Whole genome synthesis: from poliovirus to synthetic yeast

Junbiao Dai, Yizhi Cai, Yinjing Yuan, Huanming Yang, Jef D. Boeke

PDF(1103 KB)
PDF(1103 KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (1) : 105-109. DOI: 10.1007/s40484-017-0101-x
NEWS AND VIEWS
NEWS AND VIEWS

Whole genome synthesis: from poliovirus to synthetic yeast

Author information +
History +

Cite this article

Download citation ▾
Junbiao Dai, Yizhi Cai, Yinjing Yuan, Huanming Yang, Jef D. Boeke. Whole genome synthesis: from poliovirus to synthetic yeast. Quant. Biol., 2017, 5(1): 105‒109 https://doi.org/10.1007/s40484-017-0101-x

References

[1]
DeLisi, C. (2008) Meetings that changed the world: Santa Fe 1986: Human genome baby-steps. Nature, 455, 876–877
CrossRef Google scholar
[2]
Battelle Technology Partnership Practice, (2011) Economic impact of the Human Genome Project
[3]
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826
CrossRef Google scholar
[4]
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823
CrossRef Google scholar
[5]
Hsu, P. D., Lander, E. S. and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278
CrossRef Google scholar
[6]
Sander, J. D. and Joung, J. K. (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32, 347–355
CrossRef Google scholar
[7]
Sliva, A., Yang, H., Boeke, J. D. and Mathews, D. J. (2015) Freedom and responsibility in synthetic genomics: the synthetic yeast project. Genetics, 200, 1021–1028
CrossRef Google scholar
[8]
Service, R. F. (2013) The life force. Science, 342, 1032–1034
CrossRef Google scholar
[9]
Wang, H. H., Kim, H., Cong, L., Jeong, J., Bang, D. and Church, G. M. (2012) Genome-scale promoter engineering by coselection MAGE. Nat. Methods, 9, 591–593
CrossRef Google scholar
[10]
Isaacs, F. J., Carr, P. A., Wang, H. H., Lajoie, M. J., Sterling, B., Kraal, L., Tolonen, A. C., Gianoulis, T. A., Goodman, D. B., Reppas, N. B., (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 333, 348–353
CrossRef Google scholar
[11]
Lajoie, M. J., Rovner, A. J., Goodman, D. B., Aerni, H.-R., Haimovich, A. D., Kuznetsov, G., Mercer, J. A., Wang, H. H., Carr, P. A., Mosberg, J. A., (2013) Genomically recoded organisms expand biological functions. Science, 342, 357–360
CrossRef Google scholar
[12]
Mandell, D. J., Lajoie, M. J., Mee, M. T., Takeuchi, R., Kuznetsov, G., Norville, J. E., Gregg, C. J., Stoddard, B. L. and Church, G. M. (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature, 518, 55–60
CrossRef Google scholar
[13]
Rovner, A. J., Haimovich, A. D., Katz, S. R., Li, Z., Grome, M. W., Gassaway, B. M., Amiram, M., Patel, J. R., Gallagher, R. R., Rinehart, J., (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature, 518, 89–93
CrossRef Google scholar
[14]
Ostrov, N., Landon, M., Guell, M., Kuznetsov, G., Teramoto, J., Cervantes, N., Zhou, M., Singh, K., Napolitano, M. G., Moosburner, M., (2016) Design, synthesis, and testing toward a 57-codon genome. Science, 353, 819–822
CrossRef Google scholar
[15]
Cello, J., Paul, A. V. and Wimmer, E. (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 297, 1016–1018
CrossRef Google scholar
[16]
Smith, H. O., Hutchison, C. A. 3rd, Pfannkoch, C. and Venter, J. C. (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA, 100, 15440–15445
CrossRef Google scholar
[17]
Sanger, F., Coulson, A. R., Friedmann, T., Air, G. M., Barrell, B. G., Brown, N. L., Fiddes, J. C., Hutchison, C. A. III, Slocombe, P. M. and Smith, M. (1978) The nucleotide sequence of bacteriophage phiX174. J. Mol. Biol., 125, 225–246
CrossRef Google scholar
[18]
Gibson, D. G., Benders, G. A., Andrews-Pfannkoch, C., Denisova, E. A., Baden-Tillson, H., Zaveri, J., Stockwell, T. B., Brownley, A., Thomas, D. W., Algire, M. A., (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 319, 1215–1220
CrossRef Google scholar
[19]
Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R.-Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329, 52–56
CrossRef Google scholar
[20]
Lartigue, C., Vashee, S., Algire, M. A., Chuang, R. -Y., Benders, G. A., Ma, L., Noskov, V. N., Denisova, E. A., Gibson, D. G., Assad-Garcia, N., (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science, 325, 1693–1696
CrossRef Google scholar
[21]
Hutchison, C. A. Ⅲ, Chuang, R. -Y., Noskov, V. N., Assad-Garcia, N., Deerinck, T. J., Ellisman, M. H., Gill, J., Kannan, K., Karas, B. J., Ma, L., (2016) Design and synthesis of a minimal bacterial genome. Science, 351, aad6253
CrossRef Google scholar
[22]
Schatz, M. C. and Phillippy, A. M. (2012) The rise of a digital immune system. Gigascience, 1, 4
CrossRef Google scholar
[23]
Kosuri, S., Eroshenko, N., LeProust, E. M., Super, M., Way, J., Li, J. B. and Church, G. M. (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat. Biotechnol., 28, 1295–1299
CrossRef Google scholar
[24]
Matzas, M., Stähler, P. F., Kefer, N., Siebelt, N., Boisguérin, V., Leonard, J. T., Keller, A., Stähler, C. F., Häberle, P., Gharizadeh, B., (2010) High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat. Biotechnol., 28, 1291–1294
CrossRef Google scholar
[25]
Kim, H., Kim, J., Kim, E.-G., Heinz, A. J., Kwon, S. and Chun, H. (2010) Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration. Biomicrofluidics, 4, 043014
CrossRef Google scholar
[26]
Lin, Q., Jia, B., Mitchell, L. A., Luo, J., Yang, K., Zeller, K. I., Zhang, W., Xu, Z., Stracquadanio, G., Bader , J., (2014) RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synth. Biol. 4, 213–220
[27]
Gibson, D. G., Smith, H. O., Hutchison, C. A. Ⅲ, Venter, J. C. and Merryman, C. (2010) Chemical synthesis of the mouse mitochondrial genome. Nat. Methods, 7, 901–903
CrossRef Google scholar
[28]
Engler, C., Kandzia, R. and Marillonnet, S. (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One, 3, e3647
CrossRef Google scholar
[29]
Engler, C., Gruetzner, R., Kandzia, R. and Marillonnet, S. (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One, 4, e5553
CrossRef Google scholar
[30]
Shao, Z., Zhao, H. and Zhao, H. (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res., 37, e16
CrossRef Google scholar
[31]
Guo, Y., Dong, J., Zhou, T., Auxillos, J., Li, T., Zhang, W., Wang, L., Shen, Y., Luo, Y., Zheng, Y., (2015) YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Res., 43, e88
CrossRef Google scholar
[32]
Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T., Muller, H., Annaluru, N., Blake, W. J., Schwerzmann, J. W., Dai, J., Lindstrom, D. L., (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 477, 471–476
CrossRef Google scholar
[33]
Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., Xue, Y., Cai, Y., Chen, T., Dymond, J. S., Kang, K., (2016) SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res., 26, 36–49
CrossRef Google scholar
[34]
Annaluru, N., Muller, H., Mitchell, L. A., Ramalingam, S., Stracquadanio, G., Richardson, S. M., Dymond, J. S., Kuang, Z., Scheifele, L. Z., Cooper, E. M., (2014) Total synthesis of a functional designer eukaryotic chromosome. Science, 344, 55–58
CrossRef Google scholar
[35]
Mercy, G., Mozziconacci, J., Scolari, V. F., Yang, K., Zhao, G., Thierry, A., Luo, Y., Mitchell, L. A., Shen, M., Shen, Y., (2017) 3D organization of synthetic and scrambled chromosomes. Science, 355, eaaf4597
CrossRef Google scholar
[36]
Mitchell, L. A., Wang, A., Stracquadanio, G., Kuang, Z., Wang, X., Yang, K., Richardson, S., Martin, J. A., Zhao, Y., Walker, R., (2017) Synthesis, debugging and consolidation of synthetic chromosomes in yeast: synVI and beyond. Science, 355, eaaf4831
CrossRef Google scholar
[37]
Richardson, S. M., Mitchell, L. A., Stracquadanio,G., Yang, K., Dymond, J. S., DiCarlo, J. E., Lee, D., Huang,C. L. V., Chandrasegaran, S., Cai, Y., (2017) Design of a synthetic yeast genome. Science, 355, eaaf4557
CrossRef Google scholar
[38]
Shen, Y., Wang, Y., Chen, T., Gao, F., Gong, J., Abramczyk, D., Walker, R., Zhao, H., Chen, S., Liu, W., (2017) Deep functional analysis of synII, a 770–kilobase synthetic yeast chromosome. Science, 355, eaaf4791
CrossRef Google scholar
[39]
Wu, Y., Li, B. Z., Zhao, M., Mitchell, L.A., Xie, Z.X., Lin, Q. H., Wang, X., Xiao, W. H., Wang, Y., Zhou, X., (2017) Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 355, eaaf4706
CrossRef Google scholar
[40]
Xie, Z. X., Li,B. Z. , Mitchell, L. A., Wu, Y., Qi, X., Jin, Z., Jia, B., Wang, X., Zeng, B. X.,, Liu, H. M., (2017) “Perfect” designer chromosome V and behavior of a ring derivative. Science, 355, eaaf4704
CrossRef Google scholar
[41]
Zhang, W., Zhao, G., Luo, Z., Lin, Y., Wang, L., Guo, Y., Wang, A., Jiang, S., Jiang, Q., Gong, J., (2017) Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 355, eaaf3981
CrossRef Google scholar
[42]
Dymond, J. S., Scheifele, L. Z., Richardson, S., Lee, P., Chandrasegaran, S., Bader, J. S. and Boeke, J. D. (2009) Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary build-a-genome course. Genetics, 181, 13–21
CrossRef Google scholar
[43]
Mitchell, L. A., Cai, Y., Taylor, M., Noronha, A. M., Chuang, J., Dai, L. and Boeke, J. D. (2013) Multichange isothermal mutagenesis: a new strategy for multiple site-directed mutations in plasmid DNA. ACS Synth. Biol., 2, 473–477
CrossRef Google scholar
[44]
Mitchell, L. A. and Boeke, J. D. (2014) Circular permutation of a synthetic eukaryotic chromosome with the telomerator. Proc. Natl. Acad. Sci. USA, 111, 17003–17010
CrossRef Google scholar
[45]
Cai, Y., Agmon, N., Choi, W. J., Ubide, A., Stracquadanio, G., Caravelli, K., Hao, H., Bader, J. S. and Boeke, J. D. (2015) Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes. Proc. Natl. Acad. Sci. USA, 112, 1803–1808
CrossRef Google scholar
[46]
DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M. and Church, G. M. (2015) Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol., 33, 1250–1255
CrossRef Google scholar
[47]
Gallagher, R. R., Patel, J. R., Interiano, A. L., Rovner, A. J. and Isaacs, F. J. (2015) Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res., 43, 1945–1954
CrossRef Google scholar
[48]
Boeke, J. D., Church, G., Hessel, A., Kelley, N. J., Arkin, A., Cai, Y., Carlson, R., Chakravarti, A., Cornish, V. W., Holt, L., (2016) The Genome Project-Write. Science, 353, 126–127
CrossRef Google scholar

ACKNOWLEDGEMENTS

Work in Dai’s lab was supported by NSFC 31471254 and the Research Fund for the Doctoral Program of Higher Education of China 20110002120055. This work was also supported by the Shenzhen Peacock Team Project (KQTD 2015033117210153).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1103 KB)

Accesses

Citations

Detail

Sections
Recommended

/