SynBioEcoli: a comprehensive metabolism network of engineered E. coli in three dimensional visualization

Weizhong Tu, Shaozhen Ding, Ling Wu, Zhe Deng, Hui Zhu, Xiaotong Xu, Chen Lin, Chaonan Ye, Minlu Han, Mengna Zhao, Juan Liu, Zixin Deng, Junni Chen, Dong-Qing Wei, Qian-Nan Hu

PDF(2018 KB)
PDF(2018 KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (1) : 99-104. DOI: 10.1007/s40484-017-0098-1
RESEARCH ARTICLE
RESEARCH ARTICLE

SynBioEcoli: a comprehensive metabolism network of engineered E. coli in three dimensional visualization

Author information +
History +

Abstract

Background: A comprehensive metabolism network of engineered E. coli is very important in systems biology and metabolomics studies. Many tools focus on two-dimensional space to display pathways in metabolic network. However, the usage of three-dimensional visualization may help to understand better the intricate topology of metabolic and regulatory networks.

Methods: We manually curated large amount of experimental data (including pathways, reactions and metabolites) from literature related with different types of engineered E. coli and then utilized a novel technology of three dimensional visualization to develop a comprehensive metabolic network named SynBioEcoli.

Results: SynBioEoli contains 740 biosynthetic pathways, 3,889 metabolic reactions, 2,255 chemical compoundsmanually curated from about 11,000 metabolism publications related with different types of engineered E. coli. Furthermore, SynBioEcoli integrates with various informatics techniques.

Conclusions: SynBioEcoli could be regarded as a comprehensive knowledgebase of engineered E. coli and represents the next generation cellular metabolism network visualization technology. It could be accessed via web browsers (such as Google Chrome) supporting WebGL, at http://www.rxnfinder.org/synbioecoli/.

Graphical abstract

Keywords

engineered E. coli / three dimensional metabolic network / biosynthetic ability

Cite this article

Download citation ▾
Weizhong Tu, Shaozhen Ding, Ling Wu, Zhe Deng, Hui Zhu, Xiaotong Xu, Chen Lin, Chaonan Ye, Minlu Han, Mengna Zhao, Juan Liu, Zixin Deng, Junni Chen, Dong-Qing Wei, Qian-Nan Hu. SynBioEcoli: a comprehensive metabolism network of engineered E. coli in three dimensional visualization. Quant. Biol., 2017, 5(1): 99‒104 https://doi.org/10.1007/s40484-017-0098-1

References

[1]
McCloskey, D., Palsson, B. O. and Feist, A. M. (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol., 9, 661–676
CrossRef Google scholar
[2]
Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., Broadbelt, L. J., Hatzimanikatis, V. and Palsson, B. O. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol., 3, 121–139
CrossRef Google scholar
[3]
Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L. and Palsson, B. O. (2009) Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol., 7, 129–143
CrossRef Google scholar
[4]
Feist, A. M. and Palsson, B. O. (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol., 26, 659–667
CrossRef Google scholar
[5]
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. and Barabási, A. L. (2000) The large-scale organization of metabolic networks. Nature, 407, 651–654
CrossRef Google scholar
[6]
Ma, H. and Zeng, A. P. (2003) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics, 19, 270–277
CrossRef Google scholar
[7]
Okuda, S., Yamada, T., Hamajima, M., Itoh, M., Katayama, T., Bork, P., Goto, S. and Kanehisa, M. (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res., 36, W423–W426
CrossRef Google scholar
[8]
Karp, P. D., Paley, S. M., Krummenacker, M., Latendresse, M., Dale, J. M., Lee, T. J., Kaipa, P., Gilham, F., Spaulding, A., Popescu, L., (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief. Bioinform., 11, 40–79
CrossRef Google scholar
[9]
Csermely, P., Korcsmaros, T., Kiss, H. J., London, G. and Nussinov, R. (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery. Pharmacol. Ther., 138, 333–408
CrossRef Google scholar
[10]
Rojdestvenski, I. and Cottam, M. (2002) Visualizing metabolic networks in VRML. In Proceedings. Sixth International Conference on Information Visualisation, pp. 175–180
[11]
Pavlopoulos, G. A., O’Donoghue, S. I., Satagopam, V. P., Soldatos, T. G., Pafilis, E. and Schneider, R. (2008) Arena3D: visualization of biological networks in 3D. BMC Syst. Biol., 2, 104–111
CrossRef Google scholar
[12]
Jia, M., Choi, S. Y., Reiners, D., Wurtele, E. S. and Dickerson, J. A. (2010) MetNetGE: interactive views of biological networks and ontologies. BMC Bioinformatics, 11, 469–485
CrossRef Google scholar
[13]
Karp, P. D. and Riley, M. (1996) EcoCyc: an encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res., 24, 32–39
CrossRef Google scholar
[14]
Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205
CrossRef Google scholar
[15]
Chang, A., Schomburg, I., Placzek, S., Jeske, L., Ulbrich, M., Xiao, M., Sensen, C. W. and Schomburg, D. (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res., 43, D439–D446
CrossRef Google scholar
[16]
Lang, M., Stelzer, M. and Schomburg, D. (2011) BKM-react, an integrated biochemical reaction database. BMC Biochem., 12, 42
CrossRef Google scholar
[17]
Fruchterman, T. M. J. and Reingold, E. M. (1991) Graph drawing by force-directed placement. Softw. Pract. Exper., 21, 1129–1164
CrossRef Google scholar
[18]
Hu, Q. N., Deng, Z., Tu, W., Yang, X., Meng, Z. B., Deng, Z. X. and Liu, J. (2014) VNP: interactive visual network pharmacology of diseases, targets, and drugs. CPT Pharmacometrics Syst. Pharmacol., 3, e105
CrossRef Google scholar
[19]
Tu, W., Zhang, H., Liu, J. and Hu, Q. -N. (2015) BioSynther: a customized biosynthetic potential explorer. Bioinformatics, 32, 472–473
CrossRef Google scholar
[20]
Hu, Q. N., Deng, Z., Hu, H., Cao, D. S. and Liang, Y. Z. (2011) RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity. Bioinformatics, 27, 2465–2467
CrossRef Google scholar
[21]
Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol., 147, 195–197
CrossRef Google scholar
[22]
Lipman, D. J. and Pearson, W. R. (1985) Rapid and sensitive protein similarity searches. Science, 227, 1435–1441.
CrossRef Google scholar
[23]
Pearson, W. R. and Lipman, D. J. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA, 85, 2444–2448
CrossRef Google scholar
[24]
Danchilla, B. (2012) Three.js Framework. In Beginning WebGL for HTML5, 173–203. Berkeley: Apress
CrossRef Google scholar

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation of China (Nos. 31270101 and 31570092), the national high technology research and development program (No. 2012CB721000) and the Natural Science Foundation of Tianjin, China.
This article does not contain any studies with human or animal subjects performed by any of the authors.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Weizhong Tu, Shaozhen Ding, Ling Wu, Zhe Deng, Hui Zhu, Xiaotong Xu, Chen Lin, Chaonan Ye, Minlu Han, Mengna Zhao, Juan Liu, Zixin Deng, Junni Chen, Dong-Qing Wei and Qian-Nan Hu declare they have no conflict of interests.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2018 KB)

Accesses

Citations

Detail

Sections
Recommended

/