Bistability and oscillations in co-repressive synthetic microbial consortia

Mehdi Sadeghpour , Alan Veliz-Cuba , Gábor Orosz , Krešimir Josić , Matthew R. Bennett

Quant. Biol. ›› 2017, Vol. 5 ›› Issue (1) : 55 -66.

PDF (1445KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (1) : 55 -66. DOI: 10.1007/s40484-017-0100-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Bistability and oscillations in co-repressive synthetic microbial consortia

Author information +
History +
PDF (1445KB)

Abstract

Background: Synthetic microbial consortia are conglomerations of genetically engineered microbes programmed to cooperatively bring about population-level phenotypes. By coordinating their activity, the constituent strains can display emergent behaviors that are difficult to engineer into isogenic populations. To do so, strains are engineered to communicate with one another through intercellular signaling pathways that depend on cell density.

Methods: Here, we used computational modeling to examine how the behavior of synthetic microbial consortia results from the interplay between population dynamics governed by cell growth and internal transcriptional dynamics governed by cell-cell signaling. Specifically, we examined a synthetic microbial consortium in which two strains each produce signals that down-regulate transcription in the other. Within a single strain this regulatory topology is called a “co-repressive toggle switch” and can lead to bistability.

Results: We found that in co-repressive synthetic microbial consortia the existence and stability of different states depend on population-level dynamics. As the two strains passively compete for space within the colony, their relative fractions fluctuate and thus alter the strengths of intercellular signals. These fluctuations drive the consortium to alternative equilibria. Additionally, if the growth rates of the strains depend on their transcriptional states, an additional feedback loop is created that can generate oscillations.

Conclusions: Our findings demonstrate that the dynamics of microbial consortia cannot be predicted from their regulatory topologies alone, but are also determined by interactions between the strains. Therefore, when designing synthetic microbial consortia that use intercellular signaling, one must account for growth variations caused by the production of protein.

Graphical abstract

Keywords

synthetic biology / microbial consortia / quorum sensing / relaxation oscillations

Cite this article

Download citation ▾
Mehdi Sadeghpour, Alan Veliz-Cuba, Gábor Orosz, Krešimir Josić, Matthew R. Bennett. Bistability and oscillations in co-repressive synthetic microbial consortia. Quant. Biol., 2017, 5(1): 55-66 DOI:10.1007/s40484-017-0100-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. and Benenson, Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1311.

[2]

Zhang, F., Carothers, J. and Keasling, J. D. (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol., 30, 354–359.

[3]

Masiello, C. A., Chen, Y., Gao, X., Liu, S., Cheng, H.-Y., Bennett, M. R., Rudgers, J. A., Wagner, D. S., Zygourakis, K. Z. and Silberg, J. J. (2013) Biochar and microbial signaling: production conditions determine effects on microbial communication. Environ. Sci. Technol., 47, 11496–11503.

[4]

Sprinzak, D. and Elowitz, M. B. (2005) Reconstruction of genetic circuits. Nature, 438, 443–448.

[5]

Wintermute, E. H. and Silver, P. A. (2010) Dynamics in the mixed microbial concourse. Genes Dev., 24, 2603–2614.

[6]

Chen, Y., Kim, J. K., Hirning, A. J., Josić K. and Bennett, M. R. (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science, 349, 986–989.

[7]

González, C., Ray, J. C., Manhart, M., Adams, R. M., Nevozhay, D., Morozov, A. V. and Balázsi, G. (2015) Stress-response balance drives the evolution of a network module and its host genome. Mol. Syst. Biol., 11, 827

[8]

Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellen, J., Peeters, T., Hohmann, S., de Nadal, E., Posas, F. and Sole, R. (2011) Distributed biological computation with multicellular engineered networks. Nature, 469, 207–211.

[9]

Kong, W., Celik, V., Liao, C., Hua, Q. and Lu, T. (2014) Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresour. and Bioprocess., 1, 24

[10]

Kanakov, O., Laptyeva, T., Tsimring, L. and Ivanchenko, M. (2016) Spatiotemporal dynamics of distributed synthetic genetic circuits. Physica D, 318319, 116–123.

[11]

Blanchard, A. E., Liao, C. and Lu, T. (2016) An ecological understanding of quorum sensing-controlled bacteriocin synthesis. Cell. Mol. Bioeng., 9, 443–454.

[12]

Tan, C., Marguet, P. and You, L. (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol., 5, 842–848.

[13]

Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. and Hwa, T. (2010) Interdependence of cell growth and gene expression: origins and consequences. Science, 330, 1099–1102.

[14]

Nevozhay, D., Adams, R. M., Van Itallie, E., Bennett, M. R. and Balázsi, G. (2012) Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput. Biol., 8, e1002480

[15]

Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia Coli. Nature, 403, 339–342.

[16]

Miller, M. B. and Bassler, B. L. (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol., 333, 1315–1319.

[17]

Wu, F., Menn, D. J. and Wang, X. (2014) Quorum-sensing crosstalk-driven synthetic circuits: from unimodality to trimodality. Chem. Biol., 21, 1629–1638.

[18]

Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A., Levskaya, A., Marcotte, E. M., Voigt, C. A. and Ellington, A. D. (2009) A synthetic genetic edge detection program. Cell, 137, 1272–1281.

[19]

Bennett, M. R. and Hasty, J. (2009) Overpowering the component problem. Nat. Biotechnol., 27, 450–451.

[20]

You, L., Cox, R. S. III, Weiss, R. and Arnold, F. H. (2004) Programmed population control by cell-cell communication and regulated killing. Nature, 428, 868–871.

[21]

Balagaddé F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., Quake, S. R. and You, L. (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol., 4, 187

[22]

Hek, G. (2010) Geometric singular perturbation theory in biological practice. J. Math. Biol., 60, 347–386.

[23]

Krupa, M. and Szmolyan, P. (2001) Relaxation oscillation and canard explosion. J. Differ. Equ., 174, 312–368.

[24]

Moran, P. A. P. (1958) Random processes in genetics. Math. Proc. Camb. Philos. Soc., 54, 60–71.

[25]

Nowak, M. A. (2006) Evolutionary Dynamics: Exploring the Equations of Life.Brighton: Harvard University Press

[26]

van der Pol, B. (1926) LXXXVIII. On “relaxation-oscillations”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 978–992

[27]

Veliz-Cuba, A., Gupta, C., Bennett, M. R., Josić K. and Ott, W. (2016) Effects of cell cycle noise on excitable gene circuits. Phys. Biol., 13, 066007

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1445KB)

1943

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/