An introduction to computational tools for differential binding analysis with ChIP-seq data
Shiqi Tu, Zhen Shao
An introduction to computational tools for differential binding analysis with ChIP-seq data
Background: Gene transcription in eukaryotic cells is collectively controlled by a large panel of chromatin associated proteins and ChIP-seq is now widely used to locate their binding sites along the whole genome. Inferring the differential binding sites of these proteins between biological conditions by comparing the corresponding ChIP-seq samples is of general interest, yet it is still a computationally challenging task.
Results: Here, we briefly review the computational tools developed in recent years for differential binding analysis with ChIP-seq data. The methods are extensively classified by their strategy of statistical modeling and scope of application. Finally, a decision tree is presented for choosing proper tools based on the specific dataset.
Conclusions: Computational tools for differential binding analysis with ChIP-seq data vary significantly with respect to their applicability and performance. This review can serve as a practical guide for readers to select appropriate tools for their own datasets.
ChIP-seq / peak calling / differential binding analysis / computational tools
[1] |
Mardis, E. R. (2007) ChIP-seq: welcome to the new frontier. Nat. Methods, 4, 613–614
CrossRef
Pubmed
Google scholar
|
[2] |
Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680
CrossRef
Pubmed
Google scholar
|
[3] |
Steinhauser, S., Kurzawa, N., Eils, R. and Herrmann, C. (2016) A comprehensive comparison of tools for differential ChIP-seq analysis. Brief. Bioinform., 17, 953–966
Pubmed
|
[4] |
Kundaje, A., Meuleman, W., Ernst, J. , Bilenky, M. , Yen, A. , Heravi-Moussavi, A. , Kheradpour, P. , Zhang, Z. , Wang, J. , Ziller, M. J. ,
CrossRef
Pubmed
Google scholar
|
[5] |
Martens, J. H. and Stunnenberg, H. G. (2013) BLUEPRINT: mapping human blood cell epigenomes. Haematologica, 98, 1487–1489
CrossRef
Pubmed
Google scholar
|
[6] |
Lara-Astiaso, D., Weiner, A., Lorenzo-Vivas, E., Zaretsky, I. , Jaitin, D. A. , David, E. , Keren-Shaul, H. , Mildner, A. , Winter, D. , Jung, S. ,
CrossRef
Pubmed
Google scholar
|
[7] |
Koues, O. I., Kowalewski, R. A., Chang, L. W. , Pyfrom, S. C. , Schmidt, J. A. , Luo, H. , Sandoval, L. E. , Hughes, T. B. , Bednarski, J. J. , Cashen, A. F. ,
CrossRef
Pubmed
Google scholar
|
[8] |
Shao, Z., Zhang, Y., Yuan, G. C. , Orkin, S. H. and Waxman, D. J. (2012) MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol., 13, R16
CrossRef
Pubmed
Google scholar
|
[9] |
Xu, J., Shao, Z., Glass, K. , Bauer, D. E. , Pinello, L. , Van Handel, B. , Hou, S. , Stamatoyannopoulos, J. A. , Mikkola, H. K. , Yuan, G. C. ,
CrossRef
Pubmed
Google scholar
|
[10] |
Faure, A. J., Schmidt, D., Watt, S. , Schwalie, P. C. , Wilson, M. D. , Xu, H., Ramsay, R. G., Odom, D. T. and Flicek, P. (2012) Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules. Genome Res., 22, 2163–2175
CrossRef
Pubmed
Google scholar
|
[11] |
Trompouki, E., Bowman, T. V., Lawton, L. N. , Fan, Z. P. , Wu, D. C. , DiBiase, A. , Martin, C. S. , Cech, J. N. , Sessa, A. K. , Leblanc, J. L. ,
CrossRef
Pubmed
Google scholar
|
[12] |
Fujiwara, T., O’Geen, H., Keles, S. , Blahnik, K. , Linnemann, A. K. , Kang, Y. A. , Choi, K. , Farnham, P. J. and Bresnick, E. H. (2009) Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol. Cell, 36, 667–681
CrossRef
Pubmed
Google scholar
|
[13] |
Liu, W., Tanasa, B., Tyurina, O. V. , Zhou, T. Y. , Gassmann, R. , Liu, W. T. , Ohgi, K. A. , Benner, C. , Garcia-Bassets, I. , Aggarwal, A. K. ,
CrossRef
Pubmed
Google scholar
|
[14] |
