Metabolic pathway databases and model repositories
Abraham A. Labena, Yi-Zhou Gao, Chuan Dong, Hong-li Hua, Feng-Biao Guo
Metabolic pathway databases and model repositories
Background: The number of biological Knowledge bases/databases storing metabolic pathway information and models has been growing rapidly. These resources are diverse in the type of information/data, the analytical tools, and objectives. Here we present a review of the most popular metabolic pathway databases and model repositories, focusing on their scope, content including reactions, enzymes, compounds, and genes, and applicability. The review aims to help researchers choose a suitable database or model repository according to the information and data required, by providing an insight look of each pathway resource.
Results: Four pathways databases and three model repositories were selected on the basis of popularity and diversity. Our review showed that the pathway resources vary in many aspects, such as their scope, content, access to data and the tools. In addition, inconsistencies have been observed in nomenclature and representation of database entities. The three model repositories reviewed do not offer a brief description of the models’ characteristics such as simulation conditions.
Conclusions: The inconsistencies among the databases in representing their contents may hamper the maximal use of the knowledge accumulated in these databases in particular and the area of systems biology at large. Therefore, it is strongly recommended that the database creators and the metabolic network models developers should follow international standards for the nomenclature of reactions and metabolites. Besides, computationally generated models that could be obtained from model repositories should be utilized with manual curations as they lack some important components that are necessary for full functionality of the models.
Four metabolic pathway databases and three model repositories were reviewed with regard to their scope, content, and applicability. Despite their innumerable use in the fields of systems biology and metabolic engineering, these pathway databases and model repositories are not in harmony with each other due to the inconsistencies in the way they represent their contents. Besides, the automatically generated metabolic models that can be obtained from the model repositories are not accurate enough for further scientific usage without additional manual curation. Therefore, international standards such as IUBMB principles should be strictly obeyed in creating such metabolic pathway resources.
metabolic pathway / database / model repository
[1] |
Berg, J. M.,Tymoczko, J. L. and Stryer, L. (2002) Metabolism Is Composed of Many Coupled, Interconnecting Reactions. In Biochemistry. 5th ed. New York: Lippincott Williams & Wilkins
|
[2] |
Wren, J. D. and Bateman, A. (2008) Databases, data tombs and dust in the wind. Bioinformatics, 24, 2127–2128
CrossRef
Pubmed
Google scholar
|
[3] |
Likić, V. A. (2006) Databases of metabolic pathways. Biochem. Mol. Biol. Educ., 34, 408–412
CrossRef
Pubmed
Google scholar
|
[4] |
Stobbe, M. D., Houten, S. M., Jansen, G. A., van Kampen, A. H. and Moerland, P. D. (2011) Critical assessment of human metabolic pathway databases: a stepping stone for future integration. BMC Syst. Biol., 5, 165
CrossRef
Pubmed
Google scholar
|
[5] |
Stobbe, M. D. (2015) Metabolic Pathway Databases: A Word of Caution. In Computational Systems Toxicology. Hoeng, J., Peitsch, M.C, eds. pp. 27–63. New York: Springer
|
[6] |
Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M. and Palsson, B. Ø. (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol. Syst. Biol., 7, 535
CrossRef
Pubmed
Google scholar
|
[7] |
Thiele, I., Vo, T. D., Price, N. D. and Palsson, B. O. (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J. Bacteriol., 187, 5818–5830
CrossRef
Pubmed
Google scholar
|
[8] |
Henry, C. S., Zinner, J. F., Cohoon, M. P. and Stevens, R. L. (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol., 10, R69
CrossRef
Pubmed
Google scholar
|
[9] |
Radrich, K., Tsuruoka, Y., Dobson, P., Gevorgyan, A., Swainston, N., Baart, G. and Schwartz, J.-M. (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Syst. Biol., 4, 114
CrossRef
Pubmed
Google scholar
|
[10] |
Zhang, C. and Hua, Q. (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front. Physiol., 6, 413
CrossRef
Google scholar
|
[11] |
Liu, L., Agren, R., Bordel, S. and Nielsen, J. (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett., 584, 2556–2564
CrossRef
Pubmed
Google scholar
|
[12] |
Ooi, H. S., Schneider, G., Lim, T. T., Chan, Y. L., Eisenhaber, B. and Eisenhaber, F. (2010) Biomolecular pathway databases. Methods Mol. Biol., 609, 129–144
CrossRef
Pubmed
Google scholar
|
[13] |
Wittig, U. and De Beuckelaer, A. (2001) Analysis and comparison of metabolic pathway databases. Brief. Bioinform., 2, 126–142
CrossRef
Pubmed
Google scholar
|
[14] |
Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M. R.,
CrossRef
Pubmed
Google scholar
|
[15] |
Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A.,
CrossRef
Pubmed
Google scholar
|
[16] |
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 44, D457–D462
CrossRef
Pubmed
Google scholar
|
[17] |
Dreher, K. (2014) Putting the Plant Metabolic Network Pathway Databases to Work: Going Offline to Gain New Capabilities. In Plant Metabolism: Methods and Protocols. Sriram G. Totowa, ed., pp. 151–171. NJ: Humana Press
|
[18] |
King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., Ebrahim, A., Palsson, B. O. and Lewis, N. E. (2016) BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res., 44, D515–D522
CrossRef
Pubmed
Google scholar
|
[19] |
Chelliah, V., Laibe, C. and Le Novère, N. (2013) BioModels Database: a repository of mathematical models of biological processes. Methods Mol. Biol., 1021, 189–199
CrossRef
Pubmed
Google scholar
|
[20] |
Ganter, M., Bernard, T., Moretti, S., Stelling, J. and Pagni, M. (2013) MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics, 29, 815–816
CrossRef
Pubmed
Google scholar
|
[21] |
Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B.,
CrossRef
Pubmed
Google scholar
|
[22] |
Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., Jassal, B., Jupe, S., Korninger, F., McKay, S.,
CrossRef
Pubmed
Google scholar
|
[23] |
Naithani, S., Preece, J., D’Eustachio, P., Gupta, P., Amarasinghe, V., Dharmawardhana, P. D., Wu, G., Fabregat, A., Elser, J. L., Weiser, J.,
CrossRef
Pubmed
Google scholar
|
[24] |
Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A.,
CrossRef
Pubmed
Google scholar
|
[25] |
Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., Holland, T. A., Keseler, I. M., Kothari, A., Kubo, A.,
CrossRef
Pubmed
Google scholar
|
[26] |
Caspi, R., Altman, T., Dale, J. M., Dreher, K., Fulcher, C. A., Gilham, F., Kaipa, P., Karthikeyan, A. S., Kothari, A., Krummenacker, M.,
CrossRef
Pubmed
Google scholar
|
[27] |
Christie, K. R., Weng, S., Balakrishnan, R., Costanzo, M. C., Dolinski, K., Dwight, S. S., Engel, S. R., Feierbach, B., Fisk, D. G., Hirschman, J. E.,
CrossRef
Pubmed
Google scholar
|
[28] |
Mueller, L. A., Zhang, P. and Rhee, S. Y. (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol., 132, 453–460
CrossRef
Pubmed
Google scholar
|
[29] |
Liang, C., Jaiswal, P., Hebbard, C., Avraham, S., Buckler, E. S., Casstevens, T., Hurwitz, B., McCouch, S., Ni, J., Pujar, A.,
CrossRef
Pubmed
Google scholar
|
[30] |
Evsikov, A. V., Dolan, M. E., Genrich, M. P., Patek, E. and Bult, C. J. (2009) MouseCyc: a curated biochemical pathways database for the laboratory mouse. Genome Biol., 10, R84
CrossRef
Pubmed
Google scholar
|
[31] |
Seo, S. and Lewin, H. A. (2009) Reconstruction of metabolic pathways for the cattle genome. BMC Syst. Biol., 3, 33
CrossRef
Pubmed
Google scholar
|
[32] |
Urbanczyk-Wochniak, E. and Sumner, L. W. (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics, 23, 1418–1423
CrossRef
Pubmed
Google scholar
|
[33] |
Zhang, P., Dreher, K., Karthikeyan, A., Chi, A., Pujar, A., Caspi, R., Karp, P., Kirkup, V., Latendresse, M., Lee, C.,
CrossRef
Pubmed
Google scholar
|
[34] |
Fey, P., Gaudet, P., Curk, T., Zupan, B., Just, E. M., Basu, S., Merchant, S. N., Bushmanova, Y. A., Shaulsky, G., Kibbe, W. A.,
CrossRef
Pubmed
Google scholar
|
[35] |
Doyle, M. A., MacRae, J. I., De Souza, D. P., Saunders, E. C., McConville, M. J. and Likić, V. A. (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst. Biol., 3, 57
CrossRef
Pubmed
Google scholar
|
[36] |
May, P., Christian, J. O., Kempa, S. and Walther, D. (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics, 10, 209
CrossRef
Pubmed
Google scholar
|
[37] |
Bombarely, A., Menda, N., Tecle, I. Y., Buels, R. M., Strickler, S., Fischer-York, T., Pujar, A., Leto, J., Gosselin, J. and Mueller, L. A. (2011) The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res., 39, D1149–D1155
CrossRef
Pubmed
Google scholar
|
[38] |
Snyder, E. E., Kampanya, N., Lu, J., Nordberg, E. K., Karur, H. R., Shukla, M., Soneja, J., Tian, Y., Xue, T., Yoo, H.,
CrossRef
Pubmed
Google scholar
|
[39] |
Vincent, J., Dai, Z., Ravel, C., Choulet , F., Mouzeyar, S., Bouzidi, M. F., Agier, M. and Martre, P. (2013) dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts. Database (Oxford). 2013, bat014
CrossRef
Google scholar
|
[40] |
Obertello, M., Shrivastava, S., Katari, M. S. and Coruzzi, G. M. (2015) Cross-species network analysis uncovers conserved nitrogen-regulated network modules in rice. Plant Physiol., 168, 1830–1843
CrossRef
Pubmed
Google scholar
|
[41] |
Shiratake, K. and Suzuki, M. (2016) Omics studies of citrus, grape and rosaceae fruit trees. Breed. Sci., 66, 122–138
CrossRef
Pubmed
Google scholar
|
[42] |
Cho, K., Cho, K. S., Sohn, H. B., Ha, I. J., Hong, S. Y., Lee, H., Kim, Y. M. and Nam, M. H. (2016) Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J. Exp. Bot., 67, 1519–1533
CrossRef
Pubmed
Google scholar
|
[43] |
Chae, L., Kim, T., Nilo-Poyanco, R. and Rhee, S. Y. (2014) Genomic signatures of specialized metabolism in plants. Science, 344, 510–513
CrossRef
Pubmed
Google scholar
|
[44] |
Tzfadia, O., Amar, D., Bradbury, L. M. T., Wurtzel, E. T. and Shamir, R. (2012) The MORPH algorithm: ranking candidate genes for membership in Arabidopsis and tomato pathways. Plant Cell, 24, 4389–4406
CrossRef
Pubmed
Google scholar
|
[45] |
Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205
CrossRef
Pubmed
Google scholar
|
[46] |
Schmeier, S., Alam, T., Essack, M. and Bajic, V. B. (2017) TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions. Nucleic Acids Res., 45, D145–D150
CrossRef
Pubmed
Google scholar
|
[47] |
Li, P., Tompkins, R. G. and Xiao, W. (2017) KERIS: kaleidoscope of gene responses to inflammation between species. Nucleic Acids Res., 45, D908–D914
CrossRef
Google scholar
|
[48] |
Wang, Y., Xu, L., Thilmony, R., You, F. M., Gu, Y. Q. and Coleman-Derr, D. (2016) PIECE 2.0: an update for the plant gene structure comparison and evolution database. Nucleic Acids Res., 45, 1015–1020
CrossRef
Pubmed
Google scholar
|
[49] |
Kotera, M., Hirakawa, M., Tokimatsu, T., Goto, S. and Kanehisa, M. (2012) The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. Methods Mol. Biol., 802, 19–39
CrossRef
Pubmed
Google scholar
|
[50] |
Bianco, L., Riccadonna, S., Lavezzo, E., Falda, M., Formentin, E., Cavalieri, D., Toppo, S. and Fontana, P. (2016) Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms. Bioinformatics, btw636
CrossRef
Pubmed
Google scholar
|
[51] |
Li, S., Shui, K., Zhang, Y., Lv, Y., Deng, W., Ullah, S., Zhang, L. and Xue, Y. (2016) CGDB: a database of circadian genes in eukaryotes. Nucleic Acids Res., 45, D397–D403
CrossRef
Pubmed
Google scholar
|
[52] |
Chen, I. A., Markowitz, V. M., Chu, K., Palaniappan, K., Szeto, E., Pillay, M., Ratner, A., Huang, J., Andersen, E., Huntemann, M.,
CrossRef
Pubmed
Google scholar
|
[53] |
Saa, P. A. and Nielsen, L. K. (2016) Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models. Bioinformatics, 32, 3807–3814
CrossRef
Pubmed
Google scholar
|
[54] |
Rose, P. W., Prlic, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., Costanzo, L. D., Duarte, J. M., Dutta, S., Feng, Z.,
CrossRef
Pubmed
Google scholar
|
[55] |
Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R., Mittag, F., Schubert, M., Glont, M., Golebiewski, M.,
CrossRef
Pubmed
Google scholar
|
[56] |
Naldi, A., Monteiro, P. T., Müssel, C., the Consortium for Logical Models and Tools, Kestler, H. A., Thieffry, D., Xenarios, I., Saez-Rodriguez, J., Helikar, T. and Chaouiya, C. (2015) Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics, 31, 1154–1159
CrossRef
Pubmed
Google scholar
|
[57] |
Le Novère, N. (2015) Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet., 16, 146–158
CrossRef
Pubmed
Google scholar
|
[58] |
Zhang, P., Tao, L., Zeng, X., Qin, C., Chen, S., Zhu, F., Li, Z., Jiang, Y., Chen, W. and Chen, Y. Z. (2016) A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks. Brief. Bioinform., bbw071
CrossRef
Pubmed
Google scholar
|
[59] |
Moretti, S., Martin, O., Van Du Tran, T., Bridge, A., Morgat, A. and Pagni, M. (2016) MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res., 44, D523–D526
CrossRef
Pubmed
Google scholar
|
[60] |
Ye, Y. N., Ma, B. G., Dong, C., Zhang, H., Chen, L. L. and Guo, F. B. (2016) A novel proposal of a simplified bacterial gene set and the neo-construction of a general minimized metabolic network. Sci. Rep., 6, 35082
CrossRef
Pubmed
Google scholar
|
[61] |
Thompson, R. A., Dahal, S., Garcia, S., Nookaew, I. and Trinh, C. T. (2016) Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome. Biotechnol. Biofuels, 9, 194
CrossRef
Pubmed
Google scholar
|
[62] |
van Heck, R. G., Ganter, M., Martins Dos Santos, V. A. and Stelling, J. (2016) Efficient reconstruction of predictive consensus metabolic network models. PLoS Comput. Biol., 12, e1005085
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |