Multifaceted roles of complementary sequences on circRNA formation

Qin Yang, Ying Wang, Li Yang

PDF(417 KB)
PDF(417 KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (3) : 205-209. DOI: 10.1007/s40484-017-0112-7
MINI REVIEW
MINI REVIEW

Multifaceted roles of complementary sequences on circRNA formation

Author information +
History +

Abstract

Background: Circular RNAs (circRNAs) from back-spliced exon(s) are characterized by the covalently closed loop feature with neither 5′ to 3′ polarity nor polyadenylated tail. By using specific computational approaches that identify reads mapped to back-splice junctions with a reversed genomic orientation, ten thousands of circRNAs have been recently re-identified in various cell lines/tissues and across different species. Increasing lines of evidence suggest that back-splicing is catalyzed by the canonical spliceosomal machinery and modulated by cis-elements and trans-factors.

Results: In this mini-review, we discuss our current understanding of circRNA biogenesis regulation, mainly focusing on the complex regulation of complementary sequences, especially Alus in human, on circRNA formation.

Conclusions: Back-splicing can be significantly facilitated by RNA pair formed by orientation-opposite complementary sequences that juxtapose flanking introns of circularized exon(s). RNA pair formed within individual introns competes with RNA pair formed across flanking introns in the same gene locus, leading to distinct choices for either canonical splicing or back-splicing. Multiple RNA pairs that bracket different circle-forming exons compete for alternative back-splicing selection, resulting in multiple circRNAs generated in a single gene locus.

Graphical abstract

Keywords

circRNA / circRNA biogenesis / back-splicing / cis-elements / complementary sequences / Alu

Cite this article

Download citation ▾
Qin Yang, Ying Wang, Li Yang. Multifaceted roles of complementary sequences on circRNA formation. Quant. Biol., 2017, 5(3): 205‒209 https://doi.org/10.1007/s40484-017-0112-7

References

[1]
Chen, L. L. (2016) The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol., 17, 205–211
CrossRef Google scholar
[2]
Chen, L. L. and Yang, L. (2015) Regulation of circRNA biogenesis. RNA Biol., 12, 381–388
CrossRef Google scholar
[3]
Lasda, E. and Parker, R. (2014) Circular RNAs: diversity of form and function. RNA, 20, 1829–1842
CrossRef Google scholar
[4]
Yang, L. (2015) Splicing noncoding RNAs from the inside out. WIREs RNA, 6, 651–660
CrossRef Google scholar
[5]
Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., Zhu, S., Yang, L. and Chen, L. L. (2013) Circular intronic long noncoding RNAs. Mol. Cell, 51, 792–806
CrossRef Google scholar
[6]
Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F. and Sharpless, N. E. (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19, 141–157
CrossRef Google scholar
[7]
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338
CrossRef Google scholar
[8]
Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L. and Brown, P. O. (2013) Cell-type specific features of circular RNA expression. PLoS Genet., 9, e1003777
CrossRef Google scholar
[9]
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. and Brown, P. O. (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 7, e30733
CrossRef Google scholar
[10]
Zhang, X. O., Wang, H. B., Zhang, Y., Lu, X., Chen, L. L. and Yang, L. (2014) Complementary sequence-mediated exon circularization. Cell, 159, 134–147
CrossRef Google scholar
[11]
Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. and Chen, L. L. (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol., 12, R16
CrossRef Google scholar
[12]
Yin, Q. F., Chen, L. L. and Yang, L. (2015) Fractionation of non-polyadenylated and ribosomal-free RNAs from mammalian cells. Methods Mol. Biol., 1206, 69–80
CrossRef Google scholar
[13]
Zhang, Y., Yang, L. and Chen, L. L. (2016) Characterization of Circular RNAs. Methods Mol. Biol., 1402, 215–227
CrossRef Google scholar
[14]
Chen, L. L. and Yang, L. (2017) ALUternative regulation for gene expression. Trends Cell Biol., 27, 480–490
CrossRef Google scholar
[15]
Hansen, T. B., Veno, M. T., Damgaard, C. K. and Kjems, J. (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res., 44, e58
CrossRef Google scholar
[16]
Zhang, X. O., Dong, R., Zhang, Y., Zhang, J. L., Luo, Z., Zhang, J., Chen, L. L. and Yang, L. (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res., 26, 1277–1287
CrossRef Google scholar
[17]
Jeck, W. R. and Sharpless, N. E. (2014) Detecting and characterizing circular RNAs. Nat. Biotechnol., 32, 453–461
CrossRef Google scholar
[18]
Dong, R., Ma, X. K., Chen, L. L. and Yang, L. (2016) Increased complexity of circRNA expression during species evolution. RNA Biol., 1–11. doi: 10.1080/15476286.2016.1269999
[19]
Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H. T., Orejuela, M. R., Piechotta, M., Levanon, E. Y., Landthaler, M., Dieterich, C., (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep., 10, 170–177
CrossRef Google scholar
[20]
Rybak-Wolf, A., Stottmeister, C., Glazar, P., Jens, M., Pino, N., Giusti, S., Hanan, M., Behm, M., Bartok, O., Ashwal-Fluss, R., (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 58, 870–885
CrossRef Google scholar
[21]
Westholm, J. O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S. E., Graveley, B. R. and Lai, E. C. (2014) Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep., 9, 1966–1980
CrossRef Google scholar
[22]
Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N. and Kadener, S. (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell, 56, 55–66
CrossRef Google scholar
[23]
Starke, S., Jost, I., Rossbach, O., Schneider, T., Schreiner, S., Hung, L. H. and Bindereif, A. (2015) Exon circularization requires canonical splice signals. Cell Rep., 10, 103–111
CrossRef Google scholar
[24]
Zhang, Y., Xue, W., Li, X., Zhang, J., Chen, S., Zhang, J. L., Yang, L. and Chen, L. L. (2016) The biogenesis of nascent circular RNAs. Cell Rep., 15, 611–624
CrossRef Google scholar
[25]
Liang, D. and Wilusz, J. E. (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev., 28, 2233–2247
CrossRef Google scholar
[26]
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921
CrossRef Google scholar
[27]
Chen, L. L., DeCerbo, J. N. and Carmichael, G. G. (2008) Alu element—mediated gene silencing. EMBO J., 27, 1694–1705
CrossRef Google scholar
[28]
Guarnerio, J., Bezzi, M., Jeong, J. C., Paffenholz, S. V., Berry, K., Naldini, M. M., Lo-Coco, F., Tay, Y., Beck, A. H. and Pandolfi, P. P. (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell, 165, 289–302
CrossRef Google scholar
[29]
Conn, S. J., Pillman, K. A., Toubia, J., Conn, V. M., Salmanidis, M., Phillips, C. A., Roslan, S., Schreiber, A. W., Gregory, P. A. and Goodall, G. J. (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell, 160, 1125–1134
CrossRef Google scholar
[30]
Kramer, M. C., Liang, D., Tatomer, D. C., Gold, B., March, Z. M., Cherry, S. and Wilusz, J. E. (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev., 29, 2168–2182
CrossRef Google scholar
[31]
Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B. M., Strein, C., Davey, N. E., Humphreys, D. T., Preiss, T., Steinmetz, L. M., (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 149, 1393–1406
CrossRef Google scholar
[32]
He, C., Sidoli, S., Warneford-Thomson, R., Tatomer, D. C., Wilusz, J. E., Garcia, B. A. and Bonasio, R. (2016) High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol. Cell, 64, 416–430
CrossRef Google scholar
[33]
Li, X., Liu, C. X., Xue, W., Zhang, Z., Jiang, S., Yin, Q. F., Wei, J., Yao, R. W., Yang, L. and Chen, L. L. (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol. Cell, 67,214-227.e7.
[34]
Aktaş, T., Avşar Ilık, İ., Maticzka, D., Bhardwaj, V., Pessoa Rodrigues, C., Mittler, G., Manke, T., Backofen, R. and Akhtar, A. (2017) DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature, 544, 115–119
CrossRef Google scholar

ACKNOWLEDGEMENTS

We are grateful to L.-L.C. for critical reading of this manuscript. We apologize to authors whose work could not be cited here owing to space/content limitations. Our work is supported by grants 2014CB910601 from MOST and 91540115 and 31471241 from NSFC.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Qin Yang, Ying Wang and Li Yang declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(417 KB)

Accesses

Citations

Detail

Sections
Recommended

/