ePlant for quantitative and predictive plant science research in the big data era —Lay the foundation for the future model guided crop breeding, engineering and agronomy
Yi Xiao, Tiangen Chang, Qingfeng Song, Shuyue Wang, Danny Tholen, Yu Wang, Changpeng Xin, Guangyong Zheng, Honglong Zhao, Xin-Guang Zhu
ePlant for quantitative and predictive plant science research in the big data era —Lay the foundation for the future model guided crop breeding, engineering and agronomy
Background: The increase in global population, climate change and stagnancy in crop yield on unit land area basis in recent decades urgently call for a new approach to support contemporary crop improvements. ePlant is a mathematical model of plant growth and development with a high level of mechanistic details to meet this challenge.
Results: ePlant integrates modules developed for processes occurring at drastically different temporal (10–8–106 seconds) and spatial (10–10–10 meters) scales, incorporating diverse physical, biophysical and biochemical processes including gene regulation, metabolic reaction, substrate transport and diffusion, energy absorption, transfer and conversion, organ morphogenesis, plant environment interaction, etc. Individual modules are developed using a divide-and-conquer approach; modules at different temporal and spatial scales are integrated through transfer variables. We further propose a supervised learning procedure based on information geometry to combine model and data for both knowledge discovery and model extension or advances. We finally discuss the recent formation of a global consortium, which includes experts in plant biology, computer science, statistics, agronomy, phenomics, etc. aiming to expedite the development and application of ePlant or its equivalents by promoting a new model development paradigm where models are developed as a community effort instead of driven mainly by individual labs’ effort.
Conclusions: ePlant, as a major research tool to support quantitative and predictive plant science research, will play a crucial role in the future model guided crop engineering, breeding and agronomy.
systems modeling / quantitative / predictive / homeostasis / multiscale / crop in silico
[1] |
Zhu, X.-G., Zhang, G. L., Tholen, D. , Wang, Y. , Xin, C. P. and Song, Q. F. (2011) The next generation models for crops and agro-ecosystems. Sci. China Inf. Sci., 54, 589–597
CrossRef
Google scholar
|
[2] |
Hammer, G. L. , van Oosterom, E. , McLean, G. , Chapman, S. C. , Broad, I. , Harland, P. and Muchow, R. C. (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot., 61, 2185–2202
CrossRef
Pubmed
Google scholar
|
[3] |
Ruíz-Nogueira, B. , Boote, K. J. and Sau, F. (2001) Calibration and use of CROPGRO-soybean model for improving soybean management under rainfed conditions. Agric. Syst., 68, 151–173
CrossRef
Google scholar
|
[4] |
Ma, W., Trusina, A., El-Samad, H. , Lim, W. A. and Tang, C. (2009) Defining network topologies that can achieve biochemical adaptation. Cell, 138, 760–773
CrossRef
Pubmed
Google scholar
|
[5] |
Xin, C. P., Yang, J. and Zhu, X.-G. (2013) A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem II units. Photosynth. Res., 117, 339–354
CrossRef
Pubmed
Google scholar
|
[6] |
Xiao, Y. and Zhu, X.-G. (2016) Chlorophyll fluorescecence and stable isotope signals in photosynthesis research. Plant Physiology Journal (in Chinese), 52, 1663–1670
|
[7] |
Tholen, D. and Zhu, X.-G. (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol., 156, 90–105
CrossRef
Pubmed
Google scholar
|
[8] |
Wang, Y., Song, Q., Jaiswal, D. , de Souza, A. P. , Long, S. P. and Zhu, X.-G. (2017) Development of a three dimensional ray-tracing model of sugarcane canopy photosynthesis and its applications in assessing impacts of varied row spacing. Bioenerg Res., doi: 10.1007/s12155-017-9823-x
CrossRef
Google scholar
|
[9] |
Zheng, B., Biddulph, B., Li, D. , Kuchel, H. and Chapman, S. (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J. Exp. Bot., 64, 3747–3761
CrossRef
Pubmed
Google scholar
|
[10] |
Tubiello, F. N. , Soussana, J.-F. and Howden, S. M. (2007) Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA, 104, 19686–19690
CrossRef
Pubmed
Google scholar
|
[11] |
Miguez, F. E. , Zhu, X. , Humphries, S. , Bollero, G. A. and Long, S. P. (2009) A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus×giganteus: description, parameterization and validation. GCB Bioenergy, 1, 282–296
CrossRef
Google scholar
|
[12] |
Li, T., Hasegawa, T., Yin, X. , Zhu, Y. , Boote, K. , Adam, M. , Bregaglio, S. , Buis, S. , Confalonieri, R. , Fumoto, T. ,
CrossRef
Pubmed
Google scholar
|
[13] |
Sellers, P. J. , Randall, D. A. , Collatz, G. J. , Berry, J. A. , Field, C. B. , Dazlich, D. A. , Zhang, C. , Collelo, G. D. and Bounoua, L. (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. part I: model formulation. J. Clim., 9, 676–705
CrossRef
Google scholar
|
[14] |
Falkowski, P., Scholes, R. J., Boyle, E. , Canadell, J. , Canfield, D. , Elser, J. , Gruber, N. , Hibbard, K. , Högberg, P. , Linder, S. ,
CrossRef
Pubmed
Google scholar
|
[15] |
Xue, Y., Chong, K., Han, B. , Gui, J. , Wang, T. , Fu, X., He, Z., Chu, C. , Tian, Z. , Cheng, Z. , Lin, S. (2015) New chapter of designer breeding in China: update on strategic program of molecular module-based designer breeding systems. Buttletin of Chinese Academy of Sciences, 30, 393–402
|
[16] |
Zhu, X.-G., Portis, A. R. Jr and Long, S. P. (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ., 27, 155–165
CrossRef
Google scholar
|
[17] |
Zhu, X.-G., Ort, D. R., Whitmarsh, J. and Long, S. P. (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J. Exp. Bot., 55, 1167–1175
CrossRef
Pubmed
Google scholar
|
[18] |
Drewry, D. T. , Kumar, P. and Long, S. P. (2014) Simultaneous improvement in productivity, water use, and albedo through crop structural modification. Glob. Change Biol., 20, 1955–1967
CrossRef
Pubmed
Google scholar
|
[19] |
Song, Q.-F., Zhang, G. and Zhu, X.-G. (2013) Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2 – a theoretical study using a mechanistic model of canopy photosynthesis. Funct. Plant Biol., 40, 108–124
CrossRef
Google scholar
|
[20] |
Zhu, X.-G., de Sturler, E. and Long, S. P. (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol., 145, 513–526
CrossRef
Pubmed
Google scholar
|
[21] |
Wang, Y., Long, S. P. and Zhu, X. G. (2014) Elements required for an efficient NADP-malic enzyme type C4 photosynthesis. Plant Physiol., 164, 2231–2246
CrossRef
Pubmed
Google scholar
|
[22] |
Xin, C. P., Tholen, D., Devloo, V. and Zhu, X. G. (2015) The benefits of photorespiratory bypasses: how can they work? Plant Physiol., 167, 574–585
CrossRef
Pubmed
Google scholar
|
[23] |
Wang, S., Tholen, D. and Zhu, X. G. (2017) C4 photosynthesis in C3 rice: a theoretical analysis of biochemical and anatomical factors. Plant Cell Environ., 40, 80–94
CrossRef
Pubmed
Google scholar
|
[24] |
Xiao, Y., Tholen, D. and Zhu, X.-G. (2016) The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model. J. Exp. Bot., 67, 6021–6035
CrossRef
Pubmed
Google scholar
|
[25] |
Simkin, A. J. , McAusland, L. , Headland, L. R. , Lawson, T. and Raines, C. A. (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J. Exp. Bot., 66, 4075–4090
CrossRef
Pubmed
Google scholar
|
[26] |
Kromdijk, J., Głowacka, K., Leonelli, L. , Gabilly, S. T. , Iwai, M. , Niyogi, K. K. and Long, S. P. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354, 857–861
CrossRef
Pubmed
Google scholar
|
[27] |
Nunes-Nesi, A., Carrari, F., Lytovchenko, A., Smith, A. M. , Loureiro, M. E. , Ratcliffe, R. G. , Sweetlove, L. J. and Fernie, A. R. (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol., 137, 611–622
CrossRef
Pubmed
Google scholar
|
[28] |
Sweetlove, L. J. , Lytovchenko, A. , Morgan, M. , Nunes-Nesi, A. , Taylor, N. L. , Baxter, C. J. , Eickmeier, I. and Fernie, A. R. (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc. Natl. Acad. Sci. USA, 103, 19587–19592
CrossRef
Pubmed
Google scholar
|
[29] |
Zhu, X.-G., Wang, Y., Ort, D. R. and Long, S. P. (2013) e-Photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis. Plant Cell Environ., 36, 1711–1727
CrossRef
Pubmed
Google scholar
|
[30] |
Owen, N. A. and Griffiths, H. (2013) A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases. New Phytol., 200, 1116–1131
CrossRef
Pubmed
Google scholar
|
[31] |
Cortassa, S., Aon, M. A., O’Rourke, B., Jacques, R. , Tseng, H. J. , Marbán, E. and Winslow, R. L. (2006) A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys. J., 91, 1564–1589
CrossRef
Pubmed
Google scholar
|
[32] |
Thornley, J. H. M. and Cannell, M. G. R. (2000) Modelling the components of plant respiration: representation and realism. Ann. Bot. (Lond.), 85, 55–67
CrossRef
Google scholar
|
[33] |
Lawson, T., Simkin, A. J., Kelly, G. and Granot, D. (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol., 203, 1064–1081
CrossRef
Pubmed
Google scholar
|
[34] |
Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J. and Medrano, H. (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ., 31, 602–621
CrossRef
Pubmed
Google scholar
|
[35] |
Baroli, I., Price, G. D., Badger, M. R. and von Caemmerer, S. (2008) The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol., 146, 737–747
CrossRef
Pubmed
Google scholar
|
[36] |
Wong, S.-C., Cowan, I. R. and Farquhar, G. D. (1979) Stomatal conductance correlates with photosynthetic capacity. Nature, 282, 424–426
CrossRef
Google scholar
|
[37] |
Farquhar, G. D. and Sharkey, T. D. (1982) Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33, 317–345
CrossRef
Google scholar
|
[38] |
Buckley, T. N. , Mott, K. A. and Farquhar, G. D. (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ., 26, 1767–1785
CrossRef
Google scholar
|
[39] |
Ball, J. T., Woodrow, I. E. and Berry, J. A. (1987) A Model Predicting Stomatal Conductance and Its Contribution to The Control of Photosynthesis Under Different Environmental Conditions. In Progress in Photosynthesis Research. Biggens, J. ed., Vol, IV, pp.221–224. Berlin: Springer Netherlands
|
[40] |
Loreto, F., Harley, P. C., Di Marco, G. and Sharkey, T. D. (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol., 98, 1437–1443
CrossRef
Pubmed
Google scholar
|
[41] |
Pons, T. L., Flexas, J., von Caemmerer, S., Evans, J. R. , Genty, B. , Ribas-Carbo, M. and Brugnoli, E. (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J. Exp. Bot., 60, 2217–2234
CrossRef
Pubmed
Google scholar
|
[42] |
Tholen, D., Boom, C. and Zhu, X.-G. (2012) Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci., 197, 92–101
CrossRef
Pubmed
Google scholar
|
[43] |
Xiong, D., Liu, X., Liu, L. , Douthe, C. , Li, Y., Peng, S. and Huang, J. (2015) Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ., 38, 2541–2550
CrossRef
Pubmed
Google scholar
|
[44] |
Ho, Q. T., Berghuijs, H. N., Watté, R., Verboven, P. , Herremans, E. , Yin, X. , Retta, M. A. , Aernouts, B. , Saeys, W. , Helfen, L. ,
CrossRef
Pubmed
Google scholar
|
[45] |
Price, N. D., Reed, J. L. and Palsson, B. O. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol., 2, 886–897
CrossRef
Pubmed
Google scholar
|
[46] |
Guo, Y., Ma, Y., Zhan, Z. , Li, B., Dingkuhn, M., Luquet, D. and De Reffye, P. (2006) Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Ann. Bot. (Lond.), 97, 217–230
CrossRef
Pubmed
Google scholar
|
[47] |
Watanabe, T., Hanan, J. S., Room, P. M. , Hasegawa, T. , Nakagawa, H. and Takahashi, W. (2005) Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann. Bot. (Lond.), 95, 1131–1143
CrossRef
Pubmed
Google scholar
|
[48] |
Song, Y. H., Smith, R. W., To, B. J. , Millar, A. J. and Imaizumi, T. (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science, 336, 1045– 1049
CrossRef
Pubmed
Google scholar
|
[49] |
Domagalska, M. A. and Leyser, O. (2011) Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol., 12, 211–221
CrossRef
Pubmed
Google scholar
|
[50] |
Minchin, P. E. H. and Lacointe, A. (2005) New understanding on phloem physiology and possible consequences for modelling long-distance carbon transport. New Phytol., 166, 771–779
CrossRef
Pubmed
Google scholar
|
[51] |
Rasse, D. P. and Tocquin, P. (2006) Leaf carbohydrate controls over Arabidopsis growth and response to elevated CO2: an experimentally based model. New Phytol., 172, 500–513
CrossRef
Pubmed
Google scholar
|
[52] |
Lynch, J. P. (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. (Lond.), 112, 347–357
CrossRef
Pubmed
Google scholar
|
[53] |
Dyson, R. J., Vizcay-Barrena, G., Band, L. R. , Fernandes, A. N. , French, A. P. , Fozard, J. A. , Hodgman, T. C. , Kenobi, K. , Pridmore, T. P. , Stout, M. ,
CrossRef
Pubmed
Google scholar
|
[54] |
Chang, T. G. and Zhu, X. G. (2017) Source-sink interaction: a century old concept under the light of modern molecular systems biology. J. Exp. Bot. erx002
CrossRef
Google scholar
|
[55] |
Yin, X. and Struik, P. C. (2010) Modelling the crop: from system dynamics to systems biology. J. Exp. Bot., 61, 2171–2183
CrossRef
Pubmed
Google scholar
|
[56] |
Li, Y., Pearl, S. A. and Jackson, S. A. (2015) Gene networks in plant biology: approaches in reconstruction and analysis. Trends Plant Sci., 20, 664–675
CrossRef
Pubmed
Google scholar
|
[57] |
Segal, E., Shapira, M., Regev, A. , Pe’er, D. , Botstein, D. , Koller, D. and Friedman, N. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166–176
CrossRef
Pubmed
Google scholar
|
[58] |
Zheng, G., Xu, Y., Zhang, X. , Liu, Z. P. , Wang, Z. , Chen, L. and Zhu, X. G. (2016) CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data. BMC Bioinformatics, 17, 535
CrossRef
Pubmed
Google scholar
|
[59] |
Wenden, B. and Rameau, C. (2009) Systems biology for plant breeding: the example of flowering time in pea. C. R. Biol., 332, 998–1006
CrossRef
Pubmed
Google scholar
|
[60] |
Salazar, J. D. , Saithong, T. , Brown, P. E. , Foreman, J. , Locke, J. C. , Halliday, K. J. , Carré, I. A. , Rand, D. A. and Millar, A. J. (2009) Prediction of photoperiodic regulators from quantitative gene circuit models. Cell, 139, 1170–1179
CrossRef
Pubmed
Google scholar
|
[61] |
Bassel, G. W. , Lan, H. , Glaab, E. , Gibbs, D. J. , Gerjets, T. , Krasnogor, N. , Bonner, A. J. , Holdsworth, M. J. and Provart, N. J. (2011) Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc. Natl. Acad. Sci. USA, 108, 9709–9714
CrossRef
Pubmed
Google scholar
|
[62] |
Chew, Y. H., Wenden, B., Flis, A. , Mengin, V. , Taylor, J. , Davey, C. L. , Tindal, C. , Thomas, H. , Ougham, H. J. , de Reffye, P. ,
CrossRef
Pubmed
Google scholar
|
[63] |
Zhu, X.-G., Song, Q. and Ort, D. R. (2012) Elements of a dynamic systems model of canopy photosynthesis. Curr. Opin. Plant Biol., 15, 237–244
CrossRef
Pubmed
Google scholar
|
[64] |
Parton, W. J. , Scurlock, J. M. O. , Ojima, D. S. , Gilmanov, T. G. , Scholes, R. J. , Schimel, D. S. , Kirchner, T. , Menaut, J.-C. , Seastedt, T. , Garcia Moya, E. ,
CrossRef
Google scholar
|
[65] |
Parton, W. J. , Stewart, J. W. B. and Cole, C. V. (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 5, 109–131
CrossRef
Google scholar
|
[66] |
Buckley, T. N. (2005) The control of stomata by water balance. New Phytol., 168, 275–292
CrossRef
Pubmed
Google scholar
|
[67] |
Lynch, J. P., Nielsen, K. L., Davis, R. D. and Jablokow, A. G. (1997) SimRoot: modeling and visualization of root systems. Plant Soil, 188, 139–151
CrossRef
Google scholar
|
[68] |
Jones, J. W., Hoogenboom, G., Porter, C. H. , Boote, K. J. , Batchelor, W. D. , Hunt, L. A. , Wilkens, P. W. , Singh, U. , Gijsman, A. J. and Ritchie, J. T. (2003) The DSSAT cropping system model. Eur. J. Agron., 18, 235–265
CrossRef
Google scholar
|
[69] |
McCown, R. L. , Hammer, G. L. , Hargreaves, J. N. G. , Holzworth, D. P. and Freebairn, D. M. (1996) APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst., 50, 255–271
CrossRef
Google scholar
|
[70] |
Humphries, S. W. and Long, S. P. (1995) WIMOVAC: a software package for modelling the dynamics of plant leaf and canopy photosynthesis. Comput. Appl. Biosci., 11, 361–371
Pubmed
|
[71] |
Song, Q., Chen, D., Long, S. P. and Zhu, X. G. (2017) A user-friendly means to scale from the biochemistry of photosynthesis to whole crop canopies and production in time and space— development of Java WIMOVAC. Plant Cell Environ., 40, 51–55160;
CrossRef
Pubmed
Google scholar
|
[72] |
Norman, J. M. (1980) Interfacing leaf and canopy light interception models. In Predicting Photosynthesis for Ecosystem Models. Hesketh, J. D. & Jones, J. W. eds. Vol. 2, pp. 49–67. Boca Raton: CRC Press
|
[73] |
Farquhar, G. D. , von Caemmerer, S. and Berry, J. A. (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78–90
CrossRef
Pubmed
Google scholar
|
[74] |
Pokhilko, A., Flis, A., Sulpice, R. , Stitt, M. and Ebenhöh, O. (2014) Adjustment of carbon fluxes to light conditions regulates the daily turnover of starch in plants: a computational model. Mol. Biosyst., 10, 613–627
CrossRef
Pubmed
Google scholar
|
[75] |
de Oliveira Dal’Molin, C. G., Quek, L.-E. , Palfreyman, R. W. , Brumbley, S. M. and Nielsen, L. K. (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol., 154, 1871–1885
CrossRef
Pubmed
Google scholar
|
[76] |
de Oliveira Dal’Molin, C. G., Quek, L. E. , Palfreyman, R. W. , Brumbley, S. M. and Nielsen, L. K. (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol., 152, 579–589
CrossRef
Pubmed
Google scholar
|
[77] |
Warren, J. M. , Hanson, P. J. , Iversen, C. M. , Kumar, J. , Walker, A. P. and Wullschleger, S. D. (2015) Root structural and functional dynamics in terrestrial biosphere models — evaluation and recommendations. New Phytol., 205, 59–78
CrossRef
Pubmed
Google scholar
|
[78] |
Zhu, X.-G., Govindjee, Baker, N. R., deSturler, E. , Ort, D. O. and Long, S. P. (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta, 223, 114–133
CrossRef
Pubmed
Google scholar
|
[79] |
Yu, X., Zheng, G., Shan, L. , Meng, G. , Vingron, M. , Liu, Q. and Zhu, X. G. (2014) Reconstruction of gene regulatory network related to photosynthesis in Arabidopsis thaliana. Front. Plant Sci., 5, 273
CrossRef
Pubmed
Google scholar
|
[80] |
Chandrasekaran, S. and Price, N. D. (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 107, 17845–17850
CrossRef
Pubmed
Google scholar
|
[81] |
Enquist, B. J. and Niklas, K. J. (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517–1520
CrossRef
Pubmed
Google scholar
|
[82] |
Box, G. E. P. (1976) Science and statistics. J. Am. Stat. Assoc., 71, 791–799
CrossRef
Google scholar
|
[83] |
Machta, B. B. , Chachra, R. , Transtrum, M. K. and Sethna, J. P. (2013) Parameter space compression underlies emergent theories and predictive models. Science, 342, 604–607
CrossRef
Pubmed
Google scholar
|
[84] |
Zhou, M., Wang, W., Karapetyan, S., Mwimba, M. , Marqués, J. , Buchler, N. E. and Dong, X. (2015) Redox rhythm reinforces the circadian clock to gate immune response. Nature, 523, 472–476
CrossRef
Pubmed
Google scholar
|
[85] |
Zuo, J. and Li, J. (2014) Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Natl. Sci. Rev. 1, 253–276
|
[86] |
Valluru, R., Reynolds, M. P. and Salse, J. (2014) Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theor. Appl. Genet., 127, 1463–1489
CrossRef
Pubmed
Google scholar
|
[87] |
Wallace, J. G. , Larsson, S. J. and Buckler, E. S. (2014) Entering the second century of maize quantitative genetics. Heredity (Edinb), 112, 30–38
CrossRef
Pubmed
Google scholar
|
[88] |
Kaul, S., Koo, H. L., Jenkins, J. , Rizzo, M. , Rooney, T. , Tallon, L. J. , Feldblyum, T. , Nierman, W. , Benito, M. , Lin, X. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–815
CrossRef
Pubmed
Google scholar
|
[89] |
Zhu, X. G., Lynch, J. P., LeBauer, D. S. , Millar, A. J. , Stitt, M. and Long, S. P. (2016) Plants in silico: why, why now and what? — an integrative platform for plant systems biology research. Plant Cell Environ., 39, 1049–1057
CrossRef
Pubmed
Google scholar
|
[90] |
Marshall-Colon, A. , Long, S. P. , Allen, D. K. , Allen, G. , Beard, D.A. , Benes, B. , von Caemmerer, S. , Christensen, A. J. , Cox, D. J. , Hart, J. C.
CrossRef
Google scholar
|
[91] |
Yabusaki, S., Fang, Y., Chen, X. , Scheibe, T. D. (2016) Single Plant Root Systems Modeling Under Soil Moisture Variation. In 2016 American Geophysical Union, San Francisco
|
/
〈 | 〉 |