Metabolic pathway databases and model repositories

Abraham A. Labena, Yi-Zhou Gao, Chuan Dong, Hong-li Hua, Feng-Biao Guo

PDF(182 KB)
PDF(182 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (1) : 30-39. DOI: 10.1007/s40484-017-0108-3
REVIEW
REVIEW

Metabolic pathway databases and model repositories

Author information +
History +

Abstract

Background: The number of biological Knowledge bases/databases storing metabolic pathway information and models has been growing rapidly. These resources are diverse in the type of information/data, the analytical tools, and objectives. Here we present a review of the most popular metabolic pathway databases and model repositories, focusing on their scope, content including reactions, enzymes, compounds, and genes, and applicability. The review aims to help researchers choose a suitable database or model repository according to the information and data required, by providing an insight look of each pathway resource.

Results: Four pathways databases and three model repositories were selected on the basis of popularity and diversity. Our review showed that the pathway resources vary in many aspects, such as their scope, content, access to data and the tools. In addition, inconsistencies have been observed in nomenclature and representation of database entities. The three model repositories reviewed do not offer a brief description of the models’ characteristics such as simulation conditions.

Conclusions: The inconsistencies among the databases in representing their contents may hamper the maximal use of the knowledge accumulated in these databases in particular and the area of systems biology at large. Therefore, it is strongly recommended that the database creators and the metabolic network models developers should follow international standards for the nomenclature of reactions and metabolites. Besides, computationally generated models that could be obtained from model repositories should be utilized with manual curations as they lack some important components that are necessary for full functionality of the models.

Author summary

Four metabolic pathway databases and three model repositories were reviewed with regard to their scope, content, and applicability. Despite their innumerable use in the fields of systems biology and metabolic engineering, these pathway databases and model repositories are not in harmony with each other due to the inconsistencies in the way they represent their contents. Besides, the automatically generated metabolic models that can be obtained from the model repositories are not accurate enough for further scientific usage without additional manual curation. Therefore, international standards such as IUBMB principles should be strictly obeyed in creating such metabolic pathway resources.

Graphical abstract

Keywords

metabolic pathway / database / model repository

Cite this article

Download citation ▾
Abraham A. Labena, Yi-Zhou Gao, Chuan Dong, Hong-li Hua, Feng-Biao Guo. Metabolic pathway databases and model repositories. Quant. Biol., 2018, 6(1): 30‒39 https://doi.org/10.1007/s40484-017-0108-3

References

[1]
Berg, J. M.,Tymoczko, J. L. and Stryer, L. (2002) Metabolism Is Composed of Many Coupled, Interconnecting Reactions. In Biochemistry. 5th ed. New York: Lippincott Williams & Wilkins
[2]
Wren, J. D. and Bateman, A. (2008) Databases, data tombs and dust in the wind. Bioinformatics, 24, 2127–2128
CrossRef Pubmed Google scholar
[3]
Likić, V. A. (2006) Databases of metabolic pathways. Biochem. Mol. Biol. Educ., 34, 408–412
CrossRef Pubmed Google scholar
[4]
Stobbe, M. D., Houten, S. M., Jansen, G. A., van Kampen, A. H. and Moerland, P. D. (2011) Critical assessment of human metabolic pathway databases: a stepping stone for future integration. BMC Syst. Biol., 5, 165
CrossRef Pubmed Google scholar
[5]
Stobbe, M. D. (2015) Metabolic Pathway Databases: A Word of Caution. In Computational Systems Toxicology. Hoeng, J., Peitsch, M.C, eds. pp. 27–63. New York: Springer
[6]
Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M. and Palsson, B. Ø. (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol. Syst. Biol., 7, 535
CrossRef Pubmed Google scholar
[7]
Thiele, I., Vo, T. D., Price, N. D. and Palsson, B. O. (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J. Bacteriol., 187, 5818–5830
CrossRef Pubmed Google scholar
[8]
Henry, C. S., Zinner, J. F., Cohoon, M. P. and Stevens, R. L. (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol., 10, R69
CrossRef Pubmed Google scholar
[9]
Radrich, K., Tsuruoka, Y., Dobson, P., Gevorgyan, A., Swainston, N., Baart, G. and Schwartz, J.-M. (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Syst. Biol., 4, 114
CrossRef Pubmed Google scholar
[10]
Zhang, C. and Hua, Q. (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front. Physiol., 6, 413
CrossRef Google scholar
[11]
Liu, L., Agren, R., Bordel, S. and Nielsen, J. (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett., 584, 2556–2564
CrossRef Pubmed Google scholar
[12]
Ooi, H. S., Schneider, G., Lim, T. T., Chan, Y. L., Eisenhaber, B. and Eisenhaber, F. (2010) Biomolecular pathway databases. Methods Mol. Biol., 609, 129–144
CrossRef Pubmed Google scholar
[13]
Wittig, U. and De Beuckelaer, A. (2001) Analysis and comparison of metabolic pathway databases. Brief. Bioinform., 2, 126–142
CrossRef Pubmed Google scholar
[14]
Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M. R., (2014) The Reactome pathway knowledgebase. Nucleic Acids Res., 42, D472–D477
CrossRef Pubmed Google scholar
[15]
Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 44, D471–D480
CrossRef Pubmed Google scholar
[16]
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 44, D457–D462
CrossRef Pubmed Google scholar
[17]
Dreher, K. (2014) Putting the Plant Metabolic Network Pathway Databases to Work: Going Offline to Gain New Capabilities. In Plant Metabolism: Methods and Protocols. Sriram G. Totowa, ed., pp. 151–171. NJ: Humana Press
[18]
King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., Ebrahim, A., Palsson, B. O. and Lewis, N. E. (2016) BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res., 44, D515–D522
CrossRef Pubmed Google scholar
[19]
Chelliah, V., Laibe, C. and Le Novère, N. (2013) BioModels Database: a repository of mathematical models of biological processes. Methods Mol. Biol., 1021, 189–199
CrossRef Pubmed Google scholar
[20]
Ganter, M., Bernard, T., Moretti, S., Stelling, J. and Pagni, M. (2013) MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics, 29, 815–816
CrossRef Pubmed Google scholar
[21]
Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res., 39, D691–D697
CrossRef Pubmed Google scholar
[22]
Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., Jassal, B., Jupe, S., Korninger, F., McKay, S., (2016) The Reactome pathway Knowledgebase. Nucleic Acids Res., 44, D481–D487
CrossRef Pubmed Google scholar
[23]
Naithani, S., Preece, J., D’Eustachio, P., Gupta, P., Amarasinghe, V., Dharmawardhana, P. D., Wu, G., Fabregat, A., Elser, J. L., Weiser, J., (2017) Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res., 45, D1029–D1039
CrossRef Pubmed Google scholar
[24]
Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 40, D742–D753
CrossRef Pubmed Google scholar
[25]
Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., Holland, T. A., Keseler, I. M., Kothari, A., Kubo, A., (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res., 42, D459–D471
CrossRef Pubmed Google scholar
[26]
Caspi, R., Altman, T., Dale, J. M., Dreher, K., Fulcher, C. A., Gilham, F., Kaipa, P., Karthikeyan, A. S., Kothari, A., Krummenacker, M., (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 38, D473–D479
CrossRef Pubmed Google scholar
[27]
Christie, K. R., Weng, S., Balakrishnan, R., Costanzo, M. C., Dolinski, K., Dwight, S. S., Engel, S. R., Feierbach, B., Fisk, D. G., Hirschman, J. E., (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res., 32, D311–D314
CrossRef Pubmed Google scholar
[28]
Mueller, L. A., Zhang, P. and Rhee, S. Y. (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol., 132, 453–460
CrossRef Pubmed Google scholar
[29]
Liang, C., Jaiswal, P., Hebbard, C., Avraham, S., Buckler, E. S., Casstevens, T., Hurwitz, B., McCouch, S., Ni, J., Pujar, A., (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res., 36, D947–D953
CrossRef Pubmed Google scholar
[30]
Evsikov, A. V., Dolan, M. E., Genrich, M. P., Patek, E. and Bult, C. J. (2009) MouseCyc: a curated biochemical pathways database for the laboratory mouse. Genome Biol., 10, R84
CrossRef Pubmed Google scholar
[31]
Seo, S. and Lewin, H. A. (2009) Reconstruction of metabolic pathways for the cattle genome. BMC Syst. Biol., 3, 33
CrossRef Pubmed Google scholar
[32]
Urbanczyk-Wochniak, E. and Sumner, L. W. (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics, 23, 1418–1423
CrossRef Pubmed Google scholar
[33]
Zhang, P., Dreher, K., Karthikeyan, A., Chi, A., Pujar, A., Caspi, R., Karp, P., Kirkup, V., Latendresse, M., Lee, C., (2010) Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol., 153, 1479–1491
CrossRef Pubmed Google scholar
[34]
Fey, P., Gaudet, P., Curk, T., Zupan, B., Just, E. M., Basu, S., Merchant, S. N., Bushmanova, Y. A., Shaulsky, G., Kibbe, W. A., (2009) dictyBase—a Dictyostelium bioinformatics resource update. Nucleic Acids Res., 37, D515–D519
CrossRef Pubmed Google scholar
[35]
Doyle, M. A., MacRae, J. I., De Souza, D. P., Saunders, E. C., McConville, M. J. and Likić, V. A. (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst. Biol., 3, 57
CrossRef Pubmed Google scholar
[36]
May, P., Christian, J. O., Kempa, S. and Walther, D. (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics, 10, 209
CrossRef Pubmed Google scholar
[37]
Bombarely, A., Menda, N., Tecle, I. Y., Buels, R. M., Strickler, S., Fischer-York, T., Pujar, A., Leto, J., Gosselin, J. and Mueller, L. A. (2011) The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res., 39, D1149–D1155
CrossRef Pubmed Google scholar
[38]
Snyder, E. E., Kampanya, N., Lu, J., Nordberg, E. K., Karur, H. R., Shukla, M., Soneja, J., Tian, Y., Xue, T., Yoo, H., (2007) PATRIC: the VBI PathoSystems Resource Integration Center. Nucleic Acids Res., 35, D401–D406
CrossRef Pubmed Google scholar
[39]
Vincent, J., Dai, Z., Ravel, C., Choulet , F., Mouzeyar, S., Bouzidi, M. F., Agier, M. and Martre, P. (2013) dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts. Database (Oxford). 2013, bat014
CrossRef Google scholar
[40]
Obertello, M., Shrivastava, S., Katari, M. S. and Coruzzi, G. M. (2015) Cross-species network analysis uncovers conserved nitrogen-regulated network modules in rice. Plant Physiol., 168, 1830–1843
CrossRef Pubmed Google scholar
[41]
Shiratake, K. and Suzuki, M. (2016) Omics studies of citrus, grape and rosaceae fruit trees. Breed. Sci., 66, 122–138
CrossRef Pubmed Google scholar
[42]
Cho, K., Cho, K. S., Sohn, H. B., Ha, I. J., Hong, S. Y., Lee, H., Kim, Y. M. and Nam, M. H. (2016) Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J. Exp. Bot., 67, 1519–1533
CrossRef Pubmed Google scholar
[43]
Chae, L., Kim, T., Nilo-Poyanco, R. and Rhee, S. Y. (2014) Genomic signatures of specialized metabolism in plants. Science, 344, 510–513
CrossRef Pubmed Google scholar
[44]
Tzfadia, O., Amar, D., Bradbury, L. M. T., Wurtzel, E. T. and Shamir, R. (2012) The MORPH algorithm: ranking candidate genes for membership in Arabidopsis and tomato pathways. Plant Cell, 24, 4389–4406
CrossRef Pubmed Google scholar
[45]
Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205
CrossRef Pubmed Google scholar
[46]
Schmeier, S., Alam, T., Essack, M. and Bajic, V. B. (2017) TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions. Nucleic Acids Res., 45, D145–D150
CrossRef Pubmed Google scholar
[47]
Li, P., Tompkins, R. G. and Xiao, W. (2017) KERIS: kaleidoscope of gene responses to inflammation between species. Nucleic Acids Res., 45, D908–D914
CrossRef Google scholar
[48]
Wang, Y., Xu, L., Thilmony, R., You, F. M., Gu, Y. Q. and Coleman-Derr, D. (2016) PIECE 2.0: an update for the plant gene structure comparison and evolution database. Nucleic Acids Res., 45, 1015–1020
CrossRef Pubmed Google scholar
[49]
Kotera, M., Hirakawa, M., Tokimatsu, T., Goto, S. and Kanehisa, M. (2012) The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. Methods Mol. Biol., 802, 19–39
CrossRef Pubmed Google scholar
[50]
Bianco, L., Riccadonna, S., Lavezzo, E., Falda, M., Formentin, E., Cavalieri, D., Toppo, S. and Fontana, P. (2016) Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms. Bioinformatics, btw636
CrossRef Pubmed Google scholar
[51]
Li, S., Shui, K., Zhang, Y., Lv, Y., Deng, W., Ullah, S., Zhang, L. and Xue, Y. (2016) CGDB: a database of circadian genes in eukaryotes. Nucleic Acids Res., 45, D397–D403
CrossRef Pubmed Google scholar
[52]
Chen, I. A., Markowitz, V. M., Chu, K., Palaniappan, K., Szeto, E., Pillay, M., Ratner, A., Huang, J., Andersen, E., Huntemann, M., (2017) IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res., 45, D507–D516
CrossRef Pubmed Google scholar
[53]
Saa, P. A. and Nielsen, L. K. (2016) Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models. Bioinformatics, 32, 3807–3814
CrossRef Pubmed Google scholar
[54]
Rose, P. W., Prlic, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., Costanzo, L. D., Duarte, J. M., Dutta, S., Feng, Z., (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res., 45, D271–D281
CrossRef Pubmed Google scholar
[55]
Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R., Mittag, F., Schubert, M., Glont, M., Golebiewski, M., (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol., 7, 116
CrossRef Pubmed Google scholar
[56]
Naldi, A., Monteiro, P. T., Müssel, C., the Consortium for Logical Models and Tools, Kestler, H. A., Thieffry, D., Xenarios, I., Saez-Rodriguez, J., Helikar, T. and Chaouiya, C. (2015) Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics, 31, 1154–1159
CrossRef Pubmed Google scholar
[57]
Le Novère, N. (2015) Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet., 16, 146–158
CrossRef Pubmed Google scholar
[58]
Zhang, P., Tao, L., Zeng, X., Qin, C., Chen, S., Zhu, F., Li, Z., Jiang, Y., Chen, W. and Chen, Y. Z. (2016) A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks. Brief. Bioinform., bbw071
CrossRef Pubmed Google scholar
[59]
Moretti, S., Martin, O., Van Du Tran, T., Bridge, A., Morgat, A. and Pagni, M. (2016) MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res., 44, D523–D526
CrossRef Pubmed Google scholar
[60]
Ye, Y. N., Ma, B. G., Dong, C., Zhang, H., Chen, L. L. and Guo, F. B. (2016) A novel proposal of a simplified bacterial gene set and the neo-construction of a general minimized metabolic network. Sci. Rep., 6, 35082
CrossRef Pubmed Google scholar
[61]
Thompson, R. A., Dahal, S., Garcia, S., Nookaew, I. and Trinh, C. T. (2016) Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome. Biotechnol. Biofuels, 9, 194
CrossRef Pubmed Google scholar
[62]
van Heck, R. G., Ganter, M., Martins Dos Santos, V. A. and Stelling, J. (2016) Efficient reconstruction of predictive consensus metabolic network models. PLoS Comput. Biol., 12, e1005085
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (No. 31470068), Sichuan Youth Science and Technology Foundation of China (No. 2014JQ0051) and the Fundamental Research Funds for the Central Universities of China (Nos. ZYGX2015Z006 and ZYGX2015J144). The funders had no role in study design, data collection and analysis, decision to publish, and preparation of the manuscript.

COMPLIANCE WITH ETHICAL GUIDELINES

The authors Abraham A. Labena, Yi-Zhou Gao, Chuan Dong, Hong-li Hua and Feng-Biao Guo declare that they have no conflict of interest.ƒ
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(182 KB)

Accesses

Citations

Detail

Sections
Recommended

/