar
|
[10] |
Zhang, X. O., Wang, H. B., Zhang, Y., Lu, X., Chen, L. L. and Yang, L. (2014) Complementary sequence-mediated exon circularization. Cell, 159, 134–147
CrossRef
Google scholar
|
[11] |
Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. and Chen, L. L. (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol., 12, R16
CrossRef
Google scholar
|
[12] |
Yin, Q. F., Chen, L. L. and Yang, L. (2015) Fractionation of non-polyadenylated and ribosomal-free RNAs from mammalian cells. Methods Mol. Biol., 1206, 69–80
CrossRef
Google scholar
|
[13] |
Zhang, Y., Yang, L. and Chen, L. L. (2016) Characterization of Circular RNAs. Methods Mol. Biol., 1402, 215–227
CrossRef
Google scholar
|
[14] |
Chen, L. L. and Yang, L. (2017) ALUternative regulation for gene expression. Trends Cell Biol., 27, 480–490
CrossRef
Google scholar
|
[15] |
Hansen, T. B., Veno, M. T., Damgaard, C. K. and Kjems, J. (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res., 44, e58
CrossRef
Google scholar
|
[16] |
Zhang, X. O., Dong, R., Zhang, Y., Zhang, J. L., Luo, Z., Zhang, J., Chen, L. L. and Yang, L. (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res., 26, 1277–1287
CrossRef
Google scholar
|
[17] |
Jeck, W. R. and Sharpless, N. E. (2014) Detecting and characterizing circular RNAs. Nat. Biotechnol., 32, 453–461
CrossRef
Google scholar
|
[18] |
Dong, R., Ma, X. K., Chen, L. L. and Yang, L. (2016) Increased complexity of circRNA expression during species evolution. RNA Biol., 1–11. doi: 10.1080/15476286.2016.1269999
|
[19] |
Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H. T., Orejuela, M. R., Piechotta, M., Levanon, E. Y., Landthaler, M., Dieterich, C.,
CrossRef
Google scholar
|
[20] |
Rybak-Wolf, A., Stottmeister, C., Glazar, P., Jens, M., Pino, N., Giusti, S., Hanan, M., Behm, M., Bartok, O., Ashwal-Fluss, R.,
CrossRef
Google scholar
|
[21] |
Westholm, J. O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S. E., Graveley, B. R. and Lai, E. C. (2014) Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep., 9, 1966–1980
CrossRef
Google scholar
|
[22] |
Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N. and Kadener, S. (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell, 56, 55–66
CrossRef
Google scholar
|
[23] |
Starke, S., Jost, I., Rossbach, O., Schneider, T., Schreiner, S., Hung, L. H. and Bindereif, A. (2015) Exon circularization requires canonical splice signals. Cell Rep., 10, 103–111
CrossRef
Google scholar
|
[24] |
Zhang, Y., Xue, W., Li, X., Zhang, J., Chen, S., Zhang, J. L., Yang, L. and Chen, L. L. (2016) The biogenesis of nascent circular RNAs. Cell Rep., 15, 611–624
CrossRef
Google scholar
|
[25] |
Liang, D. and Wilusz, J. E. (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev., 28, 2233–2247
CrossRef
Google scholar
|
[26] |
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W.,
CrossRef
Google scholar
|
[27] |
Chen, L. L., DeCerbo, J. N. and Carmichael, G. G. (2008) Alu element—mediated gene silencing. EMBO J., 27, 1694–1705
CrossRef
Google scholar
|
[28] |
Guarnerio, J., Bezzi, M., Jeong, J. C., Paffenholz, S. V., Berry, K., Naldini, M. M., Lo-Coco, F., Tay, Y., Beck, A. H. and Pandolfi, P. P. (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell, 165, 289–302
CrossRef
Google scholar
|
[29] |
Conn, S. J., Pillman, K. A., Toubia, J., Conn, V. M., Salmanidis, M., Phillips, C. A., Roslan, S., Schreiber, A. W., Gregory, P. A. and Goodall, G. J. (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell, 160, 1125–1134
CrossRef
Google scholar
|
[30] |
Kramer, M. C., Liang, D., Tatomer, D. C., Gold, B., March, Z. M., Cherry, S. and Wilusz, J. E. (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev., 29, 2168–2182
CrossRef
Google scholar
|
[31] |
Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B. M., Strein, C., Davey, N. E., Humphreys, D. T., Preiss, T., Steinmetz, L. M.,
CrossRef
Google scholar
|
[32] |
He, C., Sidoli, S., Warneford-Thomson, R., Tatomer, D. C., Wilusz, J. E., Garcia, B. A. and Bonasio, R. (2016) High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol. Cell, 64, 416–430
CrossRef
Google scholar
|
[33] |
Li, X., Liu, C. X., Xue, W., Zhang, Z., Jiang, S., Yin, Q. F., Wei, J., Yao, R. W., Yang, L. and Chen, L. L. (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol. Cell, 67,214-227.e7.
|
[34] |
Aktaş, T., Avşar Ilık, İ., Maticzka, D., Bhardwaj, V., Pessoa Rodrigues, C., Mittler, G., Manke, T., Backofen, R. and Akhtar, A. (2017) DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature, 544, 115–119
CrossRef
Google scholar
|
/
〈 | 〉 |