Yu, M., Riva, L., Xie, H. , Schindler, Y. , Moran, T. B. , Cheng, Y. , Yu, D., Hardison, R., Weiss, M. J. , Orkin, S. H. ,
CrossRef
Pubmed
Google scholar
|
[15] |
Allhoff, M., Seré, K., F Pires, J., Zenke, M. and G Costa, I. (2016) Differential peak calling of ChIP-seq signals with replicates with THOR. Nucleic Acids Res., 44, e153
Pubmed
|
[16] |
Wang, S., Sun, H., Ma, J. , Zang, C. , Wang, C. , Wang, J. , Tang, Q. , Meyer, C. A. , Zhang, Y. and Liu, X. S. (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc., 8, 2502–2515
CrossRef
Pubmed
Google scholar
|
[17] |
Ouyang, Z., Zhou, Q. and Wong, W. H. (2009) ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc. Natl. Acad. Sci. USA, 106, 21521–21526
CrossRef
Pubmed
Google scholar
|
[18] |
Wang, S., Zang, C., Xiao, T. , Fan, J. , Mei, S. , Qin, Q. , Wu, Q., Li, X., Xu, K. , He, H. H. ,
CrossRef
Pubmed
Google scholar
|
[19] |
Chen, Y., Negre, N., Li, Q. , Mieczkowska, J. O. , Slattery, M. , Liu, T. , Zhang, Y. , Kim, T. K. , He, H. H. , Zieba, J. ,
CrossRef
Pubmed
Google scholar
|
[20] |
Meyer, C. A. and Liu, X. S. (2014) Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat. Rev. Genet., 15, 709–721
CrossRef
Pubmed
Google scholar
|
[21] |
Landt, S. G., Marinov, G. K., Kundaje, A. , Kheradpour, P. , Pauli, F. , Batzoglou, S. , Bernstein, B. E. , Bickel, P. , Brown, J. B. , Cayting, P. ,
CrossRef
Pubmed
Google scholar
|
[22] |
Furey, T. S. (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet., 13, 840–852
CrossRef
Pubmed
Google scholar
|
[23] |
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25
CrossRef
Pubmed
Google scholar
|
[24] |
Zhang, Y., Liu, T., Meyer, C. A. , Eeckhoute, J. , Johnson, D. S. , Bernstein, B. E. , Nusbaum, C. , Myers, R. M. , Brown, M. , Li, W.,
CrossRef
Pubmed
Google scholar
|
[25] |
Feng, J., Liu, T., Qin, B. , Zhang, Y. and Liu, X. S. (2012) Identifying ChIP-seq enrichment using MACS. Nat. Protoc., 7, 1728–1740
CrossRef
Pubmed
Google scholar
|
[26] |
Zang, C., Schones, D. E., Zeng, C. , Cui, K. , Zhao, K. and Peng, W. (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics, 25, 1952–1958
CrossRef
Pubmed
Google scholar
|
[27] |
Wilbanks, E. G. and Facciotti, M. T. (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One, 5, e11471
CrossRef
Pubmed
Google scholar
|
[28] |
Liang, K. and Keles, S. (2012) Detecting differential binding of transcription factors with ChIP-seq. Bioinformatics, 28, 121–122
CrossRef
Pubmed
Google scholar
|
[29] |
Chen, L., Wang, C., Qin, Z. S. and Wu, H. (2015) A novel statistical method for quantitative comparison of multiple ChIP-seq datasets. Bioinformatics, 31, 1889–1896
CrossRef
Pubmed
Google scholar
|
[30] |
Barski, A., Cuddapah, S., Cui, K. , Roh, T. Y. , Schones, D. E. , Wang, Z. , Wei, G. , Chepelev, I. and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell, 129, 823–837
CrossRef
Pubmed
Google scholar
|
[31] |
Wang, Z., Zang, C., Rosenfeld, J. A. , Schones, D. E. , Barski, A. , Cuddapah, S. , Cui, K. , Roh, T. Y. , Peng, W. , Zhang, M. Q. ,
CrossRef
Pubmed
Google scholar
|
[32] |
Song, Q. and Smith, A. D. (2011) Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics, 27, 870–871
CrossRef
Pubmed
Google scholar
|
[33] |
Ibrahim, M. M. , Lacadie, S. A. and Ohler, U. (2015) JAMM: a peak finder for joint analysis of NGS replicates. Bioinformatics, 31, 48–55
CrossRef
Pubmed
Google scholar
|
[34] |
Li, Q. H., Brown, J. B., Huang, H. and Bickel, P. J. (2011) Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat., 5, 1752–1779
CrossRef
Google scholar
|
[35] |
Heinz, S., Benner, C., Spann, N. , Bertolino, E. , Lin, Y. C. , Laslo, P. , Cheng, J. X. , Murre, C. , Singh, H. and Glass, C. K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell, 38, 576–589
CrossRef
Pubmed
Google scholar
|
[36] |
Robinson, M. D. , McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
CrossRef
Pubmed
Google scholar
|
[37] |
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106
CrossRef
Pubmed
Google scholar
|
[38] |
Ross-Innes, C. S. , Stark, R. , Teschendorff, A. E. , Holmes, K. A. , Ali, H. R. , Dunning, M. J. , Brown, G. D. , Gojis, O. , Ellis, I. O. , Green, A. R. ,
Pubmed
|
[39] |
Conesa, A., Madrigal, P., Tarazona, S. , Gomez-Cabrero, D. , Cervera, A. , McPherson, A. , Szcześniak, M. W. , Gaffney, D. J. , Elo, L. L. , Zhang, X. ,
CrossRef
Pubmed
Google scholar
|
[40] |
Feng, J., Meyer, C. A., Wang, Q. , Liu, J. S. , Shirley Liu, X. and Zhang, Y. (2012) GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics, 28, 2782–2788
CrossRef
Pubmed
Google scholar
|
[41] |
Johnson, W. E. , Li, C. and Rabinovic, A. (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127
CrossRef
Pubmed
Google scholar
|
[42] |
Nueda, M. J., Ferrer, A. and Conesa, A. (2012) ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments. Biostatistics, 13, 553–566
CrossRef
Pubmed
Google scholar
|
[43] |
Robinson, M. D. and Smyth, G. K. (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23, 2881–2887
CrossRef
Pubmed
Google scholar
|
[44] |
Law, C. W., Chen, Y., Shi, W. and Smyth, G. K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29
CrossRef
Pubmed
Google scholar
|
[45] |
Soneson, C. and Delorenzi, M. (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91
CrossRef
Pubmed
Google scholar
|
[46] |
Smyth, G. K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments.Stat. Appl. Genet. Mol. Biol., 3, Article3
|
[47] |
Xu, H., Wei, C. L., Lin, F. and Sung, W. K. (2008) An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Bioinformatics, 24, 2344–2349
CrossRef
Pubmed
Google scholar
|
[48] |
Allhoff, M., Seré, K., Chauvistré, H., Lin, Q. , Zenke, M. and Costa, I. G. (2014) Detecting differential peaks in ChIP-seq signals with ODIN. Bioinformatics, 30, 3467–3475
CrossRef
Pubmed
Google scholar
|
[49] |
Shen, L., Shao, N. Y., Liu, X. , Maze, I. , Feng, J. and Nestler, E. J. (2013) diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates. PLoS One, 8, e65598
CrossRef
Pubmed
Google scholar
|
[50] |
Zhang, Y., Lin, Y. H., Johnson, T. D. , Rozek, L. S. and Sartor, M. A. (2014) PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data. Bioinformatics, 30, 2568–2575
CrossRef
Pubmed
Google scholar
|
[51] |
Ernst, J. and Kellis, M. (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol., 28, 817–825
CrossRef
Pubmed
Google scholar
|
[52] |
Ernst, J. and Kellis, M. (2012) ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods, 9, 215–216
CrossRef
Pubmed
Google scholar
|
[53] |
Ernst, J., Kheradpour, P., Mikkelsen, T. S. , Shoresh, N. , Ward, L. D. , Epstein, C. B. , Zhang, X. , Wang, L. , Issner, R. , Coyne, M. ,
CrossRef
Pubmed
Google scholar
|
[54] |
Kasowski, M., Kyriazopoulou-Panagiotopoulou, S., Grubert, F. , Zaugg, J. B. , Kundaje, A. , Liu, Y. , Boyle, A. P. , Zhang, Q. C. , Zakharia, F. , Spacek, D. V. ,
CrossRef
Pubmed
Google scholar
|
[55] |
Bonhoure, N., Bounova, G., Bernasconi, D., Praz, V. , Lammers, F. , Canella, D. , Willis, I. M. , Herr, W. , Hernandez, N. , Delorenzi, M. ,
CrossRef
Pubmed
Google scholar
|
[56] |
Smyth, G. K., Michaud, J. and Scott, H. S. (2005) Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics, 21, 2067–2075
CrossRef
Pubmed
Google scholar
|
[57] |
Wu, D., Lim, E., Vaillant, F. , Asselin-Labat, M. L. , Visvader, J. E. and Smyth, G. K. (2010) ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics, 26, 2176–2182
CrossRef
Pubmed
Google scholar
|
[58] |
Wu, D. and Smyth, G. K. (2012) Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res., 40, e133
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |