Global quantitative biology can illuminate ontological connections between diseases
Guanyu Wang
Global quantitative biology can illuminate ontological connections between diseases
Owing to its interdisciplinary nature, quantitative biology is playing ever-increasing roles in biological researches. To make quantitative biology even more powerful, it is important to develop a holistic perspective by integrating information from multiple biological levels and by considering related biocomplexity simultaneously. Using complex diseases as an example, I show in this paper how their ontological connections can be revealed by considering the diseases on a common ground. The obtained insights may be useful to the prediction and treatment of the diseases. Although the example involves only with cancer and diabetes, the approaches are applicable to the study of other diseases, or even to other biological problems.
quantitative biology / disease modeling / systems biology / nonlinear dynamics
[1] |
Guan, L., Yang, Q., Gu, M. , Chen, L. and Zhang, X. (2014) Exon expression qtl (eeqtl) analysis highlights distant genomic variations associated with splicing regulation. Quant. Biol., 2, 71–79
CrossRef
Google scholar
|
[2] |
Chen, L., Liu, R., Liu, Z.-P. , Li, M. and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
CrossRef
Pubmed
Google scholar
|
[3] |
Servedio, M. R. , Brandvain, Y. , Dhole, S. , Fitzpatrick, C. L. , Goldberg, E. E. , Stern, C. A. , Van Cleve, J. & Yeh, D. J. (2014) Not just a theory—the utility of mathematical models in evolutionary biology. PLoS. Biol., 12, e1002017
CrossRef
Google scholar
|
[4] |
Nagel, E. and Hawkins, D. (1961) The structure of science. Am. J. Phys., 29, 716
CrossRef
Google scholar
|
[5] |
Bruggeman, F. J. , Westerhoff, H. V. and Boogerd, F. C. (2002) Biocomplexity: a pluralist research strategy is necessary for a mechanistic explanation of the “live” state. Philos. Psychol., 15, 411–440
CrossRef
Google scholar
|
[6] |
Bergman, M. (2013) Pathophysiology of prediabetes and treatment implications for the prevention of type 2 diabetes mellitus. Endocrine, 43, 504–513
CrossRef
Pubmed
Google scholar
|
[7] |
Smyth, S. and Heron, A. (2006) Diabetes and obesity: the twin epidemics. Nat. Med., 12, 75–80
CrossRef
Pubmed
Google scholar
|
[8] |
Mukherjee, S. (2010) The Emperor of All Maladies: a Biography of Cancer. New York: Scribner
|
[9] |
Giovannucci, E., Harlan, D. M., Archer, M. C. , Bergenstal, R. M. , Gapstur, S. M. , Habel, L. A. , Pollak, M. , Regensteiner, J. G. and Yee, D. (2010) Diabetes and cancer: a consensus report. CA Cancer J. Clin., 60, 207–221
CrossRef
Pubmed
Google scholar
|
[10] |
Pischon, T., Nöthlings, U. and Boeing, H. (2008) Obesity and cancer. Proc. Nutr. Soc., 67, 128–145
CrossRef
Pubmed
Google scholar
|
[11] |
Hsu, I. R., Kim, S. P., Kabir, M. and Bergman, R. N. (2007) Metabolic syndrome, hyperinsulinemia, and cancer. Am. J. Clin. Nutr., 86, s867–s871
Pubmed
|
[12] |
Larsson, S. C. , Mantzoros, C. S. and Wolk, A. (2007) Diabetes mellitus and risk of breast cancer: a meta-analysis. Int. J. Cancer, 121, 856– 862
CrossRef
Pubmed
Google scholar
|
[13] |
Engelman, J. A. , Luo, J. and Cantley, L. C. (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 7, 606–619
CrossRef
Pubmed
Google scholar
|
[14] |
Liao, Y. and Hung, M.-C. (2010) Physiological regulation of Akt activity and stability. Am. J. Transl. Res., 2, 19–42
Pubmed
|
[15] |
Li, T. &Wang, G. (2014) Computer-aided targeting of the PI3K/Akt/mTOR pathway: toxicity reduction and therapeutic opportunities. Int. J. Mol. Sci., 15, 18856–18891
CrossRef
Google scholar
|
[16] |
Zoncu, R., Efeyan, A. and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol., 12, 21–35
CrossRef
Pubmed
Google scholar
|
[17] |
Wang, G. (2010) Singularity analysis of the AKT signaling pathway reveals connections between cancer and metabolic diseases. Phys. Biol. 7, 046015
|
[18] |
Arnold, V. (1986) Catastrophe Theory.Berlin: Springer-Verlag
|
[19] |
Golubitsky, M. and Schaeffer, D. G. (1985) Singularities and Groups in Bifurcation Theory. New York: Springer-Verlag
|
[20] |
Liu, R., Aihara, K. and Chen, L. (2013) Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes. Quant. Biol., 1, 105–114
CrossRef
Google scholar
|
[21] |
Liu, R., Chen, P., Aihara, K. & Chen, L. (2015) Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Sci. Rep., 5, 17501
CrossRef
Google scholar
|
[22] |
Hong, S. Y., Yu, F.-X., Luo, Y. and Hagen, T. (2016) Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein. Cell. Signal., 28, 377–383
CrossRef
Pubmed
Google scholar
|
[23] |
Zhu, X., Song, Y., Wu, C. , Pan, C. , Lu, P., Wang, M., Zheng, P. , Huo, R. , Zhang, C. , Li, W.
CrossRef
Google scholar
|
[24] |
Wang, H., Fan, L., Wei, J. , Weng, Y. , Zhou, L. , Shi, Y. , Zhou, W. , Ma, D. & Wang, C. (2012) Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. PloS One 7, e46888
CrossRef
Google scholar
|
[25] |
Tyson, J. J., Albert, R., Goldbeter, A. , Ruoff, P. and Sible, J. (2008) Biological switches and clocks. J. R. Soc. Interface, 5, S1–S8
CrossRef
Pubmed
Google scholar
|
[26] |
Xiong, W. and Ferrell, J. E. Jr. (2003) A positive-feedback-based bistable “memory module” that governs a cell fate decision. Nature, 426, 460–465
CrossRef
Pubmed
Google scholar
|
[27] |
Tsai, T. Y.-C. , Choi, Y. S. , Ma, W., Pomerening, J. R., Tang, C. and Ferrell, J. E. Jr. (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321, 126–129
CrossRef
Pubmed
Google scholar
|
[28] |
Wang, G. (2012) Optimal homeostasis necessitates bistable control. J. R. Soc. Interface, 9, 2723–2734
CrossRef
Pubmed
Google scholar
|
[29] |
Tzu, L. (1972) Tao De Ching, translated by Feng, G. and English, J.New York: Vintage (Original work published CA. 350–250 BC)
|
[30] |
Meng, H. and Wang, Y. (2015) Cis-acting regulatory elements: from random screening to quantitative design. Quant. Biol., 3, 107–114
CrossRef
Google scholar
|
[31] |
Zhou, T. and Liu, T. (2015) Quantitative analysis of gene expression systems. Quant. Biol., 3, 168–181
CrossRef
Google scholar
|
[32] |
Cui, H., Li, Y. and Zhang, X. (2016) An overview of major metagenomic studies on human microbiomes in health and disease. Quant. Biol., 4, 192–206
CrossRef
Google scholar
|
[33] |
Li, R., Chen, T. and Li, S. (2015) Network-based method to infer the contributions of proteins to the etiology of drug side effects. Quant. Biol., 3, 124–134
CrossRef
Google scholar
|
[34] |
Li, S. (2016) Exploring traditional chinese medicine by a novel therapeutic concept of network target. Chin. J. Integr. Med., 22, 647–652
CrossRef
Pubmed
Google scholar
|
[35] |
Tengholm, A., Teruel, M. N. and Meyer, T. (2003) Single cell imaging of PI3K activity and glucose transporter insertion into the plasma membrane by dual color evanescent wave microscopy. Sci. STKE, 2003, pl4160;
CrossRef
Pubmed
Google scholar
|
[36] |
Sato, M. (2006) Imaging molecular events in single living cells. Anal. Bioanal. Chem., 386, 435–443
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